
Eventual Consistency: How soon is eventual?

An Evaluation of Amazon S3’s Consistency Behavior

David Bermbach and Stefan Tai
Karlsruhe Institute of Technology

Karlsruhe, Germany
firstname.lastname@kit.edu

ABSTRACT
Over the last few years, Cloud storage systems and so-called
NoSQL datastores have found widespread adoption. In con-
trast to traditional databases, these storage systems typi-
cally sacrifice consistency in favor of latency and availability
as mandated by the CAP theorem, so that they only guar-
antee eventual consistency. Existing approaches to bench-
mark these storage systems typically omit the consistency
dimension or did not investigate eventuality of consistency
guarantees. In this work we present a novel approach to
benchmark staleness in distributed datastores and use the
approach to evaluate Amazon’s Simple Storage Service (S3).
We report on our unexpected findings.

Categories and Subject Descriptors
H.3.4 [Information Systems]: Systems and Software—
Distributed systems, Amazon S3 ; D.2.8 [Software Engi-
neering]: Metrics—Performance Measures, Consistency

General Terms
Measurement, Performance, Experimentation

Keywords
Cloud Computing, Amazon S3, Eventual Consistency

1. INTRODUCTION
The Web with its continuously growing user and applica-

tion base is producing increasingly large amounts of data.
Cost-efficiency and elasticity of data storage consequently
have become a key requirement on storage solutions, giv-
ing rise to the development of NoSQL (Not Only SQL)
data stores in the Cloud. Offerings include simple key-value
stores such as Amazon S31 and Amazon SimpleDB2, and

1aws.amazon.com/s3
2aws.amazon.com/simpledb

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MW4SOC ’11, December 12, 2011, Lisboa, Portugal
Copyright 2011 ACM 978-1-4503-1067-3/11/12 ...$10.00.

other schema-less offerings such as the Google App Engine
datastore3 and Apache Cassandra4. Common to these di-
verse offerings is the creation and management of multiple
geographically distributed replica of the data to be stored.
A behind-the-scenes replication architecture is fundamental
in ensuring high availability.

Cloud storage systems typically trade high availability
against strong data consistency, and take advantage of very
large numbers of commodity machines that fail frequently.
Hence, NoSQL Cloud storage systems often exhibit eventu-
ally consistent [20] behavior. That is, a client may observe
stale data for some time, and data consistency is only en-
sured eventually. Not all eventually consistent systems ex-
pose the same consistency characteristics, though. Tanen-
baum and Steen [18], for instance, report on different non-
strict classes of consistency guarantees that might be ful-
filled by storage systems. As developing applications on top
of an eventually consistent datastore requires a higher effort
compared to traditional databases (if it is possible at all),
as also pointed out by Wada et al. [21], any help in deter-
mining the actual consistency guarantees of a system is ad-
vantageous. Beyond the consistency classes, an immediate
question then is: how soon (how late, respectively) is ’even-
tual’ and is there actually a point in time where consistency
is reached? In this paper, we report on experimental find-
ings in the pursuit to answer this question. Knowing about
consistency properties of a system can also help with the
decision whether an application can use a particular datas-
tore [14].

In section 2, we start by describing different perspectives
on consistency. Next, in section 3 we provide an overview of
our considerations on how to answer the question as stated
above. Afterwards, in section 4 we experimentally validate
the feasibility of our approach before evaluating the consis-
tency behavior of Amazon S3 in section 5. After a brief
discussion of our results in section 6 we report on related
work before ending with a conclusion.

2. BACKGROUND
Literature, e.g., Tanenbaum and Steen [18], basically dis-

tinguishes two main classes of consistency: data-centric con-
sistency and client-centric consistency.

Data-centric consistency models focus on the internal state
of a storage system, i.e., consistency has been reached as
soon as all replica of a given data item are identical. These

3code.google.com/appengine
4cassandra.apache.org

models come in slightly different flavors, ranging from tradi-
tional strict consistency, which requires all replica of all data
items to be identical as well as all semantical relationships
between data items to be observed, to consistency guaran-
tees which can be found in systems like the Google File Sys-
tem [8], where replica are treated as consistent once every
copy includes every single update at least once.

On the other hand, there are client-centric consistency
models that do not care about the internal state of a storage
system. Instead they focus on the consistency guarantees
which can actually be observed by one or more clients, e.g.,
whether stale data is returned or not.

In consequence, when measuring how soon eventual con-
sistency is (that is, measuring the length of the inconsis-
tency window), there are again two different perspectives
on this. A Cloud storage provider or anyone with access to
the source code of a storage system (in the following just
provider) would rather focus on a data-centric perspective.
To a consumer, in contrast, it really does not matter whether
internally a Cloud storage system contains a huge number of
stale replica as long as the provider has implemented mech-
anisms to deal with those. As long as no stale data is ob-
served, the customer is satisfied.

3. APPROACH AND IMPLEMENTATION
Measuring the length of the inconsistency window is triv-

ial from a provider perspective: By adding detailed logging
or notification functionality to the storage system it is easily
possible to have the actual timestamps of each replica up-
date readily available. By calculating the difference between
the latest and the first timestamp it is, hence, possible to
get the desired result.

From a customer perspective, in contrast, who might only
have black-box access to the storage system (e.g., in case
of Cloud storage systems) or might not have the means or
knowledge to change the source code of a storage system,
it is more important to know how long it takes from issu-
ing an update to being able to still read the old version.
For eventually consistent storage systems, this is typically a
value expected to be greater than zero. This value can be
experimentally determined by the following steps:

1. Create a timestamp.

2. Write a version number to the storage system.

3. Continuously read until the old version number is no
longer returned, then create a new timestamp.

4. Calculate the difference between the write timestamp
and the second timestamp (time of the last read of the
previous version).

5. Repeat these steps to achieve statistical significance.

Depending on the latency of step 2, an alternative ap-
proach might create another timestamp between steps 2 and
3 and use the mean of those for the calculation in step 5 (in-
stead of the timestamp from step 1).

Please, note that it is necessary to use the last read of the
old version and not the first read of the new version as –
for systems where monotonic read consistency5 is violated
5Monotonic read consistency is defined as follows: After hav-
ing returned version n to a specific client the system guar-
antees to return only versions ≥ n [20]

– the timestamp of the last read of the old version may be
long after the timestamp of the first read of the new ver-
sion. Our system identifies the last read of a particular ver-
sion using an internal buffer: for every version each reader
remembers the last time it could read that version. Once
the buffer is full, the inconsistency window is calculated for
the oldest version only, before it is removed from the buffer.
For our experiments we have chosen combinations of buffer
size and write interval which guarantee that the highest ob-
served inconsistency window easily fits into the buffer, i.e.,
bufferSize∗writeInterval � maxInconsistencyWindow.
E.g. a peak inconsistency window of about 33s combined
with a configuration which enables us to capture values as
large as 100s.

Independent from our work, Wada et al. [21] propose a
very similar approach, already with interesting results. In
our opinion, their approach has a fundamental flaw, though:
only one reader is used in their experimental setup. By
using only one reader, especially when running in the same
datacenter as the writer or even worse running on the same
machine, it is improbable to actually discover staleness. This
is due to two facts:

1. A distributed storage system usually uses some kind
of load balancer. Depending on the intelligence of the
load balancer it is not unlikely that all requests from
the same IP range are forwarded to the same replica
or that there is even a caching layer in between. Ac-
curacy can be greatly increased by running additional
geographically distributed readers.

2. One reader can, depending on the latency L of the
storage system, only achieve a resolution of 1/L, i.e.,
send only 1/L requests per unit of time. Anything that
happens in between is unknown. This resolution of the
results can be almost linearly improved by adding more
reader instances.

For these reasons, we have implemented a system where
one writer periodically writes a local timestamp plus a ver-
sion number to the storage system. Next, there is a number
of readers (the actual number depends on the storage sys-
tem) which are geographically distributed. These reader in-
stances continuously poll the storage system and remember
for each version the latest point in time where they could still
read that specific version. After collecting this data from all
readers, we then consider the difference between the latest
read timestamp of version n and the write timestamp of
version n + 1. This is, because the client-observable incon-
sistency window is the period of time after submitting an
update where it is still possible to read the previous version.

Figure 1 shows an example which shall serve to better
explain how we derive our results. The data used is not real
data as we usually have about 1,000 reads in between two
writes. We have observed similar logs in real monitoring
data, though. In this example, the storage system violates
monotonic read consistency.

The figure shows a timeline in the left column, the data
the writer wrote in the second column, and what the two
readers read at different points in time in the other two
columns. Based on the highlighted last reads for a given
version it is then possible to calculate the table in the right
part of the figure.

For example, after 5 units of time (TU) the writer writes
version B to the storage system. Reader 1 reads the old

Figure 1: Consistency Monitoring Example

version A the last time after 8 TU, reader 2 does so after
10 TU. So, reader 1 observed that version A lingered on
for 3 TU while reader 2 measured 5 TU. Both send their
respective values to the collector. Since only the longest
difference matters, this results in an inconsistency window
of 5 TU for version A.

4. FEASIBILITY OF THE APPROACH
As already discussed in the previous sections, there are

two general perspectives on consistency: data-centric and
client-centric. Furthermore, the accuracy of our client-centric
consistency monitoring highly depends on the number of
readers used. This becomes also clear when looking at prob-
abilities. For example, in a scenario with three replica where
a load balancer forwards requests to a randomly chosen
replica (uniformly distributed) we assume that all readers
poll only once. Then, there is an 83% probability of read-
ing from all three replica when using seven readers. When
using nine readers there is a 93% probability. This in turn
implies that the client-observable inconsistency window has
an upper bound in the data-centric inconsistency window
since there is always a chance of missing one replica, i.e.,
the probability of reading all replica will always be less than
100%. Furthermore, as already discussed, adding more read-
ers increases the resolution of the results. Hence, using our
approach from the previous section will always underesti-
mate the actual client-observable inconsistency window. But
how far off are these estimates from the actual data-centric
consistency?

To address this question, we implemented a very simple
distributed key-value store called MiniStorage with a repli-
cation level of three. In MiniStorage, a read request is served
by just one replica. A write request, in contrast, is sent to
one replica which persists the data locally or in memory.
Next, it responds to the requester. After this, we added an
artificial 1000ms delay6 before forwarding the write request
to the other two replica. This corresponds to an (N,R,W)
configuration of (3,1,1) [20]. Each MiniStorage replica logs
the exact point in time when it executes an update request
plus the content of that update.

For our evaluation, we deployed MiniStorage on three
Amazon EC27 small instances within the region us-east. At

6Originally, observed system latencies and inconsistency
windows were close to the accuracy range of NTP which we
use for clock synchronization so that no meaningful results
could be achieved.
7aws.amazon.com/ec2

Figure 2: Data-centric vs. Client-observable Incon-
sistency Windows in MiniStorage

the time of our experiments this region offered four so-called
availability zones which are each independent datacenters lo-
cated in close proximity to each other. We could not start
instances in availability zone 1a as it was full, so we dis-
tributed the replica over the zones 1b, 1c and 1d. Next,
we deployed our consistency monitoring tool (again using
only EC2 small instances). Our writer, the so-called col-
lector (which is just responsible for collecting logs from the
readers and the writer) and the first reader were deployed
in region 1b as well and we started the test with an update
interval of 5s and a poll interval of 10ms. Afterwards, we
added additional readers every 10 minutes. While the first
reader was in zone 1b, the second was in 1c, the third in
1d, the fourth in 1b again, and so on. We did this until we
had 12 readers running, which is when we stopped adding
readers but kept the system running for another two hours.
This test was run on August 17, 2011.

The test results show a fairly stable inconsistency win-
dow of slightly above one second based on the MiniStorage
logs. Our consistency monitoring instead slowly approaches
that curve asymptotically which proves the validity of our
considerations from sections 2 and 3. Figure 2 shows our
results; the black bar stands for the inconsistency window
calculated from MiniStorage logs while the striped bar shows
our measured results by adding more and more readers. To
remove small random fluctuations the figure only shows the
mean values for each period between changing the number
of readers. The actual values nevertheless also showed that
the observed inconsistency window never exceeds the data-
centric inconsistency window. It also shows that after a
certain number of readers it becomes highly inefficient to
achieve higher accuracy.

5. EVALUATION OF AMAZON S3
The first actual Cloud storage service which we evalu-

ated via our consistency monitoring was Amazon’s Simple
Storage Service (S3). S3 is a key-value store guaranteeing
eventual consistency. Files are placed in buckets for which a
location can be chosen from a set of regions which is identi-
cal to the regions of Amazon EC2. Also, files are replicated
in multiple availability zones. It, hence, seems to be a valid
assumption that S3 uses the same data centers as its EC2

Figure 3: Length of LOW and SAW Periods over
Time on S3

counterparts.
For our purposes we placed a bucket in the region eu-

west (Ireland) since we had, during our MiniStorage tests,
observed that we could not start EC2 instances in us-east
1a whereas we could start instances in all availability zones
of eu-west. When we repeated our MiniStorage test for S3
starting additional readers in certain intervals, we observed
that our results were fairly constant beyond 8 readers. To
nevertheless play it safe, we deployed 12 readers – 4 per
availability zone. Our writer as well as the collector were
deployed in zone a, all instances again were small instances.
We chose an update interval of 10s to give each update
enough time (in our mind) to propagate without interfer-
ing with older updates. The poll interval per reader was set
to 10ms. We started the test on August 29, 2011 8.30h AM
(UTC) and kept it running for a week.

In contrast to the findings of Wada et al. [21] who could
not observe any inconsistencies at all, and in contrast to our
expectations of seeing a normal distribution of inconsistency
window lengths, our results show some strange periodicities.
First, there is a long-term periodicity: Roughly every 12
hours the behavior of S3 abruptly changes between what we
will call a LOW phase and a SAW phase. Figure 3 shows
the length of those periods in comparison.

During the LOW phase we actually find a random8 dis-
tribution with a mean value of 28ms and a median of 15ms.
Please, note that these values may be exact but could be
off by at least a factor 2 due to the accuracy limitations of
NTP [15] which we use for clock synchronization. We be-
lieve, though, that median and mean values between 0 and
100ms are realistic.

During our SAW periods we can observe a curve which
resembles a sawtooth wave – hence, the name. It really does
not matter which SAW phase we select an excerpt from,
the periodicity follows always the same pattern: First, the
inconsistency window’s length is close to zero. Then, it in-
creases by about one or two seconds with every test until
it peaks at about eleven seconds before dropping straight
down to the next minimum. The only difference that can be
found is that the minimum can be found in the interval be-
tween zero and five seconds and the maximum can be found

8The distribution has three local maxima: the absolute max-
imum at 7ms, next smaller local maximum at 26ms and an-
other small local maximum at 90ms.

Figure 4: Observed Inconsistency Window Length
during SAW Periods Over Time on S3 (Excerpt)

between ten and twelve seconds. The wavelength of this
pattern fluctuates between eight and twelve tests, i.e., for
our test setup the pattern restarts every 80 to 120s. Figure
4 shows an excerpt from one of the SAW phases.

We have been researching the question of consistency mon-
itoring for quite a while now. Repeated tests on S3 showed
the exact same results. Already in July and August 2010,
we experimentally analyzed consistency guarantees of S3 via
an independent implementation which also used a slightly
different algorithm. Even back then (where it was only a
by-product of our evaluation of [3]) we observed remarkably
similar behavior. Figure 5 shows the full results of our one
week evaluation of S3. Due to the sheer number of test runs
and, hence, the density of the curve, it is not possible to see
the sawtooth pattern during the SAW phases but it is still
easily possible to distinguish SAW and LOW phases.

Another finding was that the availability zones seem differ-
ent in terms of accessing the latest version. While our writer
was in zone a, the longest inconsistency window length was
observed in 28% of all tests in zone a. The same is true for
zone c while zone b had the maximum in 49% of all tests9.
This indicates that zone b seems to have a slightly poorer
connection to the other two zones, e.g., by being located in
a different building.

Furthermore, regarding locations we could not see differ-
ences between the zones: They all did the same sawtooth
wave and had their maxima and minima at the exact same
time only the amplitudes were slightly different which cre-
ates the results from the last paragraph.

We also tested our results for violations of monotonic read
consistency. From a total of 353,357,884 reads 42,565,840 or
about 12% of all requests violated monotonic read consis-
tency [20]. In exchange, we observed an availability of more
than eight nines (99.9999997% – only one request returned
an error).

6. DISCUSSION
In summary, we observed an unexpected, very interest-

ing consistency behavior of Amazon S3, but have so far
not been able to come up with a satisfying explanation of
our experimental findings. Possible explanations could be
caching effects or measurements to counter DDoS attacts

9The total is not 100% as for about 5% of all tests two zones
observed the same inconsistency window.

Figure 5: Observed Inconsistency Window Length
Over Time on S3

(which both would not explain why there are LOW phases)
or internal rebalancing processes which are triggered about
every twelve hours and somehow cause this phenomenon.
The latter would explain the SAW vs. LOW periodicities
but still does not explain why the SAW phase comes in such
a shape.

Another possible explanation for the periodicities could
be the NTP protocol (and specifically the ntpd linux de-
mon) which we use for clock synchronization. Our approach
naturally relies on a tight synchronization of all monitoring
clocks. If the clocks continuously drift apart a resynchro-
nization about once per minute may occur; the result may
then be a behavior as shown in figure 4. We believe, though,
that this is not the case for several reasons:

1. Before running our experiments we tested the accu-
racy achieved by ntpd. This was done by opening ssh
connections to several EC2 instances which had ntpd
running. Those instances then continuously printed
their local timestamp every second. All values which
we could observe were less than one second apart so
that delays of about 12s can not be explained.

2. If NTP were the root cause of the periodicities it would
still only explain the SAW but not the LOW phases.
Hence, the behavior of ntpd would need to change com-
pletely every 12 hours which seems highly unlikely.

3. Preliminary results of experiments with Apache Cas-
sandra (with or without additional load) as well as our
MiniStorage experiments do not show any periodici-
ties at all. Instead Apache Cassandra seems to follow
a geometric distribution and MiniStorage shows the
random distribution already mentioned. If we monitor
two files on S3 at the same time the second file shows
an entirely different behavior while the first file be-
haves as discussed above. These results were achieved
using the exact same configuration running ntpd.

Still, while NTP effects cannot explain the periodicities it
heavily affects the accuracy of our measurements. For future
versions we will, hence, also look at alternative clock sychro-
nization approaches, e.g., the coupling-based algorithm by
Baldoni et al. [2].

Of course, we also considered that some parts of our imple-
mentation might have caused this behavior. For this reason

we had several people cross-check our approach as well as the
source code. Also, we could not observe a similar behavior
when benchmarking other storage systems and our approach
includes no long-term periodicities which could explain the
change between LOW and SAW phases. Furthermore, an
independent earlier prototype using even a slightly differ-
ent approach created similar results. For these reasons, we
believe that our results reveal an interesting behavior of S3
which is caused by Amazon’s internal design choices. In the
end all interpretation on our side is guesswork so that the
final explanations need to be provided by Amazon. Still, we
are looking forward to discussing our findings at the confer-
ence which might bring up other possible explanations.

7. RELATED WORK
There is a huge number of publications on distributed stor-

age systems with only eventually consistent guarantees. Ex-
amples among others are [6, 13, 8, 4, 12, 17, 19].

Also there is work on benchmarking those data stores [5,
23, 10]. Some of those even call for the necessity of con-
sistency monitoring in their future works part, but to our
knowledge so far only [21, 1] actually evaluate consistency
guarantees. While the results of Wada et al. [21] show the
implications of not using multiple readers their approach is
otherwise very similar.

Anderson et al. [1] in contrast require detailed operation
logs. After execution they run an offline check to analyze
whether consistency violations have occurred. Due to the
complexity of their calculations it is impossible to provide
live monitoring. Furthermore, it is not clear how their ap-
proach can be integrated into a concrete application and the
results highly depend on the application workload or inter-
action pattern with the datastore that is used. Their results
are, hence, more application-specific than datastore-specific.

Klems et al. [9] also propose consistency benchmarks but
their approach using Fox and Brewer’s harvest and yield
metrics [7] does not consider staleness of results, rather mea-
suring availability and completeness of answers of a dis-
tributed queueing system.

Consistency Rationing like [16, 11] or ongoing research
within our research group towards the same question re-
quires means to tune consistency guarantees. For this pur-
pose, it is necessary to be able to measure the actual consis-
tency output. Our work can, hence, serve as input for those
tools.

8. CONCLUSION
In this paper we started by discussing different perspec-

tives on consistency of distributed storage systems, namely a
provider (or data-centric) and a consumer (or client-centric)
view. We then explained how these two relate to each other
and introduced an approach which allows to measure the
staleness of data, or how soon ’eventual’ in eventual consis-
tency is. Also, we compared it to a similar approach, inde-
pendently developed by Wada et al. [21], and showed how
our design corrects a fundamental flaw of their approach.
Afterwards, we validated our approach using a simple key-
value store called MiniStorage.

After these initial considerations, we evaluated Amazon
S3 in terms of consistency guarantees and found, in stark
contrast to the findings by Wada et al. [21], that S3 fre-
quently violates monotonic read consistency. Also, we en-

countered strange periodicities, namely our so-called SAW
and LOW phases which alternate approximately twice a day.
Furthermore, we described the sawtooth wave-like behavior
of S3 during SAW phases before discussing potential expla-
nations.

Our approach of geographically distributed readers com-
bined with a writer fits into current research regarding bench-
marking of distributed datastores as well as systems building
on top of that. Our results provide concrete data that serves
as criteria for an application developer to determine whether
an eventual consistency data store provides acceptable con-
sistency guarantees.

In future endeavors, we will try to determine dependen-
cies between files on S3, e.g., how periodicities of files within
the same bucket or across multiple buckets correlate. Fur-
thermore, we are currently benchmarking Apache Cassandra
and the Google App Engine datastore. We plan to publish
these results as well as to extend our efforts to additional
storage systems in a follow-up paper.

Finally, Yu and Vahdat [22] as well as similar models know
other consistency dimensions beyond staleness, e.g., order
error. We are investigating means to also measure these
dimensions.

9. REFERENCES
[1] E. Anderson, X. Li, M. Shah, J. Tucek, and J. Wylie.

What consistency does your key-value store actually
provide. In Proceedings of the Sixth Workshop on Hot
Topics in System Dependability (HotDep), 2010.

[2] R. Baldoni, A. Corsaro, L. Querzoni, S. Scipioni, and
S. Tucci-Piergiovanni. An adaptive coupling-based
algorithm for internal clock synchronization of large
scale dynamic systems. In Proceedings of the 2007
OTM Confederated international conference on On the
move to meaningful internet systems-Volume Part I,
pages 701–716. Springer-Verlag, 2007.

[3] D. Bermbach, M. Klems, M. Menzel, and S. Tai.
Metastorage: A federated cloud storage system to
manage consistency-latency tradeoffs. In Proceedings
of the 4th International Conference on Cloud
Computing (IEEE Cloud 2011). IEEE, 2011.

[4] B. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. PNUTS: Yahoo!’s hosted
data serving platform. Proceedings of the VLDB
Endowment, 1(2):1277–1288, 2008.

[5] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems
with ycsb. In Proceedings of the 1st ACM symposium
on Cloud computing, pages 143–154. ACM, 2010.

[6] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: amazon’s highly available key-value store. In
Proc. SOSP, 2007.

[7] A. Fox and E. Brewer. Harvest, yield, and scalable
tolerant systems. In Proceedings of the 7th Workshop
on Hot Topics in Operating Systems, 1999, pages
174–178. IEEE, 2002.

[8] S. Ghemawat, H. Gobioff, and S. Leung. The Google
file system. ACM SIGOPS Operating Systems Review,
37(5):29–43, 2003.

[9] M. Klems, M. Menzel, and R. Fischer. Consistency
benchmarking: Evaluating the consistency behavior of
middleware services in the cloud. In Proceedings of the
8th International Conference on Service Oriented
Computing (ICSOC). Springer, Dec. 2010.

[10] D. Kossmann, T. Kraska, and S. Loesing. An
evaluation of alternative architectures for transaction
processing in the cloud. In Proceedings of the 2010
international conference on Management of data,
pages 579–590. ACM, 2010.

[11] T. Kraska, M. Hentschel, G. Alonso, and
D. Kossmann. Consistency Rationing in the Cloud:
Pay only when it matters. Proceedings of the VLDB
Endowment, 2(1):253–264, 2009.

[12] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, C. Wells, et al. Oceanstore: An
architecture for global-scale persistent storage. ACM
SIGARCH Computer Architecture News,
28(5):190–201, 2000.

[13] A. Lakshman and P. Malik. Cassandra: a
decentralized structured storage system. ACM
SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[14] M. Menzel, M. Schoenherr, and S. Tai. (mc2)2:
criteria, requirements and a software prototype for
cloud infrastructure decisions. Software: Practice and
Experience, 2011.

[15] ntp.org. NTP Algorithm. http://www.ntp.org/ntpfaq
/NTP-s-algo.htm (accessed on September 6, 2011).

[16] S. Sakr, L. Zhao, H. Wada, and A. Liu. Clouddb
autoadmin: Towards a truly elastic cloud-based data
store. In The 9th IEEE International Conference on
Web Services (ICWS 2011), Washington DC, USA,
July 2011.

[17] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki,
E. Siegel, and D. Steere. Coda: A highly available file
system for a distributed workstation environment.
IEEE Transactions on computers, pages 447–459,
1990.

[18] A. S. Tanenbaum and M. V. Steen. Distributed
Systems - Principles and Paradigms. Pearson
Education, Upper Saddle River, NJ, 2nd edition, 2007.

[19] D. Terry, M. Theimer, K. Petersen, A. Demers,
M. Spreitzer, and C. Hauser. Managing update
conflicts in Bayou, a weakly connected replicated
storage system. ACM SIGOPS Operating Systems
Review, 29(5):172–182, 1995.

[20] W. Vogels. Eventually consistent. Queue, 6:14–19,
October 2008.

[21] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu.
Data consistency properties and the trade offs in
commercial cloud storages: the consumers’
perspective. In 5th biennial Conference on Innovative
Data Systems Research, CIDR, volume 11, 2011.

[22] H. Yu and A. Vahdat. Design and evaluation of a
conit-based continuous consistency model for
replicated services. ACM Transactions on Computer
Systems (TOCS), 20(3):239–282, 2002.

[23] L. Zhao, A. Liu, and J. Keung. Evaluating cloud
platform architecture with the care framework. In
2010 Asia Pacific Software Engineering Conference,
pages 60–69. IEEE, 2010.

