
TIOSA: Testing VM Interoperability at an

OS and Application Level
A hypervisor testing method and interoperability survey

Alexander Lenk, Gregory Katsaros, Michael Menzel

FZI Forschungszentrum Informatik

Berlin, Germany

{lenk, katsaros, menzel}@fzi.de

Jannis Rake-Revelant

T-Labs (Research & Innovation)

Deutsche Telekom AG

Berlin, Germany

jannis.rake-revelant@telekom.de

Ryan Skipp

T-Systems International GmbH

Bellville, South Africa

ryan.skipp@t-systems.com

Enrique Castro-Leon, Gopan V P

Intel Corporation

Portland, USA

{enrique.g.castro-leon, gopan.v.p}@intel.com

Abstract—Virtualization is the foundation of modern, cloud-

based applications. The existence of virtual machines (VM) that

host the components of such applications enables their portability

and scalability. VMs are used in cloud infrastructures, and with

dynamic operational requirements there is a need to move VMs

within and across different clouds. The successful migration of

VMs from one cloud to another should not always be considered

as given. The goal of this paper is to devise and implement

methods and conduct functional tests towards evaluating

interoperability in cloud environments. We suggest a

methodology for assessing the interoperability across different

systems and we conduct a survey with a series of hypervisors and

operating systems.

Keywords—ODCA, Interoperability, Hypervisor, IaaS, Virtual

Machines, VM

I. INTRODUCTION

Cloud computing has become an inevitable technology for
organizations due to its potential benefits and cost savings [1].
There are public cloud offerings and software to operate private
clouds that make this technology available to a large group of
organizations [2], [3]. For organizations that adapt cloud
computing the evolution of this technology at one point will
provoke the need to move software between clouds [4]. Be it
between two cloud providers due to e.g. a price difference or
within owned private clouds. Either way interoperability
between clouds should be provided to allow for an easy
migration. From a provider perspective interoperability is a
chance to attract customers by advertising the benefit of no
vendor lock-in [5].

From an Infrastructure-as-a-Service (IaaS) perspective,
virtual machines (VM) are the smallest unit that can be
migrated. VM migrations can be done either during runtime as
a live-migration [6] or after stopping the VM. Every transfer of
a VM, however, requires a certain level of interoperability
between two clouds. Interoperability implies compatible

technologies or interfaces. Beyond the basic feasibility of
interoperability between two providers there are multiple
quality levels to consider. While automation and reliability in
the process of a VM transfer are important factors, also the
quality of the result is crucial. After the migration, a VM
running on the target cloud may miss features, e.g., hardware
devices, network configurations or power features like
suspension, originally available [7].

A testing method to assess the quality of a VM transfer,
resp. the quality of interoperability between two clouds, is not
available yet. Therefore, in this paper we present the TIOSA
method, a testing method to evaluate the quality of manual
inter-hypervisor VM migrations in private clouds

1
. As major

contributions the method provides (1) a structured, replicable
process model, (2) means of measurement to describe a test
result and (3) an evaluation metric to make hypervisors
comparable. We also propose aggregation functions that map
measured quality factors to a single score. As a second
contribution we conducted experiments with four well
established hypervisors that show the applicability of the
method and give insights regarding the interoperability
qualities of current hypervisors.

The method and experiments are results of a Proof of
Concept (PoC) project of the Open Data Center Alliance
(ODCA). In an initial phase of the PoC project we observed
that performing a VM migration is not necessarily error-free
under the current state of the art. In fact, whereas in many cases
the migration did not result in a working application a black-
box focused evaluation method would have indicated that the
migration was a success. We, hence, developed a new method
to measure and evaluate results of VM migrations on an OS

1 Parts of this paper were already published as the ODCA

whitepaper “Open Datacenter Alliance: Implementing the Open Data Center

Alliance Virtual Machine Interoperability Usage Model” [8]

and application level. Using the method, the outcome of a
conversion is assigned a total score of “Successful”, “Warning”
(as partially successful but still runnable VM) or “Failure”.

The PoC project team led by T-Systems, Telekom
Innovation Laboratories, the FZI Research Center for
Information Technology (FZI) and the Intel Corporation
conducted the experiments on a private cloud testbed
consisting of machines equipped with the hypervisors VMware
ESXi, Citrix XenServer, KVM, and Microsoft Hyper-V. The
infrastructure was provided and maintained by the Intel.

The paper is structured as follows. Section II examines the
current state of the art in VM interoperability and respective
testing methods. Furthermore, it introduces basic concepts that
build a foundation and common understanding for the main
contributions. The TIOSA method is introduced in section III
and the experiments and results are presented in section IV.
The paper concludes the contributions and findings in section
V.

II. STATE OF THE ART

In this section we describe the state of the art in VM
interoperability of hypervisors and clouds, and of
interoperability testing.

A. VM Interoperability

A virtual machine monitor or hypervisor runs on physical
computers and is capable of managing multiple virtual
machines that share the physical hardware resources. The
DMTF defines three levels of VM portability [9]:

 Level 1: The VM only runs on a particular
virtualization product and/or CPU architecture and/or
virtual hardware selection. It is logically equivalent to
a “suspend” in the source environment and a “resume”
in the target environment. A live migration is possible
at Level 1. However, Level 1 carries a number of
operational restrictions, such as the preservation of IP
addresses, limiting the applicability to virtual machines
running in the same subnet and hypervisor.

 Level 2: The VM runs on a specific family of virtual
hardware. Migration under Level 2 is equivalent to a
shut-down in the source environment followed by a
reboot in the target environment. Movement across
different hypervisors is possible.

 Level 3: The VM runs on multiple families of virtual
hardware. This is the most general framework for VM
migration offering the greatest flexibility, essentially
allowing a machine to be rebuilt to suit the target
environment. This assumes advanced methodologies,
such as integrated development and operations not in
common practice today.

In this paper we deal with VM interoperability at Level 2,
which presents the most immediate opportunity for advancing
the state-of-the-art under the ODCA perspective.

B. Image Format Interoperability

A virtual machine can be packaged into a virtual machine
image. A VM image contains configuration data like attached
hardware devices and a hard disk image attachable as hard

disk. VM images exist in many formats. There are proprietary
formats, such as VMware’s XML-based format [10] or Citrix’s
XVA format [11], and open standards, e.g., the open
virtualization format (OVF) or the packaged open
virtualization appliance (OVA) [9]. With attached hard disks,
virtual machines are able to boot an operating system and make
themselves available to software and users. Like on physical
machines, a wide range of operating systems can be installed
and run on virtualized hardware devices.

C. Interoperability testing

In the past, hypervisor vendors like VMware or XEN
focused on the testing of virtual machines in a whole. They use
a black box approach and conducted no further testing after a
conversion was successful [10], [11].

In other contexts grey-box approaches like the one
described in this paper are used to gather more information
about a running VM than just observing it from the outside as a
black-box. Wood et al. [12], [13] describe in their papers a
related grey-box approach that, however, focuses not on the
verification but the identification of heavy load machines.

III. THE TIOSA TESTING METHOD

The goal of testing hypervisor software regarding its
interoperability capabilities is to determine if and how well
VMs can be migrated from one hypervisor to another. Since
state-of-the-art hypervisor software is not interoperable in an
automated manner, a migration includes one or more
conversion steps. Having successfully converted a VM and
starting it successfully on another hypervisor does not imply a
successful migration without any restrictions. Features like
network devices, IP addresses, CPU cores and so on, might
change or even fail during the migration process. A method to
test hypervisor software interoperability must therefore provide
(1) a structured, replicable process model, (2) means of
measurement to describe a test result, and (3) an evaluation
metric to make hypervisors comparable.

With TIOSA we introduce a virtual machine grey-box [12],
[13] method for Testing Interoperability on Operating System
and Application (TIOSA) level that addresses all
aforementioned aspects and includes, in addition to tests on a
virtualization level, functional tests on operating system and
application level.

The following subsections explain the most important
aspects of TIOSA. A process model is introduced that
describes and structures interoperability testing processes.
Furthermore, means of measurement and related metrics are
introduced. Finally, evaluation metrics and aggregation
functions explain how to calculate a final score of an
interoperability test. These metrics are application specific, but
we have provided a recommended set in the Appendix.

A. Interoperability Testing Process Modell

For each hypervisor software under test (hypervisor under
test or HUT), a set of hypervisor software is to be defined that
serve as import sources (hypervisor source or HS). Implicitly,
each hypervisor software might be included as a HS in a test
set of another HUT. Aside from the source and target
hypervisors, respectively HUT and HS, the VM transferred

over the interoperability test influences test results and, hence,
needs to be considered a test parameter. The execution in a
different environment and configuration changes due to
conversion steps has diverse effects on the operating system
and software included in a VM. The operating system and
installed software applications become part of the test
parameters list.

To gain test results for all HUT-HS pairs regarding a
certain VM, an identical process model shall be followed. The
process model describes the course of actions to execute a test
for a single HUT. Subsections 1 and 2 describe the testing
sequences of the process model. The sequences are detailed
steps to follow once the parameters have been defined.

At the beginning of the process, HUT and HS must first be
defined as test parameters as well as a virtual machine on the
HS. The test, hence points to results for the HUT regarding
interoperability with the HS when transferring a virtual
machine with a certain operating system (and optionally
software applications). Given the test parameters the testing
sequences can be followed (subsection 1 and 2). Initially an
inspection of the original VM’s state captures its characteristics
as a basis for later comparison. An inspection includes manual
and automated property tests (see tables II-IV). Next, available
tools to export, convert and import the virtual machine from
the HS to the HUT must be identified. The result is a set of
export, conversion and import routes that allow a transfer.
After applying all available routes, each resulting transferred
VM on the HUT must be inspected and compared to a VM’s
original state. Finally, the evaluation and aggregation rules map
the set of individual test results to a final classification.

In order to apply this method the following subsections
give an overview over the mandatory method sequences,
process steps and the expected results.

1) Sequence 1: Check Interoperability within a private

cloud
Determine if a move/migration of a VM of a cloud

subscriber from one hypervisor to a different one within the
same cloud provider is possible.

a) Execution Steps

1. Check if the following information about VM is
exposed by the hypervisors via GUI interface and/or
APIs – VMware and KVM
o Number of VMs
o Amount and type of memory
o Amount and type of CPU core
o Amount and type of network interface card
o Amount and type of disk
o Amount of I/O required
o Type and vendor of hypervisor
o Firewall policies and rules

b) Expected Results

Required metadata information is available and hypervisors
are in compliance with DMTF Open Virtualization Format
(OVF) specification so that VMs can be migrated between
hypervisors. Alternatively, if other conversion tools support
non-OVF formats, a non-standard conformant path might have
been chosen.

2) Sequence 2: Copy VM between two hypervisors within

the private cloud

Execute the necessary steps to transfer the VM between

hypervisors and evaluate according to the test sets.

a) Execution Steps

1. Get VM metadata from Source Hypervisor (e.g.
VMware) (CPU, Memory, Disk space, …)

2. Perform Hypervisor Test-Set (see Appendix
TABLE II.) on Source Hypervisor

3. Perform OS Test-Set (see Appendix TABLE III.)
on Source Hypervisor

4. Stop the VM on Source Hypervisor
5. Export the VM in OVF Format or convert VM into

destination format
6. Check whether the required resources are available

on Target Hypervisor (e.g. KVM)
7. Import VM to Target Hypervisor
8. Perform Hypervisor Test-Set (see Appendix

TABLE II.) on Target Hypervisor
9. Start VM on Target Hypervisor
10. Perform OS Test-Set (see Appendix TABLE III.)

on Target Hypervisor
11. Compare results of Test Sets using Evaluation Rules

(see Appendix TABLE IV.).

The execution steps are processed in order and the
outcomes are documented in a results document. The process is
also depicted in Fig. 1.

Fig. 1. TIOSA execution steps

b) Expected Results

The virtual machine has been converted correctly and can
be started on the target hypervisor. All results of the tests
performed in the target VM are within the tolerable margin,
specified in the evaluation rules (see Tables II-IV).

B. Means of Measurement

A major task during interoperability testing is the capturing
of the initial and final state of a VM; that is before and after a
transfer between HS and HUT. Tables II-IV list all test sets on
a hypervisor, operating system and application level. The tables
also provide a structure for capturing results. A test always
results in one class of “SUCCESS”, “WARNING”, or
“FAILURE”. The test conditions are contained in the tables,
too. If a condition in a row evaluates to true, then the test result
is the class of the respective column. After going through each
test, the set of tables reflects the state of a VM.

Parts of the tests can be automated with API calls or scripts.
Hypervisor software typically provides interfaces to request a
status of a VM. This interface can be leveraged to acquire the
test results of the test set in table II automatically. However, an
implementation for each hypervisor software and even versions
is needed. Similarly, scripts can help to acquire needed data for
the tests in tables III and IV. Operating systems and
applications typically provide programs or configuration files
to assess data.

C. Evaluation Metric and Score

After a test with multiple HSs has been finished for a HUT
and a particular VM, a final result or score can be determined.
A score aggregates the detailed results captured in the test set
tables into a single comparable statement. The score is
projected on a metric with an ordinal scale of three
classifications (SUCCESS, WARNING, FAILURE) to
simplify evaluation.

Aggregation rules allow determining a single score for all
test results. The aggregation rules are defined per test set (or
even sections within test sets) complemented by an overall
aggregation rule to compute a score over all test sets. The
aggregation rule can use Boolean algebra to combine single
tests and evaluate them for each classification. The aggregation
rules are custom and should reflect a tester’s expectations.

D. Conversion Paths

A conversion of a VM from a HS to a HUT is preferably
accomplished via an import program of the HUT that supports
formats of the HS. However, it is not uncommon that a
conversion includes multiple tools over the course. An
alternative supported by a range of hypervisors is an import
from a portable format such as the Open Virtualization Format
(OVF). Furthermore, third-party tools and intermediary
conversion steps can help in absence of official vendor support.

Most solutions support a virtual-to-virtual (V2V)
conversion. In a V2V approach a virtual machine is stopped
and its virtual machine image file is converted to a format
supported by the target hypervisor software. In contrast,
physical-to-virtual (P2V) is a more generic approach that logs
into a running system (physical or virtual) as a root user and
extracts data and settings into a virtual machine image.

Unlike automated VM conversion, a manual alternative is to
copy the disk image part of a virtual machine only. This might
involve further conversion tasks. Ultimately, a new virtual
machine can be created on the target hypervisor that uses the
disk image as a hard drive device.

IV. HYPERVISOR SURVEY

As we mentioned in the introduction, in this paper we present

the joint work of FZI, T-Systems, T-Labs and Intel in the

context of a VM interoperability proof of concept (PoC)

project. The whole activity lasted five months during which

several series of test cases were developed and deployed using

state-of-the-art tools and technologies, in current releases or

versions at that time. In the following sections we describe in

more detail the test cases covering VM interoperability usages,

the test-bed environment, the tools used and the findings of the

experiments.

A. Experiment Setup

The first series of tests, which are described in more details
in the subsection B.1 of this chapter, demonstrate VM transfers
within a private Cloud infrastructure (see Figure 1).

1) Test-bed environment
 The test-bed environment for the realization of this PoC
was hosted in the Intel End-user Integration Center Test Lab
Cloud, in an isolated network partition consisting of four server
nodes and a console computer. Specifically, the environment
had the following characteristics:

1. Four Dell C6220 Servers each with 2 x Intel® E5-2650

CPU @ 2.00 GHz, 64GB RAM & 280 GB Hard Disk.

2. Network switches and router as needed
3. Virtual Machines to function as management consoles
4. NFS share with 800 GB storage
The access to this environment was through the standard

Web portal and associated access applets. Exclusive, out-of-
band access to the hardware has been provided including low-
level operations, down to setting up BIOS sheets and cycling
the power in the machines. Fig. 2 illustrates the test-bed’s
architecture and its components.

Fig. 2. PoC environment set-up

2) Test-bed component stack and tools

For the implementation of this interoperability PoC we had

to set-up and use several hypervisors, Guest OSs and VM

monitoring consoles in combination. In the following list we

present the solutions that were available in the provided test-

bed:

 Hypervisors

o VMware ESXi 5.0.0, Citrix Xen Server 6.0.2,

KVM (Cent OS6.3), Microsoft Hyper-V

(Windows Server 2008 R2)

 Guest OS:

o CentOS 6.3 64 bit, Ubuntu 12.04 64 bit,

Microsoft Windows Server 2008 R2 64 bit

 Virtual Machine Monitor consoles

o VMware vSphere Client v5.0.0, Citrix Xen

Center 6.0.2, Virtual Machine Manager 0.9.4 for

KVM , Microsoft Hyper-V Manager 6.1

XEN

KVM

VMware

VMM
Console

DCM
Console

Open
Stack

VLAN

10.4.0.0/21

Intel-EIC Lab (Private Cloud)

T-Systems
remote access

Public Cloud

OpenStack
API

EC2 API

 The experimentation with several VM conversion tools was
very important in order to perform all identified test series. The
documentation of the versions of each tool and component is of
major importance, because the results of the test cases are
directly related with the functionality and features of those
tools. In TABLE I. we present the specific tools that we used
throughout this PoC. For our testing we used the latest publicly
available version of the tools at the time of the testing. Some of
the results may differ with newer tool or hypervisor versions.

Hypervisor management tools commonly offer a user
interface to remotely configure a hypervisor and manage
virtual machines instantiated on the hypervisor machine. A
common virtual machine management operation involves
adding and removing virtual machine instances, as well as
resource assignments and access to machine instances via
console interfaces. Beyond that, import and export
functionality allows migrating virtual machines from or to
compatible hypervisors. However, exports are usually offered
only to hypervisor products of the same vendor.

TABLE I. VM CONVERSION TOOLS:

VM Converter Tool Version

VMware vSphere Client 5.0.0 Build 455964

Citrix XEN Center 6.0.2 (build 53158)

Red Hat KVM Virtual Machine Manager 0.9.4

Red Hat RHEV Manager 3.0.7_0001_2.el6_3

Microsoft Hyper-V Manager 6.1.7601.17514

VMware vCenter Converter Standalone 5.0.0 build-470252

Citrix XEN Convert 2.3.1.2654

Microsoft Virtual Machine Converter 1.0.4619.17079

B. Experiment Results

The testing of VM interoperability presents a combinatorial
challenge. In order to keep this project within the available
resource constraints, the team selected four hypervisor
environments and three operating systems in common use
today, namely VMware, Citrix Xen, KVM and Microsoft
Hyper-V among the hypervisors and CentOS 6.2, Ubuntu
12.0.4 and Microsoft Windows 2008 R2 64-bit as the operating
systems.

Experimental results are a function of the operating system
images being run under a virtual machine. Tests have been
conducted for all the combinations possible for the selected
source (HS) and target hypervisors (HUT) with each of the
three selected, very common operation systems CentOS 6.3,
Ubuntu 12.0.4 and Windows Server 2008 R2. The HSs and
HUTs, and the VMs with all three selected operating systems
are thus the determined parameters. The following describes
the outcome of runs conducted with the TIOSA method for the
aforementioned parameter combinations. For each operating
system image selected, each table captures the results with
HUTs in columns and HSs in rows.

For private-to-private Cloud conversions, the technical
team tested all 12 possible conversion combinations between
the hypervisors for the pre-mentioned OS images. For each of
the OS images tested there were three test sequences with
TIOSA:

1. A pretest to assess whether the conversion is possible
2. The process of converting a VM image from the source

hypervisor to the target hypervisor
3. Attempting to run the translated image to the target

environment

The results of executed test cases must be repeatable and,
hence, every test case demands at least 3 execution cycles and
according evaluations showing stable, identical results.

1) CentOS 6.3
For the CentOS 6.3 images most VM conversions were

successful except those with KVM as target hypervisor (Fig.
3). Even after the successful conversion most of the machines
were not runnable in the target environment due to OS related
problems, except for the VMware to Citrix Xen conversion.

Fig. 3. CentOS 6.3 Results

2) Ubunbtu 12.04
The Ubuntu 12.04 test series (Fig. 4) were relatively better

than the previous ones, having successful conversion from
Citrix Xen to Hyper-V, successful with some warnings
conversion for VMware to Citrix, KVM to VMware and
Hyper-V and Hyper-V to VMware and Citrix. The remaining
combinations were not operational.

Fig. 4. Ubuntu 12.04 Results

3) Windows Server 2008 R2
For Windows Server 2008 R2 images, most VM

conversions were successful except from Xen and Hyper-V to
KVM, and from KVM to VMware. The specific result
combinations can be seen in Fig. 5.

HYPERVISOR-TARGET

H
Y

P
ER

V
IS

O
R

-S
O

U
R

C
E

VMware Citrix Xen KVM Hyper-V

VMware

Citrix Xen

KVM

Microsoft
Hyper-V

No Result Successful Warning Failure

HYPERVISOR-TARGET

H
Y

P
ER

V
IS

O
R

-S
O

U
R

C
E

VMware Citrix Xen KVM Hyper-V

VMware

Citrix Xen

KVM

Microsoft
Hyper-V

No Result Successful Warning Failure

Fig. 5. Windows Server 2008 R2

Most of the cases required manual creation of the VM on the

target hypervisor from the exported images, or migration of

running VM using specific tools.

V. CONCLUSION

VM interoperability is an absolute precondition for truly
realizing the often expressed benefits of virtualized clouds such
as the ability to balance resources through fungible pools of
resources, business continuity and load balancing by leveraging
distributed publicly available resources. To the knowledge of
the participants of this project, this experiment is the first of its
kind leveraging a broad spectrum of hypervisor environments,
guest operating systems and publicly available conversion
tools.

Yet, in spite of the extant number of visionary articles, and
industry espousing the benefits of virtualized clouds, the
outcome of the experiments described in this study is sobering
at a first blush: For the 36 possible conversion paths between
hypervisors within a private cloud in this study, 2 were
successful, 15 went through with warnings and 19 had failures
(see Fig. 6). Of the failures, 8 were due to missing tool support
by KVM, 8 were due to Cent OS related problems, and 3 due
to commercial hypervisor related issues. Several migration
paths that succeeded with warnings required virtual machines
to be created or disk images attached manually.

Fig. 6. Overall results

The results may sound alarming and can indeed be
interpreted as a signal to further extend support for virtual
machine interoperability in hypervisors and private clouds.
However, it may be noted that the tests followed our new
extensive testing methodology that comprises of tests on the
operating system and hypervisor levels with automated test
scripts running within the virtual machines before and after
migration, meticulously verifying each evaluation rule defined
for the project. With our survey we showed that our method
gives more insight into the migration process than just
observing the virtual machine as a black-box. The discussions

with the vendors after the survey also showed that our testing
was done correctly and was useful for them in understanding
what their customers need during a migration.

Another factor to be considered is that, given that there was
little prior research for VM interoperability, we designed our
evaluation rules to err on the side of rigor, and for instance
changes in resource memory size or IP Address changes or
firewall and routing rules or inability to pause and un-pause in
the migrated VMs were flagged as warnings. Most applications
will continue running under these circumstances, and therefore
it might be possible to relax some of these requirements. For
instance, if an application is known to be impervious to IP-
changes, the operator may select to ignore this. However, the
team decided that these conditions should be relaxed only after
a thorough discussion in the industry and consensus has been
built about what the actual practice should be. It is entirely
possible that the tools in this project were not used in the
manner intended by the supplier. For instance the tools may
have been designed for a “once or twice in a lifetime”
condition. This is reflected in the degree of manual intervention
required to make them function.

The results indicate that in spite of the promise of the cloud,
the road to interoperability where IT processes can be extended
seamlessly to the public cloud is not a reality yet. The project
participants would like to encourage a healthy dialog in the
industry to advance the state of the art to the point that
interoperability becomes a second order consideration,
allowing users to focus on the business problems at hand
instead. Also under the current state of the art, virtual machine
conversion tools specific to the hypervisors have to be used.
Intermediate conversion to or from an interoperable format
such as OVF is sometimes offered. There is no guarantee that
the two-step conversion will work in all cases. The upshot is
that no universal translator exists, and hence any attempt to
carry out migrations across a nontrivial multiplicity of
hypervisors will have to use a patchwork of conversion tools,
each with particular idiosyncrasies. For business and technical
reasons, it might not be realistic to require vendors to supply
universal translators. Our recommendation is to encourage the
industry to establish consensus for consistent behaviors in
translation tools, in such a way that when operators need to use
more than one, the tools will behave in a self-consistent
manner.

For the future, the ODCA plans to use the testing method
presented in this paper for monitoring the progress of
hypervisor interoperability in the industry.

VI. REFERENCES

[1] P. Mell and T. Grance, “The NIST definition of cloud computing,” NIST

Spec. Publ., vol. 800, p. 145, 2011.

[2] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm, “What’s inside
the Cloud? An architectural map of the Cloud landscape,” in Software

Engineering Challenges of Cloud Computing, 2009. CLOUD’09. ICSE

Workshop on, 2009, pp. 23–31.

[3] X. Wen, G. Gu, Q. Li, Y. Gao, and X. Zhang, “Comparison of open-

source cloud management platforms: OpenStack and OpenNebula,” in

Fuzzy Systems and Knowledge Discovery (FSKD), 2012 9th
International Conference on, 2012, pp. 2457–2461.

HYPERVISOR-TARGET

H
Y

P
ER

V
IS

O
R

-S
O

U
R

C
E

VMware Citrix Xen KVM Hyper-V

VMware

Citrix Xen

KVM

Microsoft
Hyper-V

No Result Successful Warning Failure

0%

10%

20%

30%

40%

50%

60%

Successful Warning Failure

[4] T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai, and M. Kunze,

“Cloud federation,” presented at the CLOUD COMPUTING 2011, The
Second International Conference on Cloud Computing, GRIDs, and

Virtualization, 2011, pp. 32–38.

[5] R. Cowan, “Tortoises and hares: choice among technologies of
unknown merit,” Econ. J., vol. 101, no. 407, pp. 801–814, 1991.

[6] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. De Laat, J. Mambretti,

I. Monga, B. Van Oudenaarde, S. Raghunath, and P. Yonghui Wang,
“Seamless live migration of virtual machines over the MAN/WAN,”

Future Gener. Comput. Syst., vol. 22, no. 8, pp. 901–907, 2006.

[7] M. Bolte, M. Sievers, G. Birkenheuer, O. Niehörster, and A.
Brinkmann, “Non-intrusive virtualization management using libvirt,” in

Proceedings of the Conference on Design, Automation and Test in

Europe, 2010, pp. 574–579.

[8] A. Lenk, M. Menzel, D. Müller, J. Rake-Revelant, R. Bederke, R.

Skipp, M. Tadikonda, S. Govindan, E. Castro-Leon, Gopan P.V, and G.

Katsaros, “Open Datacenter Alliance: Implementing the Open Data
Center Alliance Virtual Machine Interoperability Usage Model,”

presented at the FORECAST 2013, San Francisco, 2013, Available:

http://www.opendatacenteralliance.org/docs/VM_Interop_PoC_White_
Paper.pdf

[9] Distributed Management Task Force, Inc. (DMTF), “Open

Virtualization Format White Paper Version 1.0.0 DSP2017.” 06-Feb-
2009.

[10] VMware, “VMware vCenter Converter Standalone User’s Guide -

vCenter Converter Standalone 5.1.” [Online]. Available:
http://www.vmware.com/pdf/convsa_51_guide.pdf. [Accessed: 29-Oct-

2013].

[11] “CTX133505 - How to Convert VMware Virtual Machines to
XenServer 6.0 and later - Citrix Knowledge Center.” [Online].

Available: http://support.citrix.com/article/CTX133505. [Accessed: 29-

Oct-2013].

[12] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif, “Black-

box and Gray-box Strategies for Virtual Machine Migration.,” in NSDI,

2007, vol. 7, pp. 229–242.

[13] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Sandpiper:

Black-box and gray-box resource management for virtual machines,”

Comput. Networks, vol. 53, no. 17, pp. 2923–2938, Dec. 2009.

APPENDIX: EVALUATION RULES

TABLE II. HYPERVISOR TEST

ID Test Success Warning Failure

1.1 VM Lifecycle

1.1.a Launch successful - otherwise

1.1.b Reboot equivalent to source or successful - otherwise

1.1.c Pause equivalent to source or successful - otherwise

1.1.d Un-Pause equivalent to source or successful - otherwise

1.1.e Suspend equivalent to source or successful - otherwise

1.1.f Resume equivalent to source or successful - otherwise

1.1.g Terminate Successful - otherwise

1.2 VM Disk Management

1.2.a Resize Volume equivalent to source or successful - otherwise

1.2.b Attach Volume equivalent to source or successful - otherwise

1.2.c Detach Volume equivalent to source or successful - otherwise

1.3 Injection

1.3.a Inject network equivalent to source or successful - otherwise

1.3.b Inject file equivalent to source or successful - otherwise

1.4 VM Access

1.4.a Serial Console equivalent to source or successful - otherwise

1.4.b Graphical Console equivalent to source or successful - otherwise

1.5 VM Network Management

1.5.a VLAN Networking equivalent to source or successful - otherwise

1.5.b Flat Networking equivalent to source or successful - otherwise

1.5.c Hypervisor Firewall Rules equivalent to source or successful - otherwise

1.5.d Routing equivalent to source or successful - otherwise

TABLE III. OPERATING SYSTEM (OS) AND APPLICATION TEST SET

ID Test Success Warning Failure

2.1 OS metadata

2.1.a Kernel Version no change revision change version change or
arch change

2.2 Check resources

2.2.a CPU no change +-10% higher deviation

2.2.b MEM no change +-10% higher deviation

2.2.c Disk same mount points, for all size not
changed

different mount points, for all
size not changed

further deviations

2.3 Connectivity

2.3.a Network interfaces no change changed missing

2.3.b IP Address no change changed missing

2.3.c Firewall Rules no change rule is changed rule is missing

2.3.d Routing no change route is changed route is missing

2.3.e ICMP private IP 3 packages sent, 0% loss, <

3000ms

3 packages sent, < 33% loss, <

6000ms

higher loss or latency

2.3.f ICMP public IP 3 packages sent, 0% loss, <

3000ms

3 packages sent, < 33% loss, <

6000ms

higher loss or latency

2.3.g DNS reverse lookup private IP successful - not successful

2.3.h DNS reverse lookup public IP 194.25.2.129 -> dns.isp.t-ipnet.de - otherwise

2.3.i Remote Shell Process running no change - changed

2.3.j Remote Shell Port available no change - changed

2.4 Check file system and user management

2.4.a Add dummy user successful - failed

2.4.b Write test file to home dir successful - failed

2.4.c Read test file from home dir successful - failed

2.4.d Delete test file from home dir successful - failed

2.4.e Change dummy user password successful - failed

2.4.f Delete dummy user successful - failed

TABLE IV. OVERALL EVALUATION SET

ID Test Success Warning Failure

3.1 Hypervisor

3.1.a Hypervisor Aggregation rule For all tests (1.x) the result is

“Successful”

otherwise Test 1.1.a (Launch) result is

“Failed” or Test 1.1.g

(Terminate) result is “Failed”

3.2 OS

3.2.a OS Aggregation rule For all tests (2.x) the result is
“Successful”

otherwise For at least one test (2.x) the
result is “Failed” or at least one

test could not be performed

3.3 Overall

3.3.a Overall Aggregation rule For all results (3.1-3.2) the value

is “Successful”

For at least one result (3.1-3.2)

the value is “Warning”

For at least one result (3.1-3.2)

the value is “Failed”

