3D Support for Business Process Simulation

Institute of Applied Informatics and Formal Description Methods
Universität Karlsruhe (TH)

Daniel Eichhorn, Agnes Koschmider, Yu Li, Andreas Oberweis, Peter Stürzel, Ralf Trunko

Seattle, July 21, 2009
Overview

• Introduction and Motivation

• 3D Representation of Data and Process Objects

• Forming Data and Process Objects in 3D Simulation Environment

• Analysis of Simulation Results

• Conclusion and Future Work
Introduction

• **About simulation:**
 • key technique for design and redesign of business processes,
 • way to test decisions prior to their implementation in real business environment.

• **What simulation allows:**
 • integration of variability and uncertainty,
 • introduction of dynamic process parameters,
 • measurement of process performance \([ABGK06][FNSE99]\).
Motivation

• **What tools provide:**
 • a variety of analysis possibilities for simulation runs based on standard process performance metrics [JaNe06].

• **What is the problem yet:**
 • increasing complexity of business processes hampers quick visual allocation of weak points.

• **What is our aim:**
 • compact visualization of business process simulation and result by adding a third dimension.
Motivation

• **Why third dimension:**
 • supports users to quickly identify weak points of modeled business processes,
 • supports the human visual intuition \[\text{BaES00}\].

• **How to get there:**
 • enhance concept for spatial visualization of Petri net diagrams with a third modeling dimension,
 • enables interactive 3D animations of business process models,
 • statistical analyses of simulation results based on volume changes of 3D process and data objects.
3D Representation of Data and Process Objects

- objects in business processes are classified into data objects and process objects [AaBe01].

- *data objects* refer to flowing objects conveying data that are manipulated and delivered across a process net.

- *process objects* are non-flowing objects used to construct the control flow or serving as parameterized indicators.

- discuss following process objects:
 - transition cost, transition time, resources, and place capacity.
3D Representation of Data and Process Objects

- **Transition Cost:**
 \[C_{\text{trans}}(t,i) = C_{\text{fix}}(t) + C_{\text{var}}(t,i) \text{ with } t \in T, i \in J \]

- height of the cylinder varies according to current values of its corresponding cost indicators.
- cost cylinder is included in a transparent cylinder that controls the increase/decrease of cost factors.

![3D representation of costs](image-url)
3D Representation of Data and Process Objects

- **Transition Time:**

 \[T_{\text{trans}}(t,i) = T_{\text{pre}}(t,i) + T_{\text{dur}}(t,i) + T_{\text{post}}(t,i) \text{ with } t \in T, i \in J \]

- area diagrams can be rotated for different view perspectives.
3D Representation of Data and Process Objects

• **Resources:**

 - are displayed over each transition icon, representing resources with their time attributes,
 - size of the icon is proportional to the value of available time for a transition and remains constant in a simulation.
 - each icon is filled with colors for warning purpose,
 - filling level varies according to load of the resource.
3D Representation of Data and Process Objects

- **Place Capacity:**
 - Place capacity restricts the number of tokens that are allowed to be contained in a place.
 - Infinite capacity places are displayed as non-transparent spheres.
 - Transparent places are filled with tokens that are displayed as small balls.
 - For alerting capacity bottlenecks, tokens are colored green, yellow, or red.

3D Representation of Capacity
Forming Data and Process Objects in 3D Simulation Environment

• Size and Volume
• Monitoring
• Metrics
Forming Data and Process Objects in 3D Simulation Environment

- **Size and Volume**
 - visualize weak points of the process design by changing volume v or size s of the representation of the objects.

- Monitoring
- Metrics
Forming Data and Process Objects in 3D Simulation Environment

- **Size and Volume**

- **Monitoring**
 - each formula defines changes s or v of the figures in simulation.
 - each figure has a default size and volume computed from its corresponding default parameters (e.g., height, length). The modification for each p is defined by:

\[
\text{modification } p = \frac{c \times \Delta \text{objectUnit}}{\text{objectUnit}}
\]

- current status of an objectUnit is monitored with three colors for the size or volume:
 - **Green**: the value is performing well,
 - **Yellow**: warning that a value indicates a critical degree,
 - **Red**: alarming that a value indicates an impact problem.

- **Metrics**
Forming Data and Process Objects in 3D Simulation Environment

- Size and Volume
- Monitoring

Metrics

1. Prioritization Number
 - User can prioritize objects,
 - Objects will be more highlighted referring to their priority.

2. Control Flow Complexity
 - Computes the complexity degree required to simulate a process,
 - The degree depends on the amount of data and process objects,
 - Which affects the control flow.

3. Data Flow Complexity
 - Data flow complexity is calculated by using the information flow complexity
 of Henry and Kafura [HeKa81]:
 \[
 \text{Information flow complexity}(M) = \text{length}(M) \times (\text{fan-in}(M) \times \text{fan-out}(M))
 \]

4. Cognitive Complexity
 - Cognitive complexity is situation-specific and affects the user's individual perception,
 - Cognitive weights measures the effort required to comprehend a simulation result [ShWa03].

5. Role/Resource
 - Role metric is computed between assigned roles and all roles belonging to an organizational unit:
 - Resource metric computes the degree between assigned resource and all available resources:
Analysis of Simulation Results

- **Analysis and Monitoring**
 - the aim of a 3D representation of analysis results is a quicker understanding of the simulation data set.

- **Customization of Analysis Results**
 - possibility to display the right diagram in the middle for a better recognition of the details.
Conclusion

✓ added a third dimension into the graphical representation of process objects.

✓ benefit is a statistical analysis of simulation results based on volume and size changes.

✓ by 3D environment, different views can examine and gather easily process-specific information.

=> visualizing of weak points is more easy.
Future Work

- integration of the implemented prototype into HORUS,
- execution of simulation runs of different process models,
- analysis of the results,
- discussion of our approach with selected test users,
- 3D visualization and animation of other process objects,
- 3D representation concerning the data flow of processes (e.g. XML documents in high level Petri nets).
References

Thanks for Your Attention

Questions?