
On the Role and Application of Ontologies in
Information Systems
Thanh Tran, Holger Lewen and Peter Haase

Institute AIFB
Universität Karlsruhe (TH)
76131 Karlsruhe, Germany

Email: {dtr, hle, pha}@aifb.uni-karlsruhe.de

Abstract— Semantic Web research and recent efforts of large
software companies have lead to mature technologies that can
enable real-life semantic applications. While benefits such as
advanced interoperability, search and data analysis are evident,
little guidance is offered for the engineering of applications that
can exploit them. To address this problem, the concept of an
ontology, which is central to semantic applications, is compared
to formalisms currently used in software engineering. More
importantly, this paper proposes an extension to the three-tier
architecture of enterprise information systems. The development
of such a system is then demonstrated by the use of this
architecture for an adaptive portal.

I. INTRODUCTION

The Semantic Web (SW) as envisioned by Tim Berners-
Lee [1] provides semantics to resources so that they can not
only be interpreted by humans but also by computer agents.
This is achieved by the use of ontologies containing formal
descriptions of terminologies that can be interpreted by soft-
ware agents in an automated way. These formal descriptions
provide “understanding” at the machine-level. In this way, the
SW ultimately shall provide a set of formalized corpora of
interrelated, interoperable and reusable contents and services.
So far, efforts driving the SW have lead to new standardized
Knowledge Representation (KR) languages like RDF, OWL
and SWRL, and many ontologies for the representation and
exchange of artifacts of various kinds. Large-scale research
projects have been funded to advance the state-of-the-art and
recently, investments made by large companies such as Oracle,
IBM, and SAP have resulted in mature Semantic Technologies
for the storage, retrieval and exploitation of semantics. Yet,
there are only few semantic applications available for the end
user.

Partly, this is due to the lack of guidance for software
engineers on how to develop semantic applications. While
critics claim that the realization of the SW is infeasible in
its entirety, they have to acknowledge that Semantic Web
technology can solve various problems ranging from advanced
data analysis, to enterprise data and application integration, to
flexible exchange of content in portal applications [2]. Despite
the many benefits of semantic technologies, they cannot be
exploited immediately due to the lack of help for software
engineers and concrete proposals for building semantic appli-
cations. To facilitate the adoption of the semantic paradigm,

this paper provides a discussion on the role and potential uses
of ontologies in software engineering (SE) and a proposal on
how they can be exploited in an architecture for semantic
applications.

In section 2, we first discuss related work. Since ontologies
are central for the engineering of semantic applications, section
3 offers a quick introduction to ontologies to software engi-
neers by comparing them to similar SE concepts. A semantic
extension to the well established three-tier architecture for
enterprise information systems is proposed in section 4. Sec-
tion 5 then demonstrates how this architecture and the various
semantic technologies can be applied in an adaptive ontology-
based portal. Finally, the conclusion is given in section 6.

II. RELATED WORK

Methodologies and discussions on the development of se-
mantic application have been proposed in literature. Com-
monKADS [3] is a well-known methodology for the devel-
opment of knowledge-based applications which can also be
applied to building semantic information systems, but rather
focuses on knowledge engineering and gives little guidance on
how to exploit recent semantic technologies and concepts of
the SW. The use of ontologies as a central knowledge platform
to provide a single and shared representation of knowledge
for all software components has been motivated in [4], but an
elaboration on the architecture and functionalities of such a
platform is missing. More precisely, it does not show how to
use ontologies for these purposes. In [5], a concrete architec-
ture for the development of semantic web services (SWS) has
been presented. The focus lies however on the development
of descriptions of SWS capabilities and the internal structure
on a conceptual level which then can be translated into an
ontology of a particular language. Similar work in [6] provides
an execution environment for the discovery, mediation and
invocation of SWS. Instead of service description, this paper
demonstrates the use of semantic technologies for the concrete
implementation of functional components. Very close to this
is [7], which covers the development of semantic web applica-
tions. While it rather focuses on the interplay of the application
and the SW—i.e. the potential for reuse of SW resources—
some insights are given as to how to develop application
components. While some of these ideas are adopted and



extended, this paper underlines the importance of the ontology
management facility and specifically discusses the required
functionalities and APIs [8].

In summary, our contribution is different from existing work
to the extent that it gives guidance on how to exploit ontologies
in the concrete implementation of software components. It
also defines what the ontology management facility must
correspondingly provide and how to integrate it into the three-
tier architecture.

III. THE ROLE OF ONTOLOGIES IN INFORMATION
SYSTEMS

A. Introduction to Ontologies

In computer science, Tom Gruber’s definition has become
the most cited for the term ontology: “An ontology is an
explicit and formal specification of a conceptualization” [9].
This definition has been extended by Uschold and Grüniger to
highlight the fact that the conceptualization should be shared
[10], i.e. it is agreed upon. According to the specification of
current standard KR languages for the SW—particularly OWL
[11]—an ontology can be seen as containing descriptions of
concepts and relations formalized by the use of logical axioms
that have the effect of limiting the number of possible model-
theoretic interpretations. This axiom-based formalization of
concepts makes them less ambiguous for machines. The degree
of ambiguity varies with the expressiveness of the respective
KR language—the current standard KR languages for the
Semantic Web are OWL and SWRL.

B. Differences between Ontologies and Other Formalisms

1) Ontologies vs. XML Schema: In general, XML Schema
is proposed as a mechanism to define the syntax for XML-
documents. Because data can be encoded in different ways us-
ing XML, this allow parties to agree on a defined structure and
labeling for the exchange of data [12]. While XML Schemas
define the structure of the document, they do not define any
meaning. Ontologies on the other hand are formalized in a way
that limits possible interpretations. In particular, on the basis
of possible interpretations, an OWL-aware tool can tell that
two classes or individuals are equivalent or different. While
XML and XML-Schema have strength in exchanging data,
ontologies are used to exchange information.

2) Ontologies vs. Database Schema: Database schemas
can be distinguished into the conceptual and the physical
schema—the logical schema is a more detailed conceptual
schema that is neglected here because it is out of the scope of
this paper. The physical schema results from the mapping of
the conceptual schema to physical storage objects—e.g. tables
of a relational database. In particular, a conceptual database
schema mostly reflects only a single or a limited viewpoint—
namely that of its creators. When requirements change, the
viewpoint and the schema respectively need to be modified.
Ontologies in general are required to be shared, that is,
reflect multiple viewpoints (domain ontologies in particular).
A domain ontology does not need to be modified to meet
changes in requirements but can be flexibly used to model any

data requirements related to a particular domain. An important
distinction between ontologies and database schemas is their
behavior at runtime. After being translated to physical tables,
the ontology is also available for retrieval and inferencing
of new facts at runtime. The ontology can potentially in-
crease semantic interoperability not only of the resources
exchanged among systems but also of the data stored in
physical databases. For instance, the formal descriptions of two
differently labeled concepts may yield the same interpretations
and so the corresponding tables can be inferred as containing
semantically the same data despite the different table names.
Therefore, when queries are formulated using ontology con-
cepts, they can be processed also by external systems that
may use different labels for the elements of the physical
schema. In this regard, semantic interoperability means that
not only the syntax but also the formalized semantics can be
exploited for data retrieval. Even though database schema have
shortcomings (e.g. being less flexible), they will not likely be
replaced by ontologies in the near future. Note that ontologies
are complementary to a physical schema or, more precisely,
have to be mapped to the physical schema for the persistent
storage of facts.

3) Ontologies vs. Object Model: As can be seen in table I,
most of the differences between ontologies and object models
are just in naming. An important difference to elaborate here
is object behavior. Object behavior is specified by interfaces
and implemented by methods in the object model. For the
object model the concept of interfaces supports the principle
of information hiding by encapsulation. Interfaces can be used
to specify aspects of behavior which may be commonly shared
by several classes. They thereby can be used to hide the
underlying design decisions that are often subject to change.
These design decisions are reflected in the implementation
of classes which encapsulate both data and behavior. When
programmers can implement against more stable interfaces,
the risk of having to change source code afterwards due to
changes in the dependent classes is minimized. In the ontology
model, the behavior of classes is not defined. While inheritance
is supported in both, it is more comprehensive in the object
model. Derived object classes inherit attributes as well as
the explicitly coded behavior (methods). This inheritance of
behavior is quite powerful with the concept of polymorphism
and dynamic binding. In this regard, polymorphism means
that subclasses can overwrite the inherited behavior of their
parent classes. With dynamic binding, the subclass can exhibit
a type-specific behavior (the one of itself or of a particular
parent class) depending on the type specified in method calls at
runtime. In contrast to the object model, concepts only inherit
the properties of parent concepts.

In conclusion, it can be said that both models represent a
domain of interest albeit with different intentions. The object
model has more advanced concepts for the specification of
behavior to accomplish the data processing required for an
application. Ontologies target at modeling of general knowl-
edge about the world. Ontology languages such as OWL
provide more expressive constructs that fit better for this



TABLE I
COMPARISON ONTOLOGY MODEL VS. OBJECT MODEL

Ontology Model Object Model

Identity of Individuals URIs OIDs

Object Types Concepts Classes

Object Characteristics Properties Attributes

Methods and Interfaces
Object Behavior not defined Information Hiding

Encapsulation

Attributes
Inheritance Properties Behavior (Polymorphism)

Dynamic Binding

task, like set operators for complex class expressions, property
characteristics and the various types of restrictions. Because
ontology models and object models serve different purposes,
they are complementary, e.g. where advanced data processing
is required, the object model may be chosen, whereas ontolo-
gies shall be used for expressive knowledge modeling.

C. Final remarks on ontologies

The use of the term ontology varies from strict scientific
definitions in practice. Ontologies used in many applications
do not comply with the discussed definitions and in fact, do
not need to be shared and highly formalized to be useful.
Conversely, the comparison with other models shows that
advantages indeed are results of these characteristics. There
is the commonly known trade-off between expressiveness and
performance of ontologies. It has been shown that semi-formal
ontologies with limited expressiveness scale in real-world ap-
plications, are highly-performant and require less development
effort because they can be populated automatically by agents
[13]. However, many scenarios simply require a sufficient
degree of formalization and therefore highly axiomatized
ontologies, e.g. for consistency checking and classification of
proteins [14].

IV. ONTOLOGY-ENABLED INFORMATION SYSTEMS

A. A Semantic Extension of the Three-Tier Enterprise Appli-
cation Architecture

In the following, our architecture framework for the devel-
opment of semantic applications will be presented. Essentially,
it builds upon the well established architecture for enterprise
application development which consist of the Client Tier,
the Middle Tier and the Resource Tier. Applications at the
Client Tier request for services provided by Middle Tier
components of the Web Layer (Thin Client) or components
of the Application Layer (Fat Client). These components may
make use of information supplied by the Resource Tier. More
precisely, the components use Data Access Objects (DAO),
which are employed to give transparent access to and minimize
dependency from the underlying resources. Fig. 1 implies that
the three-tier architecture (see [15] for more details) does
indeed not change in structure. Our semantic extension simply

MIDDLE TIER

Data Access Objects (DAO)

adapter adapter adapter adapter

EIS

Web Service APIs Business Component APIs

CLIENT TIER
Rich client Web-based 

client

Web Container

Http

OMS

Middleware

DBMS

Semantic component

Programatic part
Declarative part

RESOURCE TIER

services

semantic web

ontoonto

Fig. 1. Three-Tier Architecture for Semantic Applications

adds the infrastructure for ontology management called the
Ontology Management System (OMS) that is essential for
semantic applications.

The following sections discuss functionalities of the OMS
and issues that arise in the development of OMS-enabled com-
ponents. In principle, these are not completely new ideas but
rather insights gained from the work on OMS—in particular
KAON2—and the design of semantic applications. The basic
functionalities presented correspond to features commonly
provided by existing OMS. Also the advanced functionali-
ties simply reflect features we are working on (versioning,
mediation) or are targeted by our industrial partners (data
integration). Nevertheless, these results and the subsequent
guideline for the development of semantic components are of
generic nature, i.e. abstract away from any specific OMS and
KR languages.

B. The OMS of the Resource Tier

The OMS ensures the management of ontology schema
and individuals (also called facts), which in the following
will be referred to as “semantic” data as opposed to the
mere “syntactic” data managed in databases. Current OMS
such as Sesame and Jena (for RDF-ontologies) and KAON21

and OWLIM (for OWL-ontologies) rely on the persistence
mechanism of an underlying database ontology. This means
that semantic data is mapped to physical database tables for
the final storage.

1http://kaon2.semanticweb.org/



OMS

REASONING

Storage Manipulation Retrieval Access Versioning Mediation

ONTOLOGY ELEMENT ACCESS ONTOLOGY MANAGEMENT

Fig. 2. Functionalities of the Ontology Management System

1) Basic Functionalities of the OMS: In essence, an OMS
can be seen as a repository for semantic data. As shown
in Fig. 2, this semantic repository provides basic ontology
management functionalities such as the import and export of
ontologies (referred to in the figure as Access). Also, there is
a number of classes and interfaces providing functionalities to
manage the elements of an ontology as exemplified in Fig. 3.
It shows the five most essential classes and respective methods
for working with ontologies which cover basic functionalities
commonly provided by the above mentioned OMS. The objec-
tive is to illustrate the access mechanism essential to an OMS
while in reality a specific OMS may have different and many
more classes.

These classes support the storage, manipulation and retrieval
of ontologies and ontology elements, namely Concept, Indi-
vidual, Property and Axiom. For instance, they can be used
to update the property value of an individual, to get its type,
or to retrieve member individuals, subclasses or superclasses
of a class. Note that in addition to accessing instances, the
classes Concept, Property and Axiom actually support access
and manipulation (setter methods not shown in the figure) of
the schematic component at runtime, which is not possible
with a DBMS.

Apart from these repository functionalities, an OMS may
also provide services for the management of ontology evo-
lution. Ontologies need to be updated to cope with changes
in requirements and thus require a mechanism for versioning.
Moreover, if the ontology is also intended for external use,
like for data exchange among partners or within a community,
the need for change management is even higher. For the
development of domain ontologies in particular, services for
mediating mismatches in understanding about the domain, i.e.
for mapping and alignment of concepts, have to be provided.

Note that all above-mentioned services can make use of
the reasoning service provided by an inference engine of the
OMS. For retrieval operations, this engine returns, in addition
to asserted facts and axioms, also the entailed information
which is derived according to semantic entailments of the
respective KR formalism. For instance, when querying all
member individuals of a class, instances that are explicitly
asserted to belong to this class, as well as instances with
property values that fulfil the sufficient conditions specified
for class membership, are returned (supported by OWL but
not RDF). Among other uses, reasoning can be employed
to support the resolution of version conflicts and mismatches

+getPropertyVaue()
+getType()
+getEquivalentInd()
+getDifferentInd()

-URI
-label

Individual

+getIndividuals()
+getProperty()
+getSuperConcept()
+getSubConcept()

-URI
-label

Concept

+getDomain()
+getRange()
+getSubConcept()
+isOfCharacteristic()

-URI
-label

Property

-URI
Axiom

+add()
+get()
+update()
+delete()

-URI
-label

Ontology

+getConcept()
+getIndividual()

-URI
ConceptMembership

+getSubConcept()
+getSuperConcept()

-URI
Subconcept

ONTOLOGY ELEMENT ACCESS

Fig. 3. Ontology Element Access API

among concepts.
2) OMS as the Universal Access Mechanism to Data

Sources: Basically, the OMS API introduced above allows the
management and particularly the retrieval of both the schema
and instance information that are designed and populated by
the enterprise. The knowledge engineers model ontologies
to capture the specific knowledge needed by the application
which could describe both the data (in the sense of a database
schema) and the logic to execute tasks in the form of rules.

With the advance of the Semantic Web, there are and will
be many more publicly available domain ontologies. They
can be reused and extended by the application ontology to
maximize interoperability with external systems and minimize
efforts in ontology development. Fig. 4 demonstrates such a
scenario where the OMS manages an application ontology
consisting of the concepts Content, User and Process
and relations like has part, has interest etc. When
populated with instance information, the OMS can provide
components at the domain layer with the knowledge needed
to deliver personalized content and services to the user (the
modeling of the actual ontology and details of the respective
components will be discussed in the subsequent section).
Additionally, the OMS is responsible for the management
of relevant external resources that are available on the SW
stored as RDF or OWL files and can be identified by fixed
URIs. The example shows that the application ontology in fact
makes use of a domain ontology called ODAS which provides
the shared conceptualization for the exchange of knowledge
among adaptive systems. In particular, information related to
the user, the content and other concepts can be exchanged and
interpreted by cooperating adaptive systems on the web.

Besides, the Mappings shown as part of the OMS in Fig. 4
hint at a current trend to employ the OMS as a single
point of access to the heterogeneous data sources of the
enterprise. These mappings can be seen as knowledge about



USER
has_knowledge
has_disabilities

CONTENT
has_subject
embodied_in

APPLICATION
INTERACTION

agent
Instrument

target

COMPUTER
AIDED PROCESS

agent
Instrument

target

PROCESS ENVIRONMENT
bandwidth
resolution 
processor

OMS

PROCESS
CONTENT
has_part

USER
has_interest

MAPPINGS

UserDAO ContentDAOOntologyDAO ConceptDAO PropertyDAO IndividualDAO

Use Case Specific DAO APIGeneric DAO API

ODAS – Ontology of the domain of adaptive application 

Fig. 4. OMS—Accessing Heterogeneous and Distributed Data Sources

schema translations that can be expressed in terms of rules.
On the basis of this thereby specified knowledge about the
translations, adapter classes can be implemented to integrate a
specific data source, e.g. to wrap a DBMS in order to provide
access to all its data. Access to data sources thus becomes
independent of their location and the nature of the knowledge
being accessed.

C. Ontology-Enabled Components of the Middle Tier

Most of the processing performed by an enterprise appli-
cation is handled by components at the application layer. In
particular, a component can be seen as a grouping of opera-
tions, entity types and data types which together implement
a set of similar use cases. In object-oriented approaches, a
component can be formed by a set of Services, Entity Classes
(and Entity Manager). The Service Class consists of a set of
operations (methods) which encapsulate the processing logic.
The operations involve domain entities encapsulating the data.
These domain entities are represented by Entity Classes which
provide methods such as “Getters” and “Setters” to operate on
the data of one concrete entity instance.

There are many differences that need to be addressed
when an Entity Class is employed to encapsulate the data
of the OMS. Firstly, there is a design choice. In fact, only
five classes are required to access all ontology data, namely
Ontology, Axiom, Concept, Property and Individual (see OMS
API above). This corresponds to the dynamic object model
concept where the actual object types are identified by names
only [16]. Therefore it is flexible but lacks type safety and
thus results in code that is harder to maintain and test.
Instead, custom tailored classes can be used which can be
generated from concepts and properties of the ontology using
tools like RDFReactor [17]. Methods can be attached to
these classes leading to object-oriented design and so, enable
object-orientated access and manipulation. The recommended
way is obviously a combination of both. That is, having
two APIs where one is used for generic ontology access

and the other for object-orientated manipulation of ontology
elements. However, this may be not reasonable in scenarios
where the ontology is manipulated at runtime such as in an
ontology modeling application. When the ontology evolves,
the generated classes may run out of sync and thus need to be
taken care of.

Secondly, changes to data encapsulated by the Entity Class
are not only propagated top down but also bottom up. Typ-
ically, changes result from user interactions and subsequent
processing at the Middle Tier which are finally made persistent
in the Resource Tier. When domain knowledge is conceptu-
alized using ontology languages with high expressivity like
OWL, the therewith populated semantic data may lead to
inferences of new data. For instance, when property values
of a particular instance change, also its class memberships
may change as the result of a classification performed by
the inference engine. While this is desirable when these
inferences are deliberately exploited, it requires appropriate
synchronization with the OMS data.

Semantic technologies also bear impact on the Service
Classes. Processing logic can be both programmatic and
declarative. In the former case, the logic is coded in a
procedural or, more often, in an object-oriented manner using
constructs of the respective programming languages. In the
latter case, the logic will be specified in the form of rules.
While SWRL [18], the current rule language recommended
by the W3C, does not have this degree of expressivity yet,
more advanced languages proposed by the RuleML initiative2

suggest that in the future also highly expressive rules can be
specified following the style of Logic Programming. Conse-
quently, components of semantic applications can be coded
fully programmatic, fully declarative or as a combination of
both. While object-oriented code is processed at the Middle
Tier, the declarative part of the component will be stored in
and processed by the inference engine of the underlying OMS.
Combining both worlds leads to an even higher amount of data
inferred by the Resource Tier that has to be synchronized with
the Middle Tier.

V. A PERSONALIZED KNOWLEDGE PORTAL PROTOTYPE

A. The adaptive Functionalities of the Portal

This section presents a prototype of a personalized knowl-
edge portal we created using the proposed multi-tier archi-
tecture framework. It is based on an open source portal
framework called Liferay3 and can be downloaded at http:
//ontoware.org/projects/xxplore/. As shown in
the screenshot in Fig. 5, our Liferay-extension encompasses
a module for the generation of recommendations, a module
for the presentation of system resources, a search module for
content retrieval and a navigation component that illustrates
the adjacencies of the currently active content unit. The
adaptive functionalities will be discussed here and the first two
modules making up this behavior will be used to demonstrate

2http://www.ruleml.org/
3http://www.liferay.com/web/guest/home



Fig. 5. A Personalized Portal Prototype

the development of ontology-enabled applications on the basis
of the proposed architecture in the following sections.

Our portal is able to adapt content resources to the present
needs of the individual user. As shown in Fig. 5, the content
is presented in the Adaptive Content module. It shows a
scientific paper with the title “From SHIQ and RDF to OWL:
The Making of the Web Ontology Language”. This has been
presented because the user had activated the corresponding
link in the Recommendation module before. This module
generates a list of content units that have been assessed
by the system as being relevant with respect to the current
user context. These recommendations are based on multiple
contextual dimensions which are represented using concepts of
an ontology. The content resource the user currently interacts
with is such a dimension. As the content currently shown
in the Adaptive Content window describes the entity OWL,
which is a section of the paper mentioned above called
“Introduction”, recommendations shown encompass content
describing relationships and processes in which this entity
is involved such as “Avoiding Paradoxes” or “OWL as a
Description Logic”. As discussed later, this means the system
makes recommendations about semantically related content.

B. The Architecture of the Portal

Our portal prototype adds semantic technologies to the
skeleton architecture provided by the Liferay platform. Fig. 6
illustrates the architecture with a focus on our extension to
Liferay. This includes KAON2 as the OMS, DAO’s implemen-
tation as adapters to KAON2 and Firebird, and a number of
components for the realization of the functionalities discussed
previously.

MIDDLE TIER

Data Access Objects (DAO)

KAON2 DAO
implementations

Business Component APIs

CLIENT TIER
Browser

Web Container

Http

KAON2

Middleware

Adaptation
Service

FIREBIRD

Semantic component

Programatic part
Declarative part

RESOURCE TIER

SEMANTIC WEB
ODAS ontology

Recommendation.jsp Presentation.jsp

Firebird DAO
implementations

Adaptation 
Rules

UserContent

Context
Modelling
Service

Content
Provider
Service

System Environment

Fig. 6. The Personalized Knowledge Portal Architecture

The main tasks of components at the web layer are the
assembly of content units retrieved from lower level com-
ponents and the propagation of interaction information to
them. At the application layer, the Content Provider Service
delegates the task to the corresponding DAO to retrieve the
requested resources. The Context Modeling Service computes
contextual information on the basis of information propagated
down from the web layer, including the user, the resources
the user interacts with, and the application and information
related to the client system. This information is represented
by “tailored” Entity Classes, e.g. Content, User, System and is
stored in the OMS using corresponding DAO implementations
for KAON2. The use of these classes is possible as the service
simply adds attribute values to these classes that are turned into
facts in KAON2 and so no changes to the ontology schema
are required at runtime.

KAON2 is an infrastructure for the management of OWL-
DL, SWRL, and F-Logic ontologies. Fig. 6 shows this OMS
manages the application ontology containing concepts for
the representation of the context like Content, User etc. as
well as adaptation rules. Also, it imports the ODAS domain
ontology which has been used for many descriptions contained
in this application ontology. Committing to such a domain
ontology this way facilitates the exchange of semantic data,
e.g. data about Content, User, with external adaptive systems
committing to the same conceptualization. Note that semantic
data is managed by KAON2 but the content resources are
stored in the Firebird database4. While all data can be stored in
KAON2, employing an OMS only for semantic data prevents
an unnecessary increase in the size. KAON2 is relatively high-

4http://www.firebirdsql.org



performant [19], but query processing has still polynomial
complexity and thus an increase in size bears a negative impact
on performance.

So far, the instantiation of the proposed architecture has
been discussed. The following sections elaborate on the ontol-
ogy used for the representation of contextual information and
finally demonstrate how the adaptation component exploits this
ontology to provide adaptive functionalities.

C. An Ontology for the Representation of Adaption Context

The ontology for the domain of adaptive systems (ODAS)
we have developed and present here aims to provide a con-
ceptualization of concepts and relations that are relevant for
the adaptation of hypermedia resources to the user context.
In principle, adaptation can be seen as a process where the
resources provided by the system are matched to the user’s
needs. This section illustrates the use of ODAS to capture the
system’s resources and to represent the context. The following
section then discusses a number of rules that can infer the user
needs from this context and perform adaptation.

Central to the representation of the adaptation context is
the notion of Process. Application Interaction
for instance, tells the system that a particular User is
involved (user model), and currently, is interacting with
a Content resource (domain model) of the Application
(system model) to accomplish a task. Indirectly, this task is
captured as a Composite Process of which the atomic
interaction is part of (task model). That is, we employ
a process-orientated representation of tasks. The workflow
required to accomplish the task is modeled in the system as a
Computer-aided Process. The output of this process
can be implicitly assumed to be the user’s objective so as to
make adaptation goal-directed.

Note that recorded Application Interactions con-
tain information about the Content currently processed by
the User. Since Content types are distinguished by the
subjects they describe, content-based adaptation rules can be
used to trigger recommendations suggesting users to navigate
to related content units of a different type. A special type of
Content is Executable Content, which differs from
others in that it is embodied in a UI Element and is
representation of a Service. In this way, any service
can be indirectly represented as individual of Executable
Content and adapted to the User in the same way as other
content types. Also, we introduce the concept of Content
Bearing Object (CBO) to distinguish the actual materi-
alization from the abstract Content embodied in it. Thereby,
concepts become available for the representation of layout- and
presentation-related requirements (presentation model).

Further concepts that deliver contextual information are
User and Environment and their properties.

D. A Semantics-Enabled Component for Adaptive Behavior

Components making use of semantics can have both a
programmatic and a declarative part. Much of the logic of the
adaptive component presented here is declaratively specified

by the use of rules. These so-called adaptation rules make
use of concepts and relations reflecting the different adaptivity
dimensions as discussed in the previous section. In general,
atoms in the rule body capture the conditions that need to be
fulfilled for the recommendation stated in the head to apply.
As shown in Fig. 7, conditions in the rule body are split up
into three blocks, the context-related, adaptation-related and
constraints-related category.

The first block ensures that the right context is given. This
is represented by the concept of Process, which serves
as the “entry point” to access various adaptivity dimensions,
i.e. Content, User, Application, Environment and
indirectly also the task via Computer-aided Process.

In the second block, adaptation is performed on the basis
of the semantics of the Content concept. Given the User
is Reading a content unit—which in Fig. 7 is represented
by the variable c that the inference engine tries to bind
to an individual of Content about Entity—the rule
leads to the recommendations of related resources. Due to
the semantics of Content about Entity, which has a
particular entity of a domain ontology as subject, resources
can be considered as related if they have the same entity
or related entities as subjects. The rule given in Fig. 7
captures the semantics of the latter, that is, recommends
resources (represented by the variable rec) which have
subjects in common that are related entities in the ontol-
ogy. So, if the user is reading Introduction (OWL),
which is Content about Entity describing OWL (en-
tities in brackets stand for the subjects), then recommenda-
tions would include Predecessors of OWL (OWL, SHOE,
DAML-ONT, OIL, DAML+OIL) and Future extensions
(OWL, Development of OWL) for instance.

This is simply an illustration of how the second block
can be instantiated to yield adaptive behaviour. Many further
examples for content-based and also task-based adaptation are
discussed in [20]. Eventually, these styles of adaptation yield
a set of resources related to the current one. The last category
consists of conditions acting as constraints that, when applied,
have a minimizing effect on this adapted set. The example
shows how user information can be used to restrict the set of
related resources to a set for which the user has credentials.
Other user characteristics as well as environmental information
can be applied in the same manner. When all these conditions
are met, a rule fires and recommends content, for example
individuals of Content about Entity Relation as
shown in Fig. 7.

When using adaptation rules this way, the programmatic
part of the adaptation component stays simple. Upon request,
it continuously fires adaptation rules until a pre-configured
maximum number of recommendations have been generated
by the inference engines. It does so by telling KAON2 to run
the rules and retrieving the resulting recommendations. As no
processing is performed on the data by this component, the
synchronization of results is straightforward. The only logic
that has been hard-coded is the sequence in which rules are
fired. This may be extended to support a more comprehensive



Fig. 7. Structure and Content of an Adaptation Rule

prioritization scheme for the firing of rules.

VI. CONCLUSION

This paper discusses the role and benefits of ontologies in
the context of semantic software engineering. It showed that
while being different in intent, ontologies are complementary
to XML-Schema, physical Database Schema and the Object
Model. Therefore, they will not replace these concepts but
rather produce advantages when being combined with them.
Our portal could demonstrate the benefits of such additional
use of ontologies. By committing to the external ODAS
domain ontology, semantic interoperability can be achieved.
User model, content model and other data that have been
specified with concepts of the ontology can be exchanged
and recipient adaptive applications can interpret these data
according to the semantics specified by ODAS.

To realize the benefits of ontologies, we extended the state-
of-the-art architecture with a management facility called OMS.
In the development of components which can exploit such
a facility, certain aspects have to be taken into account.
Synchronization of middle tier components with information
inferred at the resource tier has to be considered. Also, there
is a design choice concerning employing “tailored” vs. generic
Entity Classes. There is also the choice concerning the extent
of processing logic that should be defined declaratively. The
logic in the form of rules can be easily reused in other
OMS. Besides, rules can be defined in a way that is more
generic than if-then statements of object-oriented or procedural
languages. This is desirable with respect to some particular
use cases, as has been shown for adaption. However, Logic
Programming has existed for long time and yet has not proven
to be superior to Objected-oriented Programming. Besides
performance issues, many types of processing logic just cannot
be straightforwardly captured by rules.

In summary, like ontologies, rules have advantages and are
complementary to the state-of-the-art and will not likely re-
place it. Whether and how they can be employed in enterprise
information systems has to be examined and assessed case-
by-case.

ACKNOWLEDGEMENTS

Research reported in this paper has been partially financed
by the EU in the IST projects: X-Media (ISTFP6-026978)
http://www.x-media-project.org and NeOn (IST-
2006-027595) http://www.neon-project.org.

REFERENCES

[1] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scien-
tific American, vol. 284, no. 5, pp. 34–43, 2001.

[2] X. Lopez and S. Stephens, “Semantic Data Integration for the
Enterprise,” March 2006. [Online]. Available: ”http://www.oracle.com/
technology/tech/semantic technologies/pdf/semantic grid wp 0603.pdf”

[3] G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt,
W. V. de Velde, and B. Wielinga, Knowledge Engineering and Manage-
ment: The CommonKADS Methodology. MITpress, 2000.

[4] M. A. Musen, “Domain ontologies in software engineering: Use
of protégé with the EON architecture,” Methods of Information in
Medicine, vol. 37, pp. 540–550, 1998.

[5] Ó. Corcho, A. Gómez-Pérez, M. Fernández-López, and M. Lama,
“ODE-SWS: A semantic web service development environment,” in
Proceedings of SWDB’03, The first International Workshop on Semantic
Web and Database, I. F. Cruz, V. Kashyap, S. Decker, and R. Eckstein,
Eds., 2003, pp. 203–216.

[6] A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler, “WSMX -
A semantic service-oriented architecture,” in ICWS. IEEE Computer
Society, 2005, pp. 321–328.

[7] H. Knublauch, “Ontology-Driven Software Development in the Context
of the Semantic Web: An Example Scenario with Protege/OWL,” 1st In-
ternational Workshop on the Model-Driven Semantic Web (MDSW2004),
2004.

[8] M. Brodie, C. Bussler, J. de Brujin, T. Fahringer, D. Fensel, M. Hepp,
H. Lausen, D. Roman, T. Strang, H. Werthner, et al., “Semantically
Enabled Service Oriented Architectures: A Manifesto and a Paradigm
Shift in Computer Science,” DERI TR-2005-12-26, Tech. Rep., 2005.

[9] T. R. Gruber, “A translation approach to portable ontology specifica-
tions,” Knowledge Acquisition, vol. 5, no. 2, pp. 199–220, 1993.

[10] M. Uschold and M. Grüninger, “Ontologies and semantics for seamless
connectivity,” SIGMOD Record, vol. 33, no. 4, pp. 58–64, 2004.

[11] M. Dean and G. Schreiber, “OWL Web Ontology Language Reference.
W3C Recommendation,” World Wide Web Consortium (2004) Latest
version: http://www. w3. org/TR/owl-ref, vol. 7.

[12] “XML schema part 1: Structures, W3C recommendation,”
W3Consortium, May 2001. [Online]. Available: http://www.w3c.
org/TR/xmlschema-1/

[13] N. Shadbolt, T. Berners-Lee, and W. Hall, “The semantic web revisited,”
IEEE Intelligent Systems, vol. 21, no. 3, pp. 96–101, 2006.

[14] K. Wolstencroft, P. Lord, L. Tabernero, A. Brass, and R. Stevens, “Pro-
tein classification using ontology classification,” in ISMB (Supplement
of Bioinformatics), 2006, pp. 530–538.

[15] I. Singh, B. Stearns, and M. Johnson, Designing Enterprise
Applications with the J2EE Platform, Second Edition. Addison-
Wesley Professional, June 2002. [Online]. Available: http://java.sun.com/
blueprints/guidelines/designing enterprise applications 2e/titlepage.html

[16] D. Riehle, M. Tilman, and R. Johnson, “Dynamic Object Model,”
Proceedings of PLoP2000. Technical Report# wucs-00-29, Dept. of
Computer Science, Washington University Department of Computer
Science, October, 2000.

[17] M. Volkel and Y. Sure, “RDFReactor-from ontologies to programmatic
data access,” Proceedings of the International Semantic Web Conference-
Demo Session, Galway, Ireland, NOV, 2005.

[18] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean, “SWRL: A Semantic Web Rule Language Combining OWL
and RuleML,” W3C Member Submission, vol. 21, 2004.

[19] B. Motik and U. Sattler, “A Comparison of Reasoning Techniques for
Querying Large Description Logic ABoxes,” Proc. of the 13th Interna-
tional Conference on Logic for Programming Artificial Intelligence and
Reasoning (LPAR 2006), Phnom Penh, Cambodia, November, 2006.

[20] T. Tran, P. Cimiano, and A. Ankolekar, “Rules for an Ontology-
based Approach to Adaptation,” in Proceedings of the 1st International
Workshop on Semantic Media Adaptation and Personalization, Athen,
Greece, 2006.


