
Benchmarking the Performance Impact of Transport
Layer Security in Cloud Database Systems

Steffen Müller, David Bermbach, Stefan Tai
Karlsruhe Institute of Technology

Karlsruhe, Germany
Email: {st.mueller, david.bermbach, stefan.tai}@kit.edu

Frank Pallas
FZI Forschungszentrum Informatik

Berlin, Germany
Email: pallas@fzi.de

Abstract—Cloud storage services and NoSQL systems are
optimized for performance and availability. Hence, enterprise-
grade features like security mechanisms are typically neglected
even though there is a need for them with increased cloud
adoption by enterprises. Only Transport Layer Security (TLS)
is frequently supported. Furthermore, the standard Transport
Layer Security (TLS) protocol offers many configuration options
which are usually chosen purely based on chance.

We argue that in cloud database systems, configuration
options should be chosen based on the degree of vulnerability
to attacks and security threats as well as on the performance
overhead of the respective algorithms. Our contributions are
a benchmarking approach for transparent analysis of the per-
formance impact of various TLS configuration options and a
custom TLS socket implementation which offers more fine-
grained control over the configuration options chosen. We also
use our benchmarking approach to study the performance impact
of TLS in Amazon DynamoDB and Apache Cassandra.

Keywords—Cloud Security; Security Performance; Cloud
Database Systems; NoSQL; SSL; TLS

I. INTRODUCTION

Cloud storage services and NoSQL systems1, e.g., Dy-
namoDB 2, Cassandra 3, HBase 4, MongoDB 5, or Voldemort 6,
have been designed with a focus on performance, availability
and elastic scalability. While the delivery model may vary7,
the one thing that all these systems have in common is that
they typically abandon enterprise-grade features in favor of
increased performance or availability. Typical examples of this
are relaxed consistency [1] guarantees – based on the tradeoffs
of the CAP theorem and PACELC model [2], [3], so that only
Eventual Consistency [4] is offered – and security mechanisms
that are either non-existent or only offered as optional features.

However, for systems running in a public cloud, the con-
fidentiality and integrity of data in transport is an even larger
challenge than for traditional on-premise database systems. In
on-premise environments, everything is under the control of
the same entity and the networks are protected by perimeters.
In cloud database systems running in the public cloud, data

1We collectively refer to both classes of systems as cloud database systems.
2aws.amazon.com/de/dynamodb
3cassandra.apache.org
4hbase.apache.org
5mongodb.org/
6project-voldemort.com
7A hosted service in the case of cloud storage or self-hosted systems

potentially running on compute services in the case of NoSQL systems

packets have to be sent over unsecure public networks. Using
geo-replication further aggravates this. Secure communication
protocols like TLS (Transport Layer Security)8 can help to
alleviate security concerns by using suitable encryption and
authentication mechanisms combined with cryptographic sig-
natures. As security is a fundamental need in software systems,
more and more cloud database systems add support for TLS
and its myriad of encryption and hashing algorithms. Still, this
comes with an unknown price in terms of performance.

This unknown performance impact of enabling TLS, if
negative, is contrary to the original design goals of cloud
database systems. We therefore believe that such a decision
needs to be well-considered, based on detailed knowledge of
implications and potential side effects. Up to now, no approach
exists that delivers this kind of information. In this work,
we hence propose a benchmarking approach to determine the
performance impact of security design decisions in arbitrary
cloud database systems. As a second contribution, we then
use our approach to measure the performance impact of using
specific combinations of encryption and hashing algorithms in
Cassandra and DynamoDB.

The remainder of this work is structured as follows: In
section II, we start with an overview of different types of
middleware-based communication in cloud database systems,
an overview of the TLS protocol and its potential performance
impact, as well as a discussion of related work. Afterwards,
in section III, we present our approach for benchmarking
the performance impact of TLS. We also describe factors
such an approach needs to be aware of. Next, in section IV,
we describe the results of our extensive experiments with
Amazon DynamoDB and Apache Cassandra using the tool
implementation of our benchmarking approach. Finally, we
end with a discussion and conclusion in section V.

II. BACKGROUND AND RELATED WORK

In this section, we describe communication types in cloud
database systems and give an overview of secure communica-
tion protocols. We also discuss existing approaches which try
to measure the performance overhead of using SSL or TLS.

A. Communication in Cloud Database Systems

In cloud database systems, there are three main roles: The
application is running on one or more machines and uses the

8Earlier versions of TLS were known as SSL (Secure Sockets Layer).

Figure 1. Schematic Overview of Communication in Cloud Database Systems

storage system as an abstraction for state management. On the
provider’s side, there are replica servers which actually store
the data – typically replicated on several machines – and a load
balancer which acts as a proxy towards the client routing his
requests to the appropriate machines. Systems like HBase or
Google File System [5] additionally have machines for man-
agement purposes which, for our purposes, can be treated like
replica servers. In Peer-to-Peer (P2P) systems replica servers
typically also include load balancer functionality. Figure 1
shows how client requests may be routed to different replica
servers as well as how the latter interact.

Based on this, we can distinguish two basic types of
communication in cloud database systems:

• Application-Replica Communication comprises the
data flow from the application to the first replica server
including the hop via the load balancer (dashed line in
figure 1). For systems without a load balancer (which
is common in P2P systems, e.g., Cassandra [6]), the
extra hop via the load balancer is missing and appli-
cations send their requests directly to a replica server.
Application-replica communication will often start
and end in different data centers and typically uses
standardized communication middleware like Thrift9,
Protocol Buffers10, Avro11, Web Services (REST or
SOAP/WSDL), or platform-specific transport mech-
anisms like standard Java serialization with RMI or
directly upon TCP sockets.

• Replica-Replica Communication happens only be-
tween replica servers (solid line in figure 1) and
will only span different datacenters if geo-replication
is used. While communication may also use stan-
dardized middleware solutions, frequently proprietary
communication protocols build on language-specific
mechanisms are used. This is often more convenient
and suffices as communication is strictly confined to a
closed system without the need to offer endpoints for
different languages and platforms. Sometimes systems
also build upon existing systems, e.g., Voldemort on
top of BerkeleyDB12 or HBase on top of Zookeeper
and Hadoop Distributed File System (HDFS), and use
their synchronization mechanisms.

Table I shows how several popular cloud database systems
communicate internally and externally. Note, that in the case

9thrift.apache.org
10code.google.com/p/protobuf
11avro.apache.org
12oracle.com/technetwork/products/berkeleydb

Table I. COMMUNICATION IN CLOUD DATABASE SYSTEMS

Storage System Application-Replica Replica-Replica
DynamoDB Web services (HTTP) ?

Cassandra Prop. Binary RPC, Thrift Prop. Binary RPC

HBase Prop. Binary RPC, HTTP, Pro-
tocol Buffers, etc.

Prop. Binary RPC
(Zookeeper, HDFS)

MongoDB RESTful services (HTTP) Prop. Binary RPC

Voldemort HTTP, Avro, etc. Prop. Binary RPC
(MySQL, BerkeleyDB)

Figure 2. Composition of TLS Messages

of NoSQL systems, the developer controls both types of com-
munication and can choose various kinds of security settings.
For cloud storage services, in contrast, the developer cannot
affect replica-replica communication at all. Furthermore, for
application-replica communication, he can only choose from
the TLS options supported by the provider.

B. Overview of Transport Layer Security

The TLS protocol has three main building blocks [7]:

1) Data packets are encrypted before sending them over
the network and, thus, cannot be read by interceptors.
This asserts confidentiality.

2) Before encryption, hash-based message authentica-
tion codes (HMAC) are appended to each message
so that the recipient can verify the integrity of the
message.

3) Certificates are used to authenticate communication
partners.

During an initial handshake phase, the server first authenticates
himself with his certificate; next, client and server agree
on a combination of encryption and HMAC algorithms, the
TLS cipher suites, as well as further session parameters13.
Afterwards, during the bulk data transfer phase, HMACs are
appended to each data packet before encrypting both data
packet and HMAC. Finally, a TLS record header is added and
the entire message is sent to the recipient who can then decrypt
the message, verify the data integrity and reassemble the data
packets. Figure 2 shows the TLS message composition during
the bulk data transfer phase.

C. Performance Impact of Transport Layer Security

Generally speaking, TLS introduces a performance impact
based on three root sources. First, there is a compute overhead
for calculating HMACs as well as encrypting and decrypting
messages. Second, the total amount of data which needs to be
sent is increased which in turn affects the time necessary to

13Often several cipher suites are available. Typically, one cipher suite is
then chosen.

transfer data. Third, the handshake phase has to be executed
at least once before transmitting data – this delays the actual
data transmission and, thus, increases latency. Therefore, this
problem is well known and the simple performance overhead
of sending data from A to B either encrypted or unencrypted
is well studied:

Apostolopoulos et al. [8], Kant et al. [9], Zhao et al. [10],
and Coarfa et al. [11] study the performance overhead of TLS
for a scenario where a client interacts with a web server.
As there are only two affected machines, results in this very
simplistic scenario are much more predictable than in the case
of cloud database systems.

Shirasuna et al. [12] analyze the performance overhead of
TLS in the case of SOAP-based web services. They use a very
simple echo service so that the measurement approach cannot
be used for the more complex benchmarking of cloud database
systems.

Other approaches like [13]–[15] study the TLS perfor-
mance overhead in combination with protocols not used for
cloud database systems, e.g., SIP (Voice over IP) or with IP
which is even further down within the ISO/OSI stack.

All these approaches consider only simplistic scenarios,
i.e., they compare a single data transfer, e.g., only one RPC
call, with and without TLS. In cloud database systems, there
are complex interdependencies between different quality of
service (QoS) dimensions. Furthermore, changes to the replica-
replica communication will also affect application-replica com-
munication. Therefore, a holistic measurement approach for
this complex scenario is necessary.

On the other hand, existing approaches for benchmarking
of cloud database systems, e.g., [16]–[24], do not consider
security mechanisms in their analysis. We, therefore, propose
to extend one of the established benchmarking solutions – we
chose Yahoo! Cloud Serving Benchmark (YCSB) [16] – to
also capture the performance effects of using TLS in various
configurations.

III. MEASURING THE TLS OVERHEAD

In this section, we describe our main contributions, a
benchmarking approach for transparent analysis of the perfor-
mance impact of various TLS configuration options in cloud
database systems, as well as a custom TLS socket imple-
mentation which offers more fine-grained control over the
configuration options chosen. Based on the custom TLS socket
(which we implemented in Java) and the existing YCSB [16]
research prototype, we developed an implementation of our
benchmarking approach. We will make this tool available as
open source so that everyone can reproduce the results of our
experiments from section IV.

At a first glance, the setup for our measurements of TLS
overhead in cloud database systems looks similar to a standard
YCSB [16] performance benchmark with encryption enabled
(see figure 3). The devil is in the detail, though, since there
is an undesirable effect in standard TLS socket implemen-
tations: During the handshake phase, the client sends a list
of supported cipher suites to the server. If the intersection of
the client’s cipher suites and the server’s supported algorithm
combinations contains more than one entry, then a cipher suite

is chosen ”randomly“ (client’s favorite choice first which is the
first cipher suite in the client’s list [7]). Note that this in many
TLS implementations is not necessarily the most secure or the
fastest algorithm combination.

While this may be a reasonable approach for communica-
tion between a web server and a browser, for a benchmarking
approach trying to determine the exact performance overhead
of TLS it is also necessary to ascertain more fine-grained
control over the selection of the cipher suite. The selection of
a combination should preferably be based on benchmarking
data and a conscious decision instead of being left to chance.
This is true for application-replica as well as for replica-replica
communication. A way to influence the actual selection of
a cipher suite is to limit the list of supported cipher suites
provided at one or on both sides of the communication. This
can be done by reconfiguring the supported cipher suite list
every time a connection is established.

Another strong influence factor is the initial handshake
phase itself: If TLS sessions can be reused which results in a
connection pooling, this phase is executed just once. If not, it
will be added as overhead to every connection establishment
between client and server. In Java, this connection pooling
for multiple sockets to same communication endpoint is the
default option. At the same time, only a limited number of
concurrent connections is available so that there is also a
tradeoff.

For these reasons, we implemented a custom TLS socket
implementation in Java which can be used for both application-
replica as well as replica-replica communication. It provides
a configurable interface in terms of cipher suites, buffer sizes,
etc. and uses the standard Java TLS socket implementation
in the background. Hence, the TLS socket is parameterized
with the desired combination of cipher suites so that the in-
tersection of sets during the handshake phase contains exactly
one element. If the desired combination is not available on
the other end, an error is raised instead of establishing a
connection via another cipher suite. At the same time, our
TLS socket implementation also can easily be extended to offer
configurability for degrees of connection pooling.

Beyond our custom TLS socket implementation, there are
several additional challenges and influence factors which a
measurement approach should consider:

• Workload and System Configuration: Depending on
the workload and system configuration, the perfor-
mance impact of TLS may vary. For instance, a quo-
rum system like Cassandra [6] running at consistency
level one14 combined with a read-heavy workload will
not be affected by TLS in replica-replica communica-
tion if requests do not need to be redirected as a read
then does not require any replica-replica communica-
tion at all. An update-heavy workload combined with
a higher consistency level, on the other hand, will be
affected by the full overhead of TLS as every request
requires (potentially synchronous) interaction with all
replica servers.

14The operation commits after reading or writing only one replica; in the
case of writes, the remaining replicas are updated asynchronously.

Figure 3. High-level Architecture During Measurements

• Resource Saturation: Depending on the degree of
resource saturation the observable overhead may vary.
For instance, running at low saturation levels we do
not expect any influence on the throughput but slightly
larger latency values. For very high resource saturation
levels, on the other hand, we would expect a reduced
throughput value.

• Comparability: Determining the overhead of TLS
requires running exactly the same benchmark setup
with and without TLS. We modified YCSB to do this
automatically.

• Number of Combinations: There are many encryp-
tion and hashing algorithms available with different
degrees of vulnerability. The cartesian product of
these algorithms results in a very large number of
combinations which need to be benchmarked. We are
still working on automating these measurements for
all combinations.

Combining YCSB extensions with our custom TLS socket
implementation, we implemented a benchmarking tool to ex-
perimentally determine the performance overhead of TLS in
cloud database systems. We also add fine-grained control over
security mechanisms in replica-replica communication via our
TLS socket implementation15.

IV. EXPERIMENTS

We now use our proposed benchmarking approach to
study the performance impact of TLS in two different cloud
database systems: In Amazon DynamoDB, as an example of
a cloud storage service, we could only control the settings for
application-replica communication. With Apache Cassandra,
as an example of a self-hosted NoSQL system, we could also
study how enabling TLS for replica-replica communication
affects the client-visible performance.

A. DynamoDB

Amazon DynamoDB is a fully managed cloud storage
service with a tabular data structure. Since it does not have
a fixed schema, each line may have a different number of
columns. For each table a throughput target (i.e., read and
write capacity) has to be provisioned in advance, requests
beyond the target terminate with an error. As communication
middleware, Amazon supports SOAP/WSDL and REST-style
web services both on top of HTTP and HTTPS. During
the handshake and bulk data transfer phase RSA and RC4

15As our TLS socket implementation is Java-based, we currently only
support this for Java-based replica-replica communication endpoints.

Table II. EXPERIMENT SETUP FOR DYNAMODB.

Setting Value
Protocol SSL

Cipher suites SSL_RSA_WITH_RC4_128_MD5

Workload Update-heavy not throttled

Handshake renegotiation False

Packet size 900 B

Number of operations 5,000,000

Initial load ca. 10 GB

Consistent reads False

Table III. EXPERIMENT RESULTS FOR DYNAMODB.

No Encryption RC4
Avg. Throughput in Ops/sec 2,392.4 2,269.5

Std. Dev. in Throughput 323.0 444.2

Avg. Update Latency in ms 9.0 9.2

Std. Dev. Avg. Upd. Latency 1.6 2.1

Min. Update Latency in ms 5.9 6.0

Max. Update Latency in ms 9,461.7 10,133.7

Update Latency 99th Percentile in ms 19.0 19.0

Avg. Read Latency in ms 7.5 7.7

Std. Dev. Avg. Read Latency 1.7 2.1

Min. Read Latency in ms 4.8 4.9

Max. Read Latency in ms 10,341.1 9,933.2

Read Latency 99th Percentile in ms 16.0 15.0

with MD516 respectively are used. While this is a very fast
combination [13], [25], using this TLS cipher suite is not
recommended from a security perspective [26].

As DynamoDB supports only one cipher suite16, we com-
pared the performance of DynamoDB with and without this
cipher suite. We chose a target throughput of 10,000 units
read/write capacity and deployed our benchmarking tool on
an m1.large EC217 instance. As workload, we decided on an
update-heavy workload (50% updates and reads each) which
was not throttled to measure the maximum available through-
put at the benchmarking machine. Each row was configured to
have ten fields at 90 B each so that the total packet size during
data transfer was 900 B. See also table II for an overview of
the experiment settings.

In our experiments with DynamoDB, which we repeated
several times, we could not see any performance impact of
TLS since both throughput, as well as read and write latencies
showed no statistically significant deviation (see figure 4).
Table III gives an overview of our DynamoDB results.

We believe that this can only be explained by Amazon
overprovisioning resources so as not to violate their service
level agreements (SLA): If TLS is used, resource consumption
increases for Amazon without being visible to the client.
We, therefore, recommend to use DynamoDB only with TLS
activated as it essentially comes for free for the customer.

B. Cassandra

Cassandra is a P2P storage system with a table structure
and a flexible schema. The system was originally developed
at Facebook18 as the background system behind their message

16TLS cipher suite: SSL_RSA_WITH_RC4_128_MD5
17aws.amazon.com/ec2
18facebook.com

0

500

1000

1500

2000

2500

3000

0 500 1000 1500

Th
ro

ug
hp

ut
 in

 o
ps

/s
ec

Time in sec

No Encryption RC4

0

5000

10000

15000

20000

0 500 1000 1500

La
te

nc
y

in
 μ

s

Time in sec

Update Latency No Encryption Update Latency RC4

Read Latency No Encryption Read Latency RC4

0

200000

400000

600000

800000

1000000

1200000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

of

 O
cc

ur
re

nc
es

Latency in ms

Update Latency No Encryption Update Latency RC4

Read Latency No Encryption Read Latency RC4

Figure 4. Performance Impact of TLS in DynamoDB

inbox [6] and is now a popular NoSQL system maintained as
Apache open source system. For our experiments, we chose
Cassandra in version 1.2.9 which uses a custom RPC protocol
or Thrift for application-replica communication and a custom
RPC protocol for replica-replica communication.

In all our experiments, we deployed Cassandra on a cluster
of three m1.large EC2 instances within the same availability
zone of the region us-east. We used Thrift for application-
replica communication. Where not indicated otherwise, we
chose a replication factor and consistency level of one, i.e.,
there is just one replica for every data item. In this paper, we
report results for the following experiments:

• Experiment AR: In experiment AR, we measured
the performance overhead of using TLS only in
application-replica communication.

• Experiment RR: In experiment RR, we studied the
performance overhead of using TLS in replica-replica
communication.

• Experiment AR-RR: In experiment AR-RR, we ana-
lyzed the performance overhead of using TLS for both
application-replica and replica-replica communication.

• Experiment RR.HL: In experiment RR.HL, we studied

Table IV. EXPERIMENT SETUP FOR CASSANDRA.

Setting Value
Protocol TLS

Cipher suites TLS_DHE_RSA_WITH_AES_128_CBC_SHA,
TLS_DHE_RSA_WITH_AES_256_CBC_SHA

Workload Update-heavy not throttled

Handshake renegotiation False

Packet size 1000 B (1000 KB)

Number of operations 3,000,000 (40,000)

Initial load ca. 28 GB (ca. 150 GB)

Consistency level ONE (QUORUM)

Replication Factor 1 (2)

how increasing the load compared to experiment RR
affected our results. For this purpose, we used exactly
the same setup but deployed a second m1.large EC2
instance with our benchmarking tool to effectively
double the load.

• Experiment RR.BD: In experiment RR.BD, we studied
how our results of experiment RR.HL change when
we run the cluster in a Big Data setup. For this
purpose, we changed the replication factor to two
and consistency level of Cassandra to quorum and
increased the data size per item by a factor of 1000.

In each experiment, we compared the performance without
TLS to the performance of TLS with AES 128 and 25619

to also study whether the key length has a visible influence
on performance. We chose these cipher suites as they used
to be a NIST recommendation until March 2013 and are
still widely used in practice. For all experiments, we again
ran an unthrottled, update-heavy workload (50% updates and
reads each) against an initial data set of about 30 GB. We
used connection pooling, i.e., the TLS handshake happened
in each experiment only once per Cassandra node and client
(3 handshakes for experiments AR and RR, 6 handshakes for
experiment AR-RR; all connections were reset before and after
the switch between no TLS, AES 128 and AES 256). Table IV
gives an overview of the setup for all experiments; values in
brackets describe the differing setup in experiment RR.BD.

1) Experiment AR: Our results show a significant perfor-
mance impact of enabling TLS in application-replica com-
munication (see figure 5 and table V), while the key length
in AES seems to have no influence. Interestingly, update
latencies seems unaffected (difference: < 1ms) whereas read
latencies are higher (difference: 1ms) and average throughput
of AES 256 is about 18.9% (368 Ops/sec difference) lower
compared to application-replica communication without TLS.

When repeating this experiment, “anomalies”, where
secured communication suddenly outperforms application-
replica communication without TLS (e.g., the throughput chart
in figure 5 after about 1000 seconds), kept reoccurring. Since
there was no clear tendency whether AES 128 or 256 or un-
secure communication showed this anomaly more frequently,
we believe that this can only be explained by the general
performance variance of public cloud resources [27]–[29]. In
the results which we show here, the anomaly obviously affects
the average values of table V.

19Cipher suites: TLS_DHE_RSA_WITH_AES_128_CBC_SHA and
TLS_DHE_RSA_WITH_AES_256_CBC_SHA

Table V. EXPERIMENT RESULTS FOR EXPERIMENT AR

No Encryption AES 128 AES 256
Avg. Throughput in Ops/sec 1945.3 1760.4 1576.9

Std. Dev. in Throughput 264.6 493.4 416.5

Avg. Upd. Lat. in ms 3.3 3.5 3.9

Std. Dev. Avg. Upd. Lat. 0.7 1.3 1.1

Min. Upd. Lat. in ms 0.4 0.5 0.5

Max. Upd. Lat. in ms 686.9 2,986.5 1,411.3

Upd. Lat. 99th Perc. in ms 36.0 35.0 39.0

Avg. Read Lat. in ms 26.7 30.0 33.8

Std. Dev. Avg. Read Lat. 4.6 11.3 12.1

Min. Read Lat. in ms 0.6 0.8 0.8

Max. Read Lat. in ms 1,391.7 3,201.6 1,932.7

Read Lat. 99th Perc. in ms 255.0 312.0 373.0

Another observation which we can draw from this, is that
the reliability of the performance decreases when using TLS
as there is a much higher variance with TLS than without (see
the standard deviation values in table V).

2) Experiment RR: Since we have not been able to see
any influence of the key length of AES, we ran this and all
following experiments only with AES 25620 instead of both
AES 128 and 256.

In experiment RR, where all replica-replica communication
used TLS, we could not see a statistically significant impact
of using TLS-secured replica-replica communication on the
performance of our Cassandra cluster: Neither throughput nor
update and read latencies show any effect (see figure 6). We
believe that the impact of TLS on the performance of the
replica-replica communication itself is, in this experiment,
too low to be visible to the end client. As we will see in
section IV-B4, this may look different at a higher resource
saturation level of the cluster.

One might argue that with a replication factor of one,
there is no replica-replica communication. This is not true as
Cassandra is obviously not designed for geo-distribution: Each
Thrift request arriving at node A requiring data from node B
will be processed by node A which requests the data from
node B and then forwards B’s response to the client again via
Thrift. I.e., there is no separation of data and control flow as
the data from B will be funneled through A instead of sending
a redirect for node B to the client. Therefore, as long as not
every request directly reaches the correct node on the ring (e.g.,
with three nodes, a replication factor of three and a consistency
level of one), there is replica-replica communication even with
a replication factor of one.

3) Experiment AR-RR: In experiment AR-RR, we activated
TLS for both application-replica and replica-replica commu-
nication. After having seen the results of experiments AR and
RR, the results were not surprising: There is an overhead
which is visible in both throughput and latency values. Also,
we could again observe the anomaly already discussed in
section IV-B1. We expected this behavior, since adding no
overhead (experiment RR) and some overhead plus an anomaly
(experiment AR) is likely to show the exact combination – an
overhead with an anomaly. Again, we could reproduce this
anomaly in either direction.

20Cipher suite: TLS_DHE_RSA_WITH_AES_256_CBC_SHA

Table VI. EXPERIMENT RESULTS FOR EXPERIMENT AR-RR

No Encryption AES 256
Avg. Throughput in Ops/sec 1945.3 1769.8

Std. Dev. in Throughput 264.6 390.0

Avg. Upd. Lat. in ms 3.3 4.5

Std. Dev. Avg. Upd. Lat. 0.7 1.4

Min. Upd. Lat. in ms 0.4 0.5

Max. Upd. Lat. in ms 686.9 540.1

Upd. Lat. 99th Perc. in ms 36.0 43.0

Avg. Read Lat. in ms 26.7 29.1

Std. Dev. Avg. Read Lat. 4.6 8.9

Min. Read Lat. in ms 0.6 0.8

Max. Read Lat. in ms 1,391.7 1,178.2

Read Lat. 99th Perc. in ms 255.0 261.0

Table VII. EXPERIMENT RESULTS FOR EXPERIMENT RR.HL

No Encryption AES 256
YCSB1 YCSB2 YCSB1 YCSB2

Avg. Throughput in Ops/sec 1898.4 1903.8 1587.5 1586.5

Std. Dev. in Throughput 366.4 341.4 250.1 249.0

Avg. Upd. Lat. in ms 2.0 2.0 3.1 3.3

Std. Dev. Avg. Upd. Lat. 0.5 0.5 0.5 0.5

Min. Upd. Lat. in ms 0.5 0.5 0.5 0.5

Max. Upd. Lat. in ms 574.7 612.8 1,017.3 1,018.0

Upd. Lat. 99th Perc. in ms 8.0 8.0 15.0 16.0

Avg. Read Lat. in ms 18.8 18.7 21.5 21.5

Std. Dev. Avg. Read Lat. 8.4 7.0 8.5 6.7

Min. Read Lat. in ms 0.7 0.7 0.7 0.7

Max. Read Lat. in ms 2,056.9 2,012.5 3,644.5 3,598.9

Read Lat. 99th Perc. in ms 314.0 313.0 313.0 314.0

Figure 7 and table VI show the results of experiment AR-
RR. One can clearly see that using TLS again considerably
affects the variance values.

4) Experiment RR.HL: After not being able to observe a
client-visible performance impact when using TLS in replica-
replica communication, we doubled the load on our Cassandra
cluster by running a second machine with our benchmarking
client in parallel.

With the increased number of parallel requests to the
cluster, we managed to increase the CPU load of the cluster’s
machines from around 40% to 60%. Obviously, the resource
saturation of the storage cluster has a large influence on
whether secure replica-replica communication has a client-
visible performance impact: Throughput decreased by about
300 Ops/sec and the average latencies of updates and reads
increased by about 1 ms and 3 ms respectively. It is, hence,
safe to say that a higher degree of resource saturation increases
the severity of TLS performance impacts. We expect even
higher impacts for higher resource saturation levels so that
the decision on using or not using TLS should also be based
on the expected utilization level of the cluster.

For an overview of the results of this experiment, see
table VII and figure 8.

5) Experiment RR.BD: In our Big Data experiment, we
drastically increased the field size, so that every row stored
10 fields of 512,000 characters each as it might be the case if
Cassandra was used, for instance, to store larger texts for data
mining purposes. We also increased the replication level and

0

500

1000

1500

2000

2500

3000

0 500 1000 1500

Th
ro

ug
hp

ut
 in

 o
ps

/s
ec

Time in sec

No Encryption AES128 (AR) AES256 (AR)

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 500 1000 1500

U
pd

at
e

La
te

nc
y

in
 μ

s

Time in sec

No Encryption AES128 (AR) AES256 (AR)

0
100000
200000
300000
400000
500000
600000
700000

1 2 3 4 5 6 7 8 9 1011

of

 O
cc

ur
re

nc
es

Update Latency in ms

No Encryption

AES128 (AR)

AES256 (AR)

0
50000

100000
150000
200000
250000
300000
350000

1 2 3 4 5 6 7 8 9 1011

of

 O
cc

ur
re

nc
es

Read Latency in ms

No Encryption

AES128 (AR)

AES256 (AR)

0

10000

20000

30000

40000

50000

60000

70000

80000

0 500 1000 1500

Re
ad

 L
at

en
cy

 in
 μ

s

Time in sec

No Encryption AES128 (AR) AES256 (AR)

Figure 5. Performance Impact of TLS in Application-Replica Communication in Experiment AR

0

500

1000

1500

2000

2500

3000

0 500 1000 1500

Th
ro

ug
hp

ut
 in

 o
ps

/s
ec

Time in sec

No Encryption AES256 (RR)

0

1000

2000

3000

4000

5000

6000

7000

0 500 1000 1500

U
pd

at
e

La
te

nc
y

in
 μ

s

Time in sec

No Encryption AES256 (RR)

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500

Re
ad

 L
at

en
cy

 in
 μ

s

Time in sec

No Encryption AES256 (RR)

0

100000

200000

300000

400000

500000

600000

700000

1 2 3 4 5 6 7 8 9 1011

of

 O
cc

ur
re

nc
es

Update Latency in ms

No Encryption AES256 (RR)

0

50000

100000

150000

200000

250000

300000

350000

1 2 3 4 5 6 7 8 9 1011

of
 O

cc
ur

re
nc

es

Read Latency in ms

No Encryption AES256 (RR)

Figure 6. Performance Impact of TLS in Replica-Replica Communication in Experiment RR

quorum size both to two, so as to enforce more replica-replica
communication. Table IV shows in brackets the changes we
made to the original experiment setup.

In this experiment, we observed a rather curious behavior
(see table VIII and figure 9) where activating TLS for replica-
replica communication considerably increases throughput from
about 17.5 to 22.25 Ops/sec whereas latencies are much worse.
Also, the reliability decreases as we could see a jump in
variance. We repeated this experiment three times, starting at
different times during the day, and each time saw the same
effect of increased throughput. We believe that this may be

due to an optimal fit of TCP packet sizes and the selected data
sizes. Still, we need to study this more also for other payload
sizes and characteristics to determine the root cause behind
this effect.

6) Further Experiments: The experiments reported within
this paper were repeated several times, each time yielding
comparable results. Beyond these experiments, we also ran
additional benchmarks where we varied the replication level
and quorum sizes (i.e., the consistency level of Cassandra) to
increase communication effort. Furthermore, we used different
workload types (workloads A, B and C of YCSB [16])

0

500

1000

1500

2000

2500

3000

0 500 1000 1500

Th
ro

ug
hp

ut
 in

 o
ps

/s
ec

Time in sec

No Encryption AES256 (AR-RR)

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 500 1000 1500

U
pd

at
e

La
te

nc
y

in
 μ

s

Time in sec

No Encryption AES256 (AR-RR)

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500

Re
ad

 L
at

en
cy

 in
 μ

s

Time in sec

No Encryption AES256 (AR-RR)

0

100000

200000

300000

400000

500000

600000

700000

1 2 3 4 5 6 7 8 9 1011

of

 O
cc

ur
re

nc
es

Update Latency in ms

No Encryption AES256 (AR-RR)

0

50000

100000

150000

200000

250000

300000

350000

1 2 3 4 5 6 7 8 9 1011

of

 O
cc

ur
re

nc
es

Read Latency in ms

No Encryption AES256 (AR-RR)

Figure 7. Performance Impact of TLS in both Application-Replica and Replica-Replica Communication in Experiment AR-RR

0

500

1000

1500

2000

2500

3000

0 500 1000 1500

Th
ro

ug
hp

ut
 in

 o
ps

/s
ec

Time in sec

No Encryption (YCSB1) No Encryption (YCSB2)

AES256 (YCSB1, RR) AES256 (YCSB2, RR)

0

200000

400000

600000

800000

1 2 3 4 5 6 7 8 9 1011

of

 O
cc

ur
re

nc
es

Update Latency in ms

No Encryption (YCSB1)

No Encryption (YCSB2)

AES256 (YCSB1, RR)

AES256 (YCSB2, RR)

0

1000

2000

3000

4000

5000

6000

0 500 1000 1500

U
pd

at
e

La
te

nc
y

in
 μ

s

Time in sec

No Encryption (YCSB1) No Encryption (YCSB2)

AES256 (YCSB1, RR) AES256 (YCSB2, RR)

0
100000
200000
300000
400000
500000

1 2 3 4 5 6 7 8 9 1011

of
 O

cc
ur

re
nc

es

Read Latency in ms

No Encryption (YCSB1)

No Encryption (YCSB2)

AES256 (YCSB1, RR)

AES256 (YCSB2, RR)

0
10000
20000
30000
40000
50000
60000
70000
80000

0 500 1000 1500

Re
ad

 L
at

en
cy

 in
 μ

s

Time in sec

No Encryption (YCSB1) No Encryption (YCSB2)

AES256 (YCSB1, RR) AES256 (YCSB2, RR)

Figure 8. Performance Impact of TLS in Replica-Replica Communication in Experiment RR.HL

with a varying number of fields. None of these additional
experiments showed significant deviations from the behavior
described above; results were comparable to what we would
have expected after having seen the results of experiments AR,
RR, AR-RR, RR.HL, and RR.BD.

Finally, we reran a subset of our experiments on cloud
resources of ProfitBricks21. As we have observed, the Profit-
Bricks cloud offers a larger and more stable network bandwidth
which could also be seen in our results: While being similar

21profitbricks.com

to our Amazon Web Services results, the differences with
and without TLS were more severe, throughput and latency
showed less variance, no unexplainable anomalies occurred,
and measurement results generally showed better performance.

V. DISCUSSION AND CONCLUSION

In this paper, we presented an approach for benchmarking
the performance impact of using TLS in cloud database
systems. We developed a custom TLS socket implementation
as well as an extension of the benchmarking tool YCSB which
together allow us to conduct fine-grained experiments with

0
5

10
15
20
25
30
35
40

0 500 1000 1500

Th
ro

ug
hp

ut
 in

 o
ps

/s
ec

Time in sec

No Encryption (YCSB1) No Encryption (YCSB2)

AES256 (YCSB1, RR) AES256 (YCSB2, RR)

0

1000

2000

3000

4000

5000

1 6 11 16 21 26 31 36 41 46 51

of

 O
cc

ur
re

nc
es

Update Latency in ms

No Encryption (YCSB1) No Encryption (YCSB2)

AES256 (YCSB1, RR) AES256 (YCSB2, RR)

No Encryption (YCSB1)

No Encryption (YCSB2)

AES256 (R-R) (YCSB1)

AES256 (R-R) (YCSB2)

0

50000

100000

150000

200000

250000

300000

0 500 1000 1500

U
pd

at
e

La
te

nc
y

in
 μ

s

Time in sec

No Encryption (YCSB1) No Encryption (YCSB2)

AES256 (YCSB1, RR) AES256 (YCSB2, RR)

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 500 1000 1500

Re
ad

 L
at

en
cy

 in
 μ

s

Time in sec

No Encryption (YCSB1) No Encryption (YCSB2)

AES256 (YCSB1, RR) AES256 (YCSB2, RR)

Figure 9. Performance Impact of TLS in Replica-Replica Communication in Experiment RR.BD

Table VIII. EXPERIMENT RESULTS FOR EXPERIMENT RR.BD

No Encryption AES 256
YCSB1 YCSB2 YCSB1 YCSB2

Avg. Throughput in Ops/sec 17.49 17.49 22.28 22.24

Std. Dev. in Throughput 2.9365 2.9365 4.1196 3.8467

Avg. Upd. Lat. in ms 23.1 25.5 75.3 84.0

Std. Dev. Avg. Upd. Lat. 12.3 12.3 38.7 45.6

Min. Upd. Lat. in ms 3.8 4.0 8.3 8.1

Max. Upd. Lat. in ms 3,625.6 2,485.1 2,178.7 2,186.5

Upd. Lat. 99th Perc. in ms 262 259 607 643

Avg. Read Lat. in ms 2,225.7 2,248.5 1,678.6 1,680.8

Std. Dev. Avg. Read Lat. 361.6 361.6 310.3 321.7

Min. Read Lat. in ms 43.2 8.0 45.3 42.4

Max. Read Lat. in ms 13,660.9 22,061.3 9,946.9 11,020.7

different TLS configurations for application-replica as well as
replica-replica communication.

Based on our tool, we conducted several experiments with
two common cloud database systems: Amazon DynamoDB
and an Apache Cassandra cluster running in the cloud. As the
experiments show, the use of TLS in application-replica com-
munication has a measurable impact on Cassandra’s perfor-
mance whereas the impact of TLS for replica-replica commu-
nication was statistically significant only in cases with higher
resource saturation. A highly interesting, though yet unex-
plained effect, appeared in the setup with drastically increased
field size: Here, the activation of TLS for replica-replica
communication led to a significantly increased throughput,
albeit at the cost of significantly worse latencies. Amazon’s
DynamoDB, in turn, showed no significant performance impact
resulting from the activation of TLS.

These results lead to some preliminary practical implica-
tions as well as to a couple of open research questions. First,
there is a proven and significant perfomance impact of TLS
being activated in practically relevant cloud database systems.

This impact can be measured experimentally and should be
accounted for in concrete decisions having to balance security
against performance (or, respectively, costs). Even if the impact
strongly depends on the concrete setup and workload profile,
it can easily be determined for specific use cases based on our
methodology and tools.

As the impact of TLS on Cassandra’s replica-replica com-
munication could only be observed in high-load scenarios,
one might conclude that this is less relevant due to the
general recommendation not to operate cloud databases at
their performance limits. But depending on the use case,
operation at the performance limit might very well make sense
(e.g., from a cost perspective). At least for these cases, the
activation of TLS for replica-replica communication should
be based on deliberations considering figures as provided by
our approach and tools. For all other cases, the activation
of TLS for replica-replica communication should at least be
considered as an additional factor in determining the available
overall performance and thereby possibly calling for increased
resources to prevent performance limits from being reached.

So far we did not run any experiments with renegotiation
of TLS sessions because we think that a cloud developer
should avoid repeatedly closing and opening a cloud database’s
connection. Frequent session renegotiation might, however,
be necessary in certain use cases. As mentioned before, we
implemented this feature into our tools for testing purposes
and it might be interesting to measure the influence of repeated
session renegotiation in future experiments.

The concrete impact of using TLS-based communication
will, however, in all likelihood vary across different cloud
database systems. Due to the highly different implementations
of application-replica as well as replica-replica communication
across different systems, our results will hardly be transferable
to other systems than those considered herein. Comparable
experiments should therefore be conducted for other cloud

database systems like HBase or Voldemort in order to allow
for a more comprehensive view on the performance impact of
TLS in cloud database systems.

Last but not least, this broadening of the experimental base
should not only cover different cloud database systems but
different cloud providers as well. As we have seen in our
preliminary experiments in this regard, the specific givens of
different providers can have significant influence at least on the
measured variance and the occurence of anomalies. This might
in turn constitute another relevant factor in deciding on con-
crete system architectures involving cloud database systems.
Again, our methodology and tools might prove valuable here,
too.

ACKNOWLEDGMENT

The authors would like to thank Amazon Web Services and
ProfitBricks who provided research grants for our experiments.

REFERENCES

[1] D. Bermbach and J. Kuhlenkamp, “Consistency in distributed stor-
age systems: An overview of models, metrics and measurement ap-
proaches,” in Proc. of NETYS 2013, 2013.

[2] E. A. Brewer, “Towards robust distributed systems,” in PODC 2000
Keynote, 2000.

[3] D. Abadi, “Consistency tradeoffs in modern distributed database system
design: Cap is only part of the story,” Computer, vol. 45, no. 2, pp. 37–
42, feb. 2012.

[4] W. Vogels, “Eventually consistent,” Queue, vol. 6, pp. 14–19, October
2008.

[5] S. Ghemawat, H. Gobioff, and S. Leung, “The Google file system,”
ACM SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 29–43,
2003.

[6] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, pp. 35–40, 2010.

[7] T. Dierks and E. Rescorla, “Rfc5246: The transport layer security (tls)
protocol version 1.2,” 2008. [Online]. Available: http://tools.ietf.org/
rfc/rfc5246.txt

[8] G. Apostolopoulos, V. Peris, and D. Saha, “Transport layer security:
how much does it really cost?” in Proc. of INFOCOM 1999, 1999, pp.
717–725.

[9] K. Kant, R. Iyer, and P. Mohapatra, “Architectural impact of secure
socket layer on internet servers,” in Proc. of Computer Design 2000,
2000, pp. 7–14.

[10] L. Zhao, R. Iyer, S. Makineni, and L. Bhuyan, “Anatomy and perfor-
mance of ssl processing,” in Proc. of ISPASS 2005, march 2005, pp.
197–206.

[11] C. Coarfa, P. Druschel, and D. S. Wallach, “Performance analysis of
tls web servers,” ACM Trans. Comput. Syst., vol. 24, no. 1, pp. 39–69,
Feb. 2006.

[12] S. Shirasuna, A. Slominski, L. Fang, and D. Gannon, “Performance
comparison of security mechanisms for grid services,” in Proc. of GRID
2004, 2004, pp. 360–364.

[13] S. Rapuano and E. Zimeo, “Measurement of performance impact of ssl
on ip data transmissions,” Measurement, vol. 41, no. 5, pp. 481–490,
2008.

[14] C. Shen, E. Nahum, H. Schulzrinne, and C. Wright, “The impact of tls
on sip server performance,” in Principles, Systems and Applications of
IP Telecommunications, 2010, pp. 59–70.

[15] M. B. Juric, I. Rozman, B. Brumen, M. Colnaric, and M. Hericko,
“Comparison of performance of web services, ws-security, rmi, and
rmiŰssl,” Journal of Systems and Software, vol. 79, no. 5, pp. 689–
700, 2006.

[16] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proc. of SOCC
2010, 2010, pp. 143–154.

[17] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. López, G. Gibson,
A. Fuchs, and B. Rinaldi, “Ycsb++: benchmarking and performance
debugging advanced features in scalable table stores,” in Proc. of SOCC
2011, 2011, pp. 1–14.

[18] L. Zhao, A. Liu, and J. Keung, “Evaluating cloud platform architecture
with the care framework,” in Proc. of Asia Pacific Software Engineering
Conference 2010, 2010, pp. 60–69.

[19] D. Bermbach, S. Sakr, and L. Zhao, “Towards comprehensive measure-
ment of consistency guarantees for cloud-hosted data storage services,”
in Proc. of TPCTC 2013, 2013.

[20] D. Bermbach and S. Tai, “Eventual consistency: How soon is eventual?
an evaluation of amazon s3’s consistency behavior,” in Proc. of 6th
Workshop on Middleware for Service Oriented Computing, 2011, pp.
1–6.

[21] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing, “How is the
weather tomorrow?: towards a benchmark for the cloud,” in Proc. of
Int. Workshop on Testing Database Systems 2009, 2009, pp. 1–6.

[22] E. Anderson, X. Li, M. Shah, J. Tucek, and J. Wylie, “What consistency
does your key-value store actually provide,” in Proc. of HotDep 2010,
2010, pp. 1–16.

[23] M. Klems, D. Bermbach, and R. Weinert, “A runtime quality mea-
surement framework for cloud database service systems,” in Proc. of
QUATIC 2012, 2012, pp. 38–46.

[24] T. Rabl, S. Gómez-Villamor, M. Sadoghi, V. Muntés-Mulero, H.-
A. Jacobsen, and S. Mankovskii, “Solving big data challenges for
enterprise application performance management,” Proc. VLDB Endow.,
vol. 5, no. 12, pp. 1724–1735, Aug. 2012.

[25] D. Menasce, “Security performance,” Internet Computing, IEEE, vol. 7,
no. 3, pp. 84–87, may-june 2003.

[26] N. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and
J. Schuldt, “On the security of rc4 in tls and wpa,” in USENIX Security
Symposium, 2013.

[27] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements
in the cloud: observing, analyzing, and reducing variance,” Proc. VLDB
Endow., vol. 3, no. 1-2, pp. 460–471, Sep. 2010.

[28] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in Proc. of ACM SIGCOMM 2011,
2011, pp. 242–253.

[29] A. Lenk, M. Menzel, J. Lipsky, S. Tai, and P. Offermann, “What are you
paying for? performance benchmarking for infrastructure-as-a-service
offerings,” in Proc. of CLOUD 2011, 2011, pp. 484–491.

http://tools.ietf.org/rfc/rfc5246.txt
http://tools.ietf.org/rfc/rfc5246.txt

	Introduction
	Background and Related Work
	Communication in Cloud Database Systems
	Overview of Transport Layer Security
	Performance Impact of Transport Layer Security

	Measuring the TLS Overhead
	Experiments
	DynamoDB
	Cassandra
	Experiment AR
	Experiment RR
	Experiment AR-RR
	Experiment RR.HL
	Experiment RR.BD
	Further Experiments

	Discussion and Conclusion
	References

