
Semantic Management of Web Services

Daniel Oberle, Steffen Lamparter
Institute AIFB

University of Karlsruhe
Germany

lastname@aifb.uni-karlsruhe.de

Andreas Eberhart
Hewlett-Packard

Waldorf
Germany

andreas.eberhart@hp.com

Steffen Staab
ISWeb

University of Koblenz-Landau
Germany

staab@uni-koblenz.de

Abstract

We presentsemantic management of Web Services as a
paradigm that is located between the two extremes of cur-
rent Web Services standards descriptions and tools (WS*)
and Semantic Web Services. On the one hand, WS* does not
have an integrated formal model incurring high costs for
managing Web Services in a declarative, but mostly man-
ual fashion. On the other hand, the latter aims at the formal
modelling of Web Services such thatfull automation of Web
Service discovery, composition, invocation, etc. becomes
possible — thereby incurring unbearably high costs for
modelling. Semantic management of Web Services trades off
between the two extremes. Based on a set of use cases, we
identify who benefits from what kind of semantic modelling
of Web Services, when and for what purposes. We arrive
at a scheme that is comparable to model driven engineer-
ing (MDE), but which is more powerful and not restricted
for use at compile time. In addition, the use cases also de-
termine requirements of our semantic modelling leading us
to a Core Ontology of Services. We present how the core on-
tology is used in an implemented prototype.1

1. Introduction

Different Web Service standards, WS*, factorize Web
Service management tasks into different aspects, such as in-
put/output, workflow, or security. The advantages of WS*
are multiple and have already benefited some industrial
cases. WS* descriptions are exchangeable and developers
may use different implementations for the same Web Ser-
vice description. The disadvantages of WS*, however, are
also visible, yet: Even though the different standards are
complementary, they must overlap and one may produce
models composed of different WS* descriptions, which are
inconsistent, but do not easily reveal their inconsistencies.

1 Maintained at http://kaon.semanticweb.org/server

The reason is that there is no coherent formal model of WS*
and, thus, it is impossible to ask for conclusions that come
from integrating several WS* descriptions. Hence, discov-
ering such Web Service management problems or asking
for other kinds of conclusions that derive from the integra-
tion of WS* descriptions remains a purely manual task of
the software developersaccompanied by little to no formal
machinery.

Researchers investigating Semantic Web Services have
clearly articulated these shortcomings of WS* standard-
izations and have been presenting interesting proposals to
counter some of them [5]. The core of their proposals lies
in creating semanticstandards. Their principal objective is a
wide-reaching formalization that allows full automationof
the Web Service management tasks such as discovery and
composition. Again, the potential advantages are obvious;
the disadvantages, however, are also apparent: Neither is it
clear, what kind of powerful machinery could constitute a
semantic model that would allow for full automation, nor
does it appear to be possible that real-world software de-
velopers could specify a semantic model of Web Services
that would be fine-grained enough to allow for full automa-
tion anytime soon.

Therefore, we postulate that semanticmanagement of
Web Services should not try to tackle full automation of all
Web Service management tasks as its objective. We claim
that the full breadth of Web Service management requires
an understanding of the world that is too deep to be mod-
elled explicitly. Instead, we foresee a more passive role for
semantic management of Web Services. One that is driven
by the needs of the developers who must cope with the com-
plexity of Web Service integration and WS* descriptions,
who could use valuable tools for integrating previously sep-
arated aspects, but who rely on their own abstracting under-
standing (at which they arrive with the help of the semantic
tools) of the situation.

It is the purpose of this paper to clarify what kind of
objectives could and should be targeted by semantics mod-
elling of Web services, to describe characteristics of ontolo-



gies that support this task and to present a prototype that
implements this framework.

The kind of objectives that are to be approached are con-
strained by a costs trade-offbetween investing efforts for
managing Web Services and investing efforts for semantic
modelling of Web Services. The costs tradeoff is depicted
qualitatively in Figure 1. The objective of full automation
by semantic modelling will need very fine-grained, detailed
modelling of all aspects of Web Services — essentially ev-
erything that an intelligent human agent must know. Thus,
modelling costsskyrocket at the end of fine-grained mod-
elling. At the other end, where modelling is very coarse and
little modelling facilitates management, costs for managing
distributed systems soar as experiences have shown in the
past. No matter what the exact scale of granularity and costs
are, the qualitative indication of management and modelling
costs such as done in Figure 1 leads to an overall total cost
picture as indicated in the same figure.

Costs

Granularity

of Modelling

Management

Costs

Modelling

Costs

coarse Our

Approach

fine

low

high

Total

Costs

Figure 1. Working Hypothesis

In this paper we elaborate on how to find a good trade-off
between modelling costs by considering user requirements
and management costs by considering available semantic
modelling technology. In order to approach the trade-off
point, we follow the strategy that we first identify promising
use cases for exploiting ‘simple’ semantic modelling (sec-
tion 2). We identify who benefits from what kind of seman-
tic modelling of Web Services, when and for what purposes,
based on the use cases. We then provide a solid, but easily
reusable ontology foundation to minimize modelling costs
and respond to modelling requirements derived from the use
cases (cf. section 3). We describe the rationale underlying
our prototype (cf. section 4), before we tie together these
pieces by an example (cf. section 5). Eventually, we com-
pare to related work and conclude.

2. Use Cases

This section discusses promising use cases for exploit-
ing semantic modelling. They try to approach the trade-off
point between modelling and management cost by identi-
fying who benefits from what kind of semantic modelling
of Web Services, when and for what purposes. In particu-
lar, each use case will answer the following questions:

Question 1 Who uses the semantic descriptions of Web
Services?

We see two major groups of users constituted by (i) soft-
ware developers and (ii) administrators. These two groups
of users have the need to predict or observe how Web Ser-
vices interact, (might) get into conflict, (might) behave, etc.
It will be very useful for them to query a system for se-
mantic management of Web Services that integrates aspects
from multiple WS* descriptions — which has not been pos-
sible so far, but is now allowed by the approach and sys-
tem we present here. As a third ‘group of users’, we fore-
see that developers program dynamically using inspection-
like mechanisms to query and modify semantic descriptions
in order to allow for autonomous control of Web Service
interaction. Thus, running Web Services constitute a third
group.2

Question 2 What does he/she/it use the semantic descrip-
tions of Web Services for?

There is a large number of use cases where the integra-
tion of semantic descriptions may help the developer or ad-
ministrator. Hence, the list below is neither exhaustive nor
are the individual use cases mutually exclusive. The reader
may note that it is germane to semantic descriptions to state
what there is and not how it is to be combined and what is
its sole purpose.

Question 3 When does he/she/it use the semantic descrip-
tions of Web Services?

We consider three different stages, viz. development
time, deployment time and runtime.

Question 4 Which aspects should be formalized by our on-
tology?

One the one hand, we want to be able to automate man-
agement tasks covering a broad range of aspects (like secu-
rity, policies, interface descriptions etc.). On the other hand,
the complexity of the ontology has to be kept small to avoid
overburdening the developer. The use cases serve as mod-
elling requirements also for building a suitable management
ontology in section 3.

2 Our approach here focuses on the user groups of developers and
administrators. We consider the autonomous exploitation by pro-
grammes rather a, desirable, side effect of our approach.



2.1. Analyzing Message Contexts

Message passing plays thecentral role for Web Services.
A message sent to a component can in turn trigger sev-
eral other messages being sent out on behalf of the initial
message. Messages may carry a context with information
about the sender, the sender’s credentials, or the message’s
transactional context. During the deployment of a compo-
nent or flow, the administrator makes important choices as
to how messages are propagated. These include whether the
sender information is carried along or whether the new mes-
sage is sent on behalf of a new user (also called the run-
as paradigm). Similar choices are made with respect to the
transactional settings. Components and flows can choose to
always open a new transaction, require a prior transactional
context, or open a new transaction when needed. In a large
network of direct and indirect invocations, it is crucial to
be able to detect configuration errors, such as a situation
where a component switching to user context X and call-
ing Y, which does not have user X in its access control list.

Who: Administrator
What for: Plausibility check on deployment settings
When: Deployment time
Which aspects:Service profile

2.2. Selecting Service Functionality

As more and more services become available, develop-
ers will need some tool support in browsing and selecting an
appropriate service. The canonical approach to this task is a
taxonomic categorization of services according to their ca-
pabilities. Naturally, searching for services of a certain ca-
pability class C should also yield all services classified as
instances of subclasses of C.

Who: Developer
What for: Service discovery and selection
When: Development time
Which aspects:Service taxonomy

2.3. Policy Matching

Policies play an increasing role, as demonstrated by the
recent WS-Policy proposal. The idea of a policy is to lay
out general rules and principles for service selection. Thus,
rather than deciding whether an invocation is allowed on a
case by case basis at runtime, one excludes services whose
policy violates the local policy at development time. The
major benefit is that policies can be specified declaratively.

Since policies can change dynamically, one can also
imagine a scenario, where a service bus matches policies
during runtime in order to select an appropriate provider

out of a pool of competitors. At this point, the reader may
note, that the current policy-related proposals are not based
on a uniform logical framework. We believe that this would
make the realization of a policy engine and the integration
of the various approaches from the areas of privacy, secu-
rity, or access control much easier.

Who: Developer, System
What for: Excluding unsuitable services
When: Development and runtime
Which aspects:Policies

2.4. Detecting Loops in the Invocation Chain

Web Services based applications usually make use
of asynchronous messaging, bringing upon quite com-
plex interaction protocols between business partners. Cur-
rent workflow design workbenches only visualize the local
flow and leave the orchestration of messages with the busi-
ness partners up to the developer. We believe that enough
information is available in machine-readable format such
that a tool can assist the developer in this task. For in-
stance, the structure of the local flow can be combined
with publicly available abstract flows of the partners in or-
der to detect loops in the invocation chain that would lead
to non-termination of the system.

Who: Developer
What for: Code debugging
When: Development time
Which aspects:Workflow information (plans)

2.5. Incompatible Inputs and Outputs

Type checking is not as straightforward anymore using
loosely coupled services operated by a large number of or-
ganizations. Furthermore, the interpretation of a B2B term
such as ‘price’ might be different, even though syntactically
it refers to an agreed-upon XML Schema type. For instance,
different partners might have different assumptions about
the currency and taxation details. A system, which automat-
ically compares communication inputs and outputs accord-
ing to a more detailed model, will help to prevent unex-
pected behavior in a system.

Who: Developer
What for: Code debugging
When: Development time
Which aspects:Interface description



2.6. Relating Communication Parameters

This use case is again motivated by e-business policies.
Assume a policy states that the entire supply chain must
consist of ISO 9000 certified partners. Enforcing this pol-
icy requires correlating communication paths with informa-
tion about the organizations operating the communication
endpoints. Another example would be a policy stating that
confidential information should only be sent across a secure
communication channel. In this case, knowledge about mes-
sage payload types such as credit card information must be
connected with the properties of the underlying transport.

Who: Developer, Administrator
What for: Plausibility check on flow
When: Development and deployment time
Which aspects:Service profile

2.7. Change Management

A system no longer being under the tight control of a
single organizational unit will definitely be prone to ser-
vice versioning issues. Updating a single component al-
ready requires close cooperation between the parties in-
volved and this will without a doubt be much harder in
Web Services based applications. Consequently, the respec-
tive process composition tool suite should provide support
for monitoring the providers’ service interface definitions.

Who: Developer
What for: Code debugging
When: Development time
Which aspects:Interface description

2.8. Aggregating Service Information

Services will often be implemented based on other ser-
vices. A service provider publishes information about its
service. This might include service level agreements indi-
cating a guaranteed worst-case response time, the cost of
the service, or average availability numbers. The service
requestor, in this case a composite service under develop-
ment, can collect this information from the respective ser-
vice providers. In turn, it offers a service and needs to pub-
lish similar numbers. We envision a tool that supports the
administrator by providing a first cut of this data by aggre-
gating the data gathered from external providers.

Who: Administrator
What for: Suggestion for deployment parameters
When: Deployment time
Which aspects:Quality of service

2.9. Quality of Service

While the previous use case was based on data gathered
from service providers, one might want to obtain own statis-
tics on the reliability and availability of business partners’
IT infrastructure. Assuming the system is aware of potential
endpoints implementing a required service, these endpoints
can be pinged regularly. If an actual request arrives, aggre-
gated availability information can be used to direct subse-
quent requests to one or the other third party service.

Likewise, a provider needs to make sure it provides an
adequate service level for its customers. In case of perfor-
mance bottlenecks, it might have to make an educated de-
cision on which jobs to grant higher priority and which job
to drop or decline. Existing service level agreements and of
course the respective penalties play an important role here.

Who: Administrator, System
What for: Performance optimization
When: Runtime
Which aspects:Quality of service

3. Ontology

The use cases we presented in the previous section in-
troduced modelling requirements: In order the realize se-
mantic management of Web services we have to model ser-
vice profiles, service taxonomies, policies, workflow infor-
mation, interface descriptionsas well as quality of service
information.

Available semantic modelling technologies pro-
vide a powerful means that support us here: ontologies.
They formalize concepts and concept relationships (asso-
ciations) very similar to conceptual database schemata or
UML class diagrams. However, ontologies typically fea-
ture logic-based representation languages that come with
executable logic calculi. The calculi allow us to rea-
son and query at runtime [10].

For semantic management of Web Services we need to
formalize an ontology that meets the aforementioned mod-
elling requirements, thus weaving together aspects from
multiple WS* descriptions. Querying and reasoning will en-
able us to ask for conclusions that come from integrating
several WS* descriptions — e.g. predicting or observing
how Web Services interact, (might) get into conflict, (might)
behave, etc. — what had to be done manually before.

In this section, we present a Core Ontology of Services3

that models all the necessary aspects. Some parts are al-
ready captured by the DOLCE foundational ontology [8],
the Ontology of Plans [3] and the Core Legal Ontology [2].

3 Maintained at http://cos.ontoware.org.



Therefore, our Core Ontology of Services reuses them and
adds the remaining parts like discussed below.

At the heart of the Core Ontology of Services, we find
the Service Management Description that defines sev-
eral sub-descriptions to conquer the complexity and to have
a modular design. Figure 2 sketches the descriptions in an
UML diagram for the sake of readability. The following
paragraphs discuss the sub-descriptions briefly4:

• Information contained in a Service Management
Description may be obtained from several distributed
sources like WSDL and WS-Policy documents, perfor-
mance measurements or code reflection. We thus want
to model Information Source and Age of Informa-
tion for every sub-description. Specializations of the
Service Management Description may be put into
a service taxonomy(cf. use case 2.2). It also allows to
store typical service profileinformation as required by
use cases 2.1 and 2.6.

• We reused the Core Legal Ontology (CLO) [2] for the
Policy Description. The CLO concentrates on the on-
tological nature of the legal domain, i.e. the entities
of the mental, social, or properly legal world, and the
constraints that legal norms are supposed to gener-
ate over those worlds. Its basic concepts and associ-
ations meet our requirements of expressing Web Ser-
vice policies (cf. use case 2.3) and they are general
enough to harmonize existing efforts like WS-Policy
or XACML that all introduce their own vocabulary. It
also introduces theories of satisfaction that can be ex-
ploited later to match policies. Basically, the Policy
Description talks about Users, their rights towards
particular Tasks and Constraints on these Tasks. A
Service Management Description can have several
Policy Descriptions to reflect alternatives.

• The Interface Description corresponds to the mod-
elling requirement of the same name and thus to use
cases 2.5 and 2.7. The main concept is Operation
which is associated with an arbitrary number of Com-
putational Inputs and Computational Outputs. All
are Functional Roles which are played-by Informa-
tion Objects and Datatypes (a special kind of Infor-
mation Object), respectively.

• The Quality of Service Description groups together
service and runtime information. It meets the mod-
elling requirement to express quality of servicein-
formation as introduced in use cases 2.8 and 2.9. At
the moment we consider Maximum Duration, Worst-
case Response Time, Cost and Average Availabil-

4 Parts of the ontology are written in sans serif, references to the mod-
elling requirements introduced in section 2 are written in italics.

ity but also Certificates that model information about
ISO 9000 conformity, for instance.

• Components of the Plan Description are mostly
taken from the Ontology of Plans [3]. It intro-
duces the notion of Task with according specializa-
tions (case, branching, synchronization, concurrency,
cycling, etc.), successor and predecessor as-
sociations between Tasks. It provides a way of
modelling workflow information(cf. use case 2.4)
platform-independently and allows to conceptu-
ally harmonize efforts like BPEL that introduce their
own vocabulary.

4. Prototype

After formalizing the Core Ontology of Services we pro-
pose a way to implement semantic management of Web Ser-
vices. On the one hand, we have to think about who or what
will provide semantic descriptions of Web Services. On the
other hand, there are several target platforms where the se-
mantic technology can be integrated. In this section, we
answer these questions leading us to our prototype — the
KAON SERVER.

Harvesting semantic descriptionsThe amount of semantic
descriptions that are provided manually by the software de-
veloper must be as small as ever possible, because software
developers will not be very willing to adopt a large new
paradigm at a time when they are just getting used to WS*.
In our prototype we harvest semantic descriptions from pro-
gramme code and modelling tools already in use. They are
obtained from several distributed sources like WSDL and
WS-Policy documents, performance measurements or code
reflection.

Platform for semantic managementThere are several obvi-
ous target platforms to integrate the semantic management
of Web Services, e.g. enterprise application management
tools like IBM Tivoli, software IDEs like Eclipse, workflow
engines like Microsoft’s Biztalk or Application Servers. For
our prototype we have chosen the latter option because
of two reasons: a) Application Servers come in handy as
industry-strength Web Services based applications are of-
ten realized with Application Servers anyway, b) semantic
technologies are already integrated in our ontology-based
Application Server, called KAON SERVER5. It is based on
the open-source Application Server JBoss6 and adds ontol-
ogy infrastructure in order to reason with software compo-
nents like EJBs or Servlets [6, 7].

ImplementationThe approach we follow is non-invasive
and does not intervene in the existing infrastructure, i.e. ex-

5 Available at http://kaon.semanticweb.org/server
6 http://www.jboss.org



Service Management Description
-Information Source
-Age of Infromation

Interface Description

-Information Source
-Age of Information
-Cost
-Duration
-Worst-case Response Time
-Average Availability
-...

Quality of Service Description

-Information Source
-Age of Information

Policy Descriptioni

-Information Source
-Age of Information

Plan Description

11

1
1

1
1

1 *

Task

component

Operation

Computational
Input

Computational
Output

component

1
*

1
* described-by

Task

Constraint

Object

User

component

component

component

component

right/obligation
towards

requisite
for

anakastic duty
towardssuccessor

Case Branching Concurrency

...

...

...

component

predecessor

Information Object

played-byplayed-by

Figure 2. Sketch of the Core Ontology of Services

isting WS* descriptions are still fed into their correspond-
ing engines for security, transaction or workflow. It is still
necessary for the developer to familiarize and work with
WS*. However, WS* descriptions are harvested (i.e. parsed
and integrated) into the ontology what enables the developer
to query and reason with a harmonizing conceptual model
spanning several aspects.

Inference

Engine

Ontology

KAON SERVER

Metadata Collector

Other Components

Application logic

Admin

Console

Developer/

Administrator

...

Monitoring

WSDL BPEL WS-Policy WS-MEX

Figure 3. Integration in KAON SERVER.

Figure 3 illustrates the general idea. The KAON
SERVER features an Inference Engineto reason with soft-
ware components like EJBs or Servlets. Its actual On-
tology is an applied version of the Core Ontology of
Software Components. We extend it by the Core On-
tology of Services to formalize relevant management
aspects of Web Services and the relationship to soft-

ware components. The integration of ontologies is feasible
because all of them feature the same ontological founda-
tion in the form of DOLCE.

We assume a web application being built by Servlets or
EJBs that in turn invoke a number of Web Services, i.e. they
contain the “wiring” Application Logic. A new Metadata
Collector component harvests WSDL, BPEL or WS-Policy
documents of used Web Services. We might also leverage
WS-MetaDataExchange (WS-MEX) — a proposal that en-
riches each Web Service with standardized methods for re-
trieving WSDL, XML-Schema and WS-Policy information.
The component integrates the data into the ontology. Run-
time information stemming from the Monitoring compo-
nent can be integrated, too. The developer might query the
inference engine by using the Admin Consolewhich is es-
sentially an ontology browser with query interface.

5. An Example

As an example for a conclusion derived from both a
BPEL and WS-Policy description, consider the following
case. Let’s assume a web shop realized with internal and ex-
ternal Web Services composed and managed by a BPEL en-
gine. After the submission of an order, we have to check
the customer’s credit card for validity depending on the
credit card type (VISA, MasterCard etc.). We assume that
credit card providers offer this functionality via Web Ser-
vices. The corresponding BPEL process checkAccount
thus invokes one of the provider’s Web Services depending
on the customer’s credit card. The example below shows a
snippet of the BPEL process definition.



...
<process name="checkAccount">
<switch ...>
<case condition=

"getVariableData(’creditcard’)
=’VISA’">

<invoke partnerLink="toVISA"
portType="visa:CCPortType"
operation="checkCard"...>

</invoke>
</case>
<case condition=

"getVariableData(’creditcard’)
=’MasterCard’">

<invoke partnerLink="toMastercard"
portType="mastercard:CCPortType"
operation="validateCardData"...>

</invoke>
</case>

...
</switch>

</process>
...

Suppose now that the Web Service of one credit card
provider, say MasterCard, only accepts authenticated invo-
cations conforming to Kerberos or X509. It states such poli-
cies in a corresponding WS-Policy document like the one
sketched below. The invocation will fail unless the devel-
oper ensures that the policies are met. That means the de-
veloper has to check the policies manually at development
time or has to implement this functionality to react to poli-
cies at runtime.

...
<wsp:Policy>
<wsp:ExactlyOne>
<wsse:SecurityToken>
<wsse:TokenType>

wsse:Kerberosv5TGT
</wsse:TokenType>

</wsse:SecurityToken>
<wsse:SecurityToken>
<wsse:TokenType>

wsse:X509v3
</wsse:TokenType>

</wsse:SecurityToken>
</wsp:ExactlyOne>

</wsp:Policy>
...

Since process and policy information can be harvested
and integrated in our ontology, checking for the existence of
external policies boils down to a simple query. An external
service invocation is represented by a successor associa-

tion between two Tasks where the second is described-by
another Service Management Description (SMD). The
simplified formula below grasps this knowledge.

∀smd1, smd2, t1, t2 : externally invokes(smd1, smd2)
← SMD(smd1) ∧ SMD(smd2) ∧ Task(t1) ∧ Task(t2)
∧ component(smd1, t1) ∧ component(smd1, t2) ∧
successor(t1, t2) ∧ described by(t2, smd2)

Consequently, the developer could employ the query be-
low to find out whether an external service requires compli-
ance with a certain policy. The result of the query yields all
smd that externally invokes services with a Policy De-
scription (PD) attached. Without our approach the devel-
oper would have to collect and check this information man-
ually by analyzing BPEL and WS-Policy documents.

∀smd :← externally invokes(smdlocal, smd) ∧
SMD(smdlocal) ∧ ∃x : component(smd, x) ∧ PD(x)

As we may recognize from this small example, it is desir-
able to pose a query rather than manually checking a com-
plex set of process definitions. We can think of more sophis-
ticated examples where we query for particular policy con-
straints or where we have large indirect process cascades. In
the latter case, it would suffice to declare the successor as-
sociation as transitive and rule and query above can remain
unchanged :

∀t1, t2, t3 : successor(t1, t3)←
successor(t1, t2) ∧ successor(t2, t3)

6. Related Work

On the one hand, developers have to face the multi-
tude of WS* specifications like WSDL, WS-Policy, WS-
Coordination, WS-Transaction or BPEL. Because of their
sheer number and disjointness, managing Web Services
with WS* creates high costs for the developer. There is no
coherent formal model of WS* and there are no means to
ask for, possibly undesirable, conclusions that arise from in-
tegrating several WS* descriptions.

On the other hand, several semantic standardsare aris-
ing at the moment in a field of research that is often cir-
cumscribed as “Semantic Web Services” [5]. Unlike our ap-
proach, they aim at full automation of Web Service invoca-
tion, discovery and composition. However, common ontol-
ogy languages are typically not expressive enough to reach
these objectives. E.g. [5] uses a description logic which is
extended by Golog to automate planning tasks. Golog is a
high level programming language built on top of the sit-
uation calculus. In addition, the objective of full automa-
tion by semantic modelling will need very fine-grained, de-
tailed modelling of all aspects of Web Services leading to
high modelling costs. Our approach is located between the



two extremes of WS* and semantic standards and finds a
good trade-off between modelling and management costs.
The following paragraph discusses some of the semantic ef-
forts.

Two approaches try to incorporate semantic technology
in UDDI, for instance. The first, [12], proposes a taxonomy
support for semantics in the registry. The primary aim is to
allow for a better discovery and matchmaking by leveraging
the semantic descriptions. The second tries to achieve simi-
lar goals by incorporating OWL-S profiles into the UDDI
registry [9]. OWL-S [11] is one of the first core ontolo-
gies explicitly aiming at automatic discovery, automatic in-
vocation, automatic composition and interoperation as well
as automatic execution of Web Services. The Web Ser-
vice Modelling Ontology (WSMO) [1] has goals similar to
OWL-S. However, it additionally defines an Execution En-
vironment (WSMX) for the dynamic discovery, selection,
mediation, invocation and inter-operation of Semantic Web
Services. [4] take into account that most semantic efforts
have been disconnected from the emerging WS* standards.
Hence, they propose a “bottom-up” approach of enriching
BPEL by semantics. However, they also try to enable auto-
mated service discovery, customization, and semantic trans-
lation.

Our approach is similar to the way that model driven
engineering (MDE) tackles a problem, viz. by abstracting
modelling of some parts of an architecture, while retaining
full control by the software engineer. MDE/MDA and se-
mantic management however differ, because the latter con-
stitutes a precise, formal, executable model that may be ex-
ploited not only at compilation time (like MDE/MDA), but
also for hot deployment or during runtime.

Finally, we discussed the semantic management of soft-
ware components in an Application Server in [6]. However,
this work focusses on reusable ontology design to reduce
modelling costs. Although the problems are similar, the sit-
uation here is more complex due to the mere fact of distri-
bution what entails network delays, reliability, trust or addi-
tional security issues.

7. Conclusion

We have shown in this paper what semantic management
of Web Servicesmay contribute to Web Service manage-
ment in general. We have described use cases for seman-
tic management of Web Services that can be realized with
existing technology and that provide immediate benefits to
their target groups, i.e. software developers and administra-
tors who deal with Web Services. Through the use cases we
have shown that semantic descriptions may play a fruitful
role supporting an integrated view onto Web Service defi-
nitions in WS*. At the basis of the integration we have put
the Core Ontology of Services.

While we have implemented a prototype as proof-of-
concept of our approach, in the long run the viability and
success of semantic descriptions will only be shown in their
successful use of integrated development and runtime envi-
ronments. The development of the corresponding paradigm
of Semantic Management of Web Services through use
cases, ontologies, prototypes and examples is an important
step into this direction.

AcknowledgementsThis work is financed by WonderWeb,
an EU IST project, by SmartWeb, a German BMBF project
and by ASG, an EU IST project. We are indebted to Aldo
Gangemi, LOA, Rome, for the hints on the ontology.

References

[1] D. Fensel and C. Bussler. The Web Service Modeling Frame-
work WSMF. Electronic Commerce: Research and Applica-
tions, 1:113–137, 2002.

[2] A. Gangemi, , M.-T. Sagri, and D. Tiscornia. A Constructive
Framework for Legal Ontologies. Internal project report, EU
6FP METOKIS Project, Deliverable, 2004.

[3] A. Gangemi, S. Borgo, C. Catenacci, and J. Lehmann. Task
taxonomies for knowledge content. Metokis deliverable d07,
Jun 2004.

[4] D. J. Mandell and S. McIlraith. Adapting BPEL4WS for the
Semantic Web: The Bottom-Up Approach to Web Service
Interoperation. In 2nd Int. Semantic Web Conference, vol-
ume 2870 of LNCS, pages 227–247. Springer, 2003.

[5] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic Web Ser-
vices. IEEE Intelligent Systems, 16(2):46–53, Mar 2001.

[6] D. Oberle, A. Eberhart, S. Staab, and R. Volz. Developing
and managing software components in an ontology-based
application server. In 5th International Middleware Confer-
ence, LNCS. Springer, 2004.

[7] D. Oberle, S. Staab, R. Studer, and R. Volz. Supporting Ap-
plication Development in the Semantic Web. ACM Transac-
tions on Internet Technology (TOIT), 4(4), Nov 2004.

[8] A. Oltramari, A. Gangemi, N. Guarino, and C. Masolo.
Sweetening ontologies with DOLCE. In Ontologies and the
Semantic Web, 13th Int. Conference, EKAW 2002, Proceed-
ings, 2002.

[9] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara.
Importing the Semantic Web in UDDI. In CAiSE 2002 Inter-
national Workshop, WES 2002, pages 225–236, 2002.

[10] S. Staab and R. Studer. Handbook on Ontologies. Interna-
tional Handbooks on Information Systems. Springer Verlag,
Heidelberg, 2004.

[11] The DAML Services Coalition. OWL-S 1.0 draft re-
lease. http://www.daml.org/services/owl-s/
1.0/, Dec 2003.

[12] M. Voskob. UDDI Spec TC V4 Requirement - Taxon-
omy support for semantics. OASIS, 2004. http://www.
oasis-open.org.


