A SPARQL engine for crowdsourcing query processing
using microtasks

Maribel Acosta
Institute AIFB
Karlsruhe Institute of
Technology, Germany

maribel.acosta@kit.edu

Fabian Flock
Institute AIFB
Karlsruhe Institute of
Technology, Germany

fabian.floeck@kit.edu

ABSTRACT

There are queries in Linked Data processing that cannot always
be optimally answered through traditional data base management
techniques. More often than not answering such queries relies on
information that is incomplete, incorrect, or fuzzily specified; and
on mere approximations of computationally advanced functional-
ity for matching, aggregating, and ranking such information. As a
means to deal with these limitations, we propose CrowdSPARQL,
a novel approach to SPARQL query answering that brings together
machine- and human-driven capabilities. We define extensions of
the SPARQL query language and the Linked Data vocabulary VoID
in order to capture those aspects of Linked Data query processing
that per design are likely to benefit from the use of human-based
computation. Based on this information, and on a set of statistics
gathered during the use of our system, CrowdSPARQL is able to
decide at run time which parts of a query are going to be evaluated
using automatic query execution techniques, and which will be an-
swered by the crowd via a microtask platform such as Amazon’s
Mechanical Turk. We evaluated CrowdSPARQL in a scenario han-
dling a representative subset of tasks that are amenable to crowd-
sourcing - ontological classification, entity resolution and subjec-
tive rankings - on the DBpedia and MusicBrainz data sets, in order
to learn how specific parameters of microtask design influence the
success of crowdsourced query answering.

1. INTRODUCTION

The term "microtask crowdsourcing’ refers to a problem-solving
approach, by which a problem is decomposed into simple tasks that
can be solved largely independently by a distributed group of peo-
ple. Through platforms such as Amazon’s Mechanical Turk' and

"http://www.mturk.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Elena Simperl
Web Science and Internet
Research Group
University of Southampton,
United Kingdom
E.Simperl@soton.ac.uk

Barry Norton
Ontotext AD, Bulgaria

barry.norton@ontotext.org

CrowdFlower” the idea has proven successful in a multitude of sce-
narios, in particular when it comes to the resolution of those kinds
of task which can hardly be tackled in a fully automated fashion.
There are numerous examples of such tasks, from finding and rec-
onciliating information on the Web or in corporate data bases; to
producing, revising, and translating text; transcribing audio con-
tent; and labeling images. Increasingly, crowdsourcing platforms
are also being exploited by researchers, in particular in extension
to automatic methods and techniques addressing the types of tasks
just mentioned, in fields as diverse as Information Retrieval, In-
formation Extraction, Multimedia Processing, and Data Base Man-
agement Systems.

In previous work of ours we proposed a general architecture in
which microtask crowdsourcing becomes an integral part of Linked
Data technology [?, ?]. Within this architecture the core build-
ing blocks that are required to build and run Linked Data applica-
tions, and their decompositions as microtasks, are described declar-
atively. This facilitates the automatic design and seamless pro-
visioning of crowdsourcing functionality that complements those
parts of a Linked Data application that operate primarily in an au-
tomatic fashion. The functionality of established Linked Data tech-
nology components - for instance, RDFication, data curation, data
interlinking and query answering - is expanded with means to in-
teract with microtask platforms such as Mechanical Turk (MTurk)
to post specific HITs (the unit of work on MTurk); assess the qual-
ity of the inputs obtained from the crowd; and exploit the resulting
RDF in a particular application. The interaction with the microtask
platform can occur offline, when crowdsourcing input is being used
to gradually improve the quality of computational techniques, and
online, which may require additional optimizations to predict the
time-to-completion of crowdsourced tasks [?] and the accuracy of
their outcomes [?].

In this paper we present CrowdSPARQL, an implementation of
this hybrid Linked Data architecture for SPARQL query answer-
ing. We define extensions of the SPARQL query language and the
Linked Data vocabulary VoID in order to capture those aspects of
Linked Data query processing that per design are likely to benefit
from the use of human-based computation. Based on this informa-
tion, and on a set of statistics gathered during the use of the query
engine, CrowdSPARQL is able to decide at run time which parts of

http://www.crowdflower.com

a query are going to be evaluated using automatic query execution
techniques, and which will be answered by the crowd via Mechan-
ical Turk.

2. MOTIVATION

There are several reasons why we believe Linked Data query an-
swering could and should be extended into microtask crowdsourc-
ing. A great majority of queries in Linked Data processing cannot
always be optimally answered through traditional data base man-
agement techniques; this situation is the result of a number of fac-
tors, which we will briefly explain in the following.

Two of the primary advantages claimed for exposing data ac-
cording to the Linked Data principles are improvements and uni-
formity in data discovery and integration at Web scale. In the for-
mer case a ‘follow-your-nose’ approach is enabled, wherein links
between data sets facilitate browsing through the Web of Data. At
the technical level previously undiscovered data is aggregated, and
enriches the semantics of known resources (ad-hoc integration), by
virtue of the RDF’s uniform data model. True integration across
this Web of Data, however, is hampered by the ‘publish first, refine
later’ philosophy encouraged by the Linking Open Data movement.
While this philosophy is surely one of the main reasons behind the
impressive growth we have seen in the amount of Linked Data on-
line over the past five years, the quality of this data and of the links
connecting data sets, and the sparsity of the linkage,” is something
that the community is often left to resolve. In particular the gap be-
tween informal browsing and effective queries, which require prop-
erly aggregated data, has been pointed out in recent work.” Despite
promising technology groundwork through standardized represen-
tation formats and access protocols, the actual experience with de-
veloping applications that consume Linked Data soon reveals the
fact that, for many components of a Linked Data applications this
is hardly the case. While this might be understood as a tempo-
rary situation, which could be solved once the technology becomes
more mature, the history of data integration shows that the core task
indicates the opposite. The question of whether two entities are the
same or related is often heavily relying on contextual or domain
knowledge, and thus on human input.

Another aspect of the Linked Data publication process which
leads to undesired effects when applications attempt to consume
the resulting data is the tendency to shift the emphasis from the
classification of resources according to specifically targeted cate-
gories and vocabularies, to the use of generic, broadly purposed
vocabularies, and interlinking of resources using standard proper-
ties such as identity and general relatedness. This implies that more
often than not, when answering a SPARQL query, it is not possi-
ble to infer classification from the properties in used by applying
established reasoning techniques.

A third source of inaccuracy in answering queries over Linked
Data are optional constructs in SPARQL, whose optimal evaluation
requires domain- or application-specific information, which is not
usually contained in the published data sets. The most obvious ex-
ample in this category is ORDER BY and subjective comparisons,
for instance, of multimedia and free-text descriptions. Ranking this
kinds of information, e.g., identifying the best picture or assess-
ing the informativeness of a commentary is something humans are
known to excel at, at least in direct comparison with attempts to
achieve the same in an automatic fashion.

3Recent statistics over the Linked Open Data Cloud confirm that
only 10% of the resources are effectively interlinked,*

5http ://www.semantic-web.at/index.php?id=
l&subid=57&action=resource&item=3217

Finally, the actual scenario we are addressing in CrowdSPARQL
is per design a good fit for microtask crowdsourcing, as we ex-
plained in more detail in [?]. The types of tasks a SPARQL query
engine has to handle have a repetitive character, iterating over rows
or tuples of the same kind, and processing these in a similar fash-
ion. As such, the tasks can be broken down into smaller units (or
HITs, using Mechanical Turk terminology) that can be executed in
parallel by independent actors. Means to automatically control and
assess the quality of the crowd-produced data can take into account
existing golden standards and benchmarks, but also automatic al-
gorithms and manually curated data [?].

3. RELATED WORK

Combining data management technology and microtask crowd-

sourcing has recently received some attention in the area of rela-
tional data bases [?]. Approaches such as CrowdDB [?],
TurkDB [?], Deco [?], and Qurk [?] propose extensions of the SQL
language, as well as new query processing techniques to master
the challenges arising when relying on less deterministic compu-
tational resources such as humans in environments with clear con-
straints in terms of performance and accuracy. These hybrid data
base systems have been instrumental in assessing the feasibility of
the general idea of crowdsourced data management; they provide
preliminary evidence about how specific design parameters of a mi-
crotask crowdsourcing experiment can influence costs, quality, and
response time. Our work applies the lessons learned through this
complementary field of research to a scenario that exhibits formally
different characteristics in terms of the ways data is produced and
consumed.

Query answering over Linked Data operates in an open, dis-
tributed environment; data is published in a decentralized fashion,
thus inherently tending to be noisier and more heterogeneous than it
is the case in traditional data bases; data sets may contain inconsis-
tent information, especially when used in combination; their con-
tent will often overlap, hence the necessity of links between data
sets identifying identical or related entities to facilitate integration.
All these aspects raise different challenges for CrowdSPARQL, not
necessarily in terms of the actual tasks the crowd is confronted with
- these are similar to the ones the data base systems mentioned ear-
lier tackle - but mostly with respect to the types of optimizations the
resulting hybrid query engine must apply in order for the overall ap-
proach to create real added value in comparison to fully automatic
query processing techniques.

This holds foremost for the number of questions which could
be theoretically subject to crowdsourcing. For most real-world
query answering problems over the Linked Data Cloud this num-
ber quickly reaches orders of magnitude of tens if not hundreds
of HITs. Means to filter the problem space, and select only those
questions which are likely to truly improve the quality of the query
results at reasonable costs thus become essential. A more or less
straightforward way to deal with this issue is to apply automatic
algorithms that generate potential candidates for the solution to be
sought by the crowd - for instance, a data interlinking algorithm
identifying links between corresponding entities - but the combina-
tion between such algorithms and SPARQL query engines has not
yet been investigated at full length in the Linked Data community.
In fact, we expect our research to be applicable in this area as well,
as we will provide insights into how specific parameters of such
algorithms - most prominently the result accuracy - can play a role
in the generation of query plans and in query optimization.

A second important challenge for crowdsourced Linked Data
query answering is the evaluation and prediction of the quality and
timeliness of answers. In order to be able to combine intermedi-

ary results produced by the crowd, by conventional SPARQL query
engines, or, why not, by additional tools generating candidate solu-
tions for specific tasks such as data interlinking or ontological clas-
sification, we need methods to analyze trade-offs between quality
and time considerations.

As we progress towards a fully fledged implementation for a
crowdsourcing-enabled SPARQL engine, it will be interesting to
learn more about this design space in its concrete Linked-Data-
specific instantiations. In addition we also plan to replicate some
of the experiments and optimization heuristics proposed in crowd-
sourced data base research to actual data sets, as the evaluations the
works cited describe is mostly based on synthetic data constructed
for the purpose of the experiments. By contrast, our implementa-
tion has been tested in a real-world scenario, on data as it is made
available on the Web in the Linked Open Data Cloud.

Moving towards a more technically oriented level, by compari-
son to the relational data base systems discussed earlier,
CrowdSPARQL specifically targets graph-based representation for-
mats and protocols, in particular Linked Data, and proposes the us-
age of the same technologies, extensions of SPARQL and VoID,
as well as SPARQL patterns and SPIN,® to induce crowdsourcing
functionality to Linked Data query processing. While the idea of
declarative data and task descriptions has also been proposed else-
where [?, ?, ?], the added value of CrowdSPARQL is that is does
not introduce new languages or technologies, and can take into ac-
count the semantic properties of the application data and of the task
descriptions, which can be inferred automatically or collected as
the system is in use.

The inclusion of commonly-used predicates with well-established
human-browsable representations (rdfs:label,
rdfs:comment, foaf:depiction,wgs84:1lat,

wsg84 : long, etc.) in such SPARQL-based task descriptions means

that tasks can be given HTML-based representations simply based
on existing technology.” This is an advantage of the use of explicit,
shared semantics in the encoding of these data sets.

In addition, the solution we are proposing is equally applicable to
any data management system, independently of whether it operates
on Linked Data or not; the usage of semantic technologies guaran-
tees a flexible and efficient management of such hybrid technical
workflows, where human and computational intelligence offered
through a multitude of services and platforms needs to be seam-
lessly interwoven.

A second category of related approaches focuses on a specific
type of task, also relevant for Linked Data query answering. Most
work in this space has concentrated on entity linking or resolutions,
with systems such as ZenCrowd [?] and CrowdER [?] providing
interesting optimizations along different dimensions such as qual-
ity assurance and resource management. These ideas could be eas-
ily integrated in a future version of CrowdSPARQL customized for
those specific scenarios - for instance, ZenCrowd shows how prob-
abilistic reasoning can be used in combination with paid crowd-
sourcing in order to improve the quality of entity extraction and
linking on a corpus of news articles. Microtask crowdsourcing has
shown to be feasible for several other types of scenarios related to
semantic technologies. CrowdMAP [?] looks into how the pre-
cision and recall of existing ontology alignment algorithms could
be enhanced using human labor leveraged via CrowdFlower. Their
experiments give insights into the usage of this alternative micro-

®The idea of using SPIN to reduce the number of questions sent
to the crowd based on intermediary results already received in the
crowdsourcing process is out of the scope of this paper, and was
briefly introduced in [?].

"See also http://km.aifb.kit.edu/sites/spark/.

task platform, which offers more advanced means for the assign-
ment of workers to tasks and quality control than the Mechanical
Turk. Eckert et al. have looked into the question of ontological
classification via the crowd, however not in the context of SPARQL
query answering. They re-construct a basic ontology, essentially a
class hierarchy, in the philosophy domain using Mechanical Turk;
besides insights into the means they applied to reduce spam and
improve workers’ productivity, their work also confirms the use-
fulness of such generic labor markets for tasks and domains which
are further away from the common scenarios to which, say, MTurk
is known to be generally applicable: looking for simple pieces of
information, image labeling and alike.

Last, but not least, there is an increasing body of research avail-
able that looks into methods and techniques to improve worker pro-
ductivity and HITs design, with the most promising findings be-
ing published at the annual HCOMP workshop.® These results are
complementary to our work, as they crowdsourcing-specific opti-
mizations rather than data management-related ones.

4. MAIN CONTRIBUTIONS

To the best of our knowledge, this paper introduces the first hy-
brid query engine over Linked Data that is able to execute SPARQL
queries as a combination of machine and human-driven function-
ality. We defined an architecture for SPARQL query answering
which supports microtask crowdsourcing features as a first-class
computational component which aims to enhance existing Linked
Data sets at query processing time, thus truly implementing the
“pay-as-you-go” credo of the Linked data movement. Furthermore,
our experiments provide first insights into the structure and the dy-
namics of such payments. The solution we are proposing is based
on minimal extensions to SPARQL and VoID, and can be extended
with customizations for specific domains and application scenar-
ios. The usage of a declarative approach to data and task manage-
ment enables a flexible integration of human- and machine-driven
components; in addition, it considerably simplifies the generation
of HTML-based HITs interfaces, and the publication of the (val-
idated) crowd contributions as Linked Data. Last, but not least,
through our experiments we provide insights into which charac-
teristics of microtask crowdsourcing are instrumental in using this
novel approach to computation in an efficient manner.

5. OUR APPROACH

CrowdSPARQL is a crowdsourcing-enabled SPARQL engine. It
can (i) identify those parts of a SPARQL query, which should be
subject to human-computation services; (ii) create hybrid query
plans taking into account performance estimates of these services,
and (iii) generate HTML interfaces of Human Intelligence Tasks
that are posted to a microtask platform taking into account the
most appropriate configurations in terms of payment model, work-
ers expertise, answer redundancy, and quality assurance techniques
to achieve optimal results with respect to both costs and execu-
tion time. An important aspect of any crowdsourcing experiment
is quality control, as the requester of a task ideally expects to be
able to identify accurate crowd answers with as little manual effort
as possible. As such, CrowdSPARQL realizes a series of differ-
ent methods to evaluate human contributions, identify spammers
and low-effort workers, and compare experiments results with pre-
defined gold standards and other quality benchmarks.

Figure ?? depicts the CrowdSPARQL architecture. It consists
of two core components: the SPARQL query engine that automat-

8See http://www.humancomputation.com/

ically retrieves information from Linked Data via SPARQL end-
points, and the human-computation engine that handle the crowd-
sourcing parts submitted as microtasks to a crowdsourcing plat-
form.

SPARQL Query

SPARQL query engine ««m :
B s A s S - s
4 SPARQL 1.1 1 =

Bushy hybrid plan

(oo) o ommi)| mcnr Y1 — 8.

Crowdsourcing engine
_____________ I Human
\ input

atalog/ .'
Statistic; 1
N—F/

HIT validator
1
N— 1 /HIT SPARQL patterns
1 HIT designer] E>[
\

<
o
]
2,
o
>
o
=
\\3_

N

Figure 1: CrowdSPARQL architecture

When a SPARQL query is issued, the query decomposer first
identifies which parts of the query will be handled through human
computation, and then selects the Linked Data sets, in which the
rest of the query should be evaluated. A catalog stores information
about available SPARQL endpoints and VoID descriptions of data
sets. We propose an extension to VoID in order to define the classes
and properties of the data sets, which the Linked Data application
developer expects to be commonly crowdsourced. This informa-
tion, specified at application design time, is used to decompose the
query. The specification of the model thus created is based on stan-
dard SPARQL 1.1, grouping the triple patterns in sub-queries using
SERVICE blocks. The CrowdSPARQL optimizer combines the
automatic and crowdsourcing sub-queries in a bushy-tree fashion
to reduce the number of intermediate results, and produces a hy-
brid query plan. The executor evaluates the automatic sub-queries
against the selected SPARQL endpoints, and invokes the human-
computation engine to solve the remaining parts of the original
query via microtasks. Additionally, the executor implements adap-
tive physical operators [?] to join the intermediate outcome. On the
crowdsourcing side, the HIT designer creates specific types of tasks
to solve the crowdsourced sub-queries, described via SPARQL pat-
terns, and sets up the parameters to execute the microtasks taking
into account the accuracy, time and cost constraints of the applica-
tion. As mentioned earlier, in previous work of ours [?] we ana-
lyzed the architecture for applications consuming Linked Data as
suggested in a recent book on the topic in [?] to identify candidate
components that can be feasibly approached through crowdsourc-
ing. Our system implements a subset of the corresponding tasks,
namely ontological classification, entity resolution, and ordering.
The remaining tasks are mainly related to labeling, translation and
curation, and are planned to be integrated into a future release of
the engine. For each type of task, the Ul (user interface) designer
produces HTML forms based on the SPARQL descriptions of the
tasks, and submits the groups of HITs to the microtask platform.
Input from the crowd is processed by the HIT validator, which im-
plements quality metrics to accept or reject the assignments, and
stores the curated answers in the crowdsourced data set repository
as RDF. In the following sections we elaborate on the functionality
of each of the core components of the CrowdSPARQL architecture.

5.1 Extensions to SPARQL and VolD

7
S "‘ ““““““““““““ RDF corTect hufhan input Crowdsourced
[en by

HITs é />§A

In this section, we will formally define the proposed crowdsourcing-

motivated features for the SPARQL query language and the VoID
vocabulary. The basic idea behind these extensions was introduced

informally in previous work of ours in [?]. In the current imple-
mentation of our hybrid query engine, we support an extension of
the ORDER BY operator termed ORDER BY CROWD to enhance
the outcomes of fuzzy comparisons over Linked Data resources.
As mentioned in earlier sections, the best example for such com-
parisons being probably pictorial representations of entities aiming
to identify the most beautiful or the most representative of them, as
perceived by the user.

Definition 1. (Operator ORDER BY CROWD) This operator
consists of a new order modifier CROWD added after the ORDER
BY clause. The extension to the SPARQL grammar looks as fol-
lows:

OrderClause ::= "ORDER’ ’BY’
(OrderCondition + | ’"CROWD’ OrderCondition +
SubjectiveComparison)

In this definition SubjectiveComparisonisa
rdfs:Literal, by which the user can specify the ranking ques-
tion to be solved by the crowd. OrderCondition corresponds
to the grammatical rule with the same name defined in SPARQL
1.0.

Entity resolution and ontological classification are handled through
extensions of the VoID vocabulary with the class
void:CrowdSourceable and the property
void:crowdSourceable, by which the application developer
can specify classes and properties whose instantiations are subject
to crowdsourcing.

Definition 2. (Crowdsourcing a class) In the VoID description
of a data set, which is expected to be queried by our engine, a class
C subject to crowdsourcing is defined through the following triple
pattern:

C rdfs:subClassOf void:CrowdSourceable

where C and void:CrowdSourceable are subclasses of
rdfs:Class, and all the instances of C will be resolved by hu-
man contribution.

Due to the transitive property of rdfs:subClassOf, all the
subclasses of C are therefore void:CrowdSourcable.

Definition 3. (Crowdsourcing a property) In the VoID descrip-
tion of the data set, a property P whose instantiations should be
crowdsourced is defined through the following triple patterns:

P rdf:type void:crowdSourceable
P void:crowdDomain D
P void:crowdRange R

In this definition P and void: crowdSourceable are instances
of rdf :Property; D, R, void: crowdDomain and
void:crowdRange are subclasses of rdfs:Class; and all the
instances of D and R linked by P will be resolved through human
input. By default, D and R are subclasses of rdfs:Class.

The definitions of crowdsourced classes and properties in the
VoiD description are used by the query decomposer to identify the
parts of the SPARQL query that are translated to HITs and posted
on the microtask platform.

We appreciate the potential problems arising by similarly naming
the two types of primitives; however, we felt that using a terminol-
ogysuchasvoid:crowdClassand void:crowdProperty,
as suggested in earlier work [?] would be misleading with respect
to the semantics of RDFS and OWL.

5.2 SPARQL query engine
5.2.1 Decomposer

In this work, we extended the decomposition techniques pre-
sented in [?], which follow a two-fold approach. In the first step,
the decomposer analyzes the Basic Graph Patterns (BGPs) in the
WHERE clause of the query, and determines whether a triple pattern
should be solved by human intervention based on the data set VoID
descriptions. A triple pattern {s p o .} is subject to crowd-
sourcing if:

e The subject s or the object o belong to the transitive closure
of the relation rdfs:subClassOf of the classes defined
as void:CrowdSourceable in the VoID descriptions;

e The predicate p is defined as void: crowdSourceable,

5.2.3 Executor

The executor evaluates the hybrid tree plan generated by the opti-
mizer. This evaluation consists of contacting the relevant SPARQL
endpoints identified in the decompositon stage to evaluate the au-
tomatic sub-plans against them, then invokes the CrowdSPARQL
crowdsourcing engine in order to create the Human Intelligence
Tasks (HITs) with the information retrieved from the endpoints.
The intermediate results are opportunistically combined by adap-
tive physical operators, which are able to adjust their behavior ac-
cording to the availability of the sources and produce the asnwers
incrementally as data arrives. The CrowdSPARQL executor com-
ponent currenty offers an adaptive version for the operators Join,
OPTIONAL, UNION and PROJECT, from the SPARQL algebra.
The CrowdSPARQL executor also supports the adaptive operators
agjoin and adjoin [?] which are extensions of the Symmetric Hash

and the subject s or the predicate p are defined as void: crowdDoyga §i?] and XJoin [?], and Dependent join [?], respectively.

or void:crowdRange, respectively.

The decomposer then heuristically identifies the available Linked
Data services (SPARQL endpoints) to evaluate the remaining triple
patterns, and groups them in star-shaped sub-queries that are mod-
eled as SPARQL 1.1 SERVICE blocks according to the selected
sources. Additionally, the crowdsourcing triple patterns are heuris-
tically appended to the computational sub-queries with OPTIONAL
operators allowing the binding of available data which (in some
cases) can be further used as a benchmark. After all the triple pat-
terns in the WHERE clause are analyzed, the decomposer then eas-
ily identifies whether the sequence modifier ORDER BY must be
human-computed by the presence of the keyword CROWD.

5.2.2 Optimizer

The sub-queries identified in the decomposition component are
combined by the optimizer to generate the execution plan. The
planning techniques from [?] were extended in order to take into
consideration statistics related to the performance of human-based
services in the optimization phase, including monetary cost, esti-
mated completion time, and quality. This information is collected
and aggregated in every query execution, and adjusted according to
the different execution scenarios. On the other hand, maintaining
full up-to-date statistics about Linked Data data sets accessible via
distributed and autonomous SPARQL endpoints is not always fea-
sible [?]. Therefore our optimization techniques do not rely on in-
formation about the performance of machine-driven computational
services. In order to estimate the size of the automatic result set
and calculate an upper bound for the total cost of the crowdsourced
sub-queries, the optimizer contacts the SPARQL endpoints on-the-
fly to retrieve the cardinality of the intermediate results, and imple-
ments a greedy-based algorithm to heuristically traverse the plan
space and select a sub-optimal bushy tree plan, where the num-
ber of Cartesian products and the height of the tree are minimized.
The combination of decomposition and planning heuristics were
emperically tested in [?] and the results suggested that they may
overcome existing SPARQL engines’ optimizers.

The outcome of the optimizer is a hybrid tree plan, where the
leaves correspond to service blocks evaluated against automatic
services (SPARQL endpoints) or human services (microtask plat-
form), and the internal nodes are operators which combine the in-
termediate results. Note that the automatic query sub-plan all-
lows the full evaluation of the original SPARQL query (excluding
the ORDER BY CROWD operator) , i.e., every single triple pattern
is included at least in a service block which is evaluated against
Linked Data sets. Similarly to traditional database systems, the
optimizer also selects the corresponding physical operators to effi-
ciently evaluate the plan.

Additionally, in some cases the executor also evaluates the SPARQL
patterns describing the HITs required by the UI designer in order
to generate human-readable questions.

5.3 Crowdsourcing engine

5.3.1 HIT designer

Based on the hybrid execution plan evaluated by the executor, the
HIT designer identifies the corresponding types of human tasks to
submit to the crowdsourcing platform. Currently, CrowdSPARQL
is enabled to handle the following types of tasks:

Entity resolution: In terms of Linked Data, this task involves
the creation of owl : sameAs links between resources at instance
level. The HIT designer is able to easily identifying the triple pat-
terns from the crowdsourcing sub-plans which correspond to entity
resolution tasks by matching this OWL predicate.

Ordering: This type of task allows the user to impose subjective
ordering criteria over the Linked Data resources. The proposed
SPARQL sequence modifier ORDER BY CROWD is considered by
the HIT designer as a crowdsourcing ordering task.

Classification: This task is emphasized on the relationships be-
tween Linked Data resources, and the outcome from this task may
create different types of RDF links. Classification relates to (but is
not subsumed by) the entity resolution task, and the triple patterns
subject to crowdsourcing whose predicates are not owl : sameAs
are managed as taxonomical categorization.

Each crowdousricing task in the query plan is described with
three arguments (IN, OUT, VARS) as follows: the required SPARQL
patterns to generate human-readable questions (IN), the SPARQL
patterns defining the output from the crowd (OUT), and the binding
variables in each question (VARS).

The HIT designer additionally selects the appropriate parameters
to efficiently evaluate each type of human task, based on statistics
about rewards, granularity, completeness, latency (elapsed time to
accept a task and total time to complete a sub-query) and quality
from previously executed human tasks. For each type of task to
be executed, this component defines the (monetary) reward, HIT
lifetime and required qualifications for the crowd.

5.3.2 Ul designer

The Ul designer implements different HTML templates for each
type of human task. According to the SPARQL descriptions de-
vised by the HIT designer, the UI component instantiates the tem-
plates with the binding data as result of evaluating the SPARQL
patterns specified in the INPUT argument. Usually, the variables
instantiated with URIs are assigned as the values for the HTML el-
ements within the form, while the human-redable information (la-

bels, comments, image URL specified with the HTML tag,
etc.) is used for generating the visual part of the HITs.

The VARS argument is analyzed by the Ul designer to determine
the HTML elements in each question within the HITs: if the VARS
set does not contains a variable between brackets, the outcome of
the task is gathered through a text field in the HTML form; in the
other case, the Ul designer implements the question as multiple
choice selection, where the options correspond to the binding data
of the variable between brackets.

The HTML-based representations of the tasks are encoded as
MTurk HTMLQuestion data structures and directly submitted as
HIT batches or groups to the Amazon’s Mechanical Turk platform.

5.3.3 HIT validator

The HIT validator is configured to periodically collect the hu-
man input from the platform, and process the retrieved results im-
plementing spam detection techniques as well as quality metrics
for each type of task. Section ?? explains in more details the
CrowdSPARQL strategies for validating the outcome from the crowd.

The results determined as correct answers are transformed into
RDF data according to the OUT argument defined by the HIT de-
signer, and stored in the crowdsourced data set component.

5.4 Crowdsourced data set repository

This repository stores as RDF data the crowd answers distin-
guished as corrects by the HIT validator. This component may
be implemented as a built-in module within the CrowdSPARQL
architecture, but also it could be deployed as an external source.
Based on current SPARQL capabalities, we devise three different
approaches to save the HIT results:

Storage in an external triple store. In this case, a new reposi-
tory is created to save the results from the crowd. To enable query-
ing the original Linked Data set in conjunction with the derived
answers from the crowd, a federated SPARQL query can be built
with the SERVICE clause from the SPARQL 1.1 federation exten-
sion to access both sources.

Storage in a different named graph. One of the triple stores’
features is the maintanance of several RDF graphs in a single repos-
itory, which allows storing different data sets or distinguishing be-
tween different versions of a single data set. Following this ap-
proach, the RDF data gathered from the crowsourced tasks can be
saved in different named graph from the original data set, and both
can be accesed in a single SPARQL query by specifiying the graphs
in the FROM clause.

Storage in the same graph. This approach stores the crowd
input and the Linked Data set within a single RDF graph, yet it
might be no longer possible to differentiate the human-computed
triples and the original ones. In order to overcome this limiation, it
is necessary to annotate the resulting triples from the crowdsourced
tasks.

Additionally, we propose the creation of an RDF vocabulary, to
model provenance and other relevant information about the human-
computed triples, i.e., creation date, number of voters, confidence
in the answer, etc.

