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Abstract. Applications are increasingly focused on the use and manip-
ulation of data resources distributed on the Web. Consequently REST
gains popularity with its resource-centric interaction architecture and
flexibility enabled by hypermedia controls, i.e., links between resources.
The natural extension of Linked Data with RESTful manipulation possi-
bilities for resources can bring advantages that can be leveraged to avoid
a manual ad-hoc development of mashups. We propose a lightweight
declarative rule language with state transition systems as formal ground-
ing that enables the development of data-driven applications build upon
the RESTful manipulation of Linked Data resources. We address the
problem of developing a scaleable programming framework for Linked
Data resources, that retains the advantages of the loose coupling fos-
tered by REST.

1 Introduction

The Linking Open Data community has gained momentum over the last years
with the trend towards opening up public sector and other data [2]. At the same
time there is a strong movement in the Web community toward a resourceful
model of services based on Representational State Transfer (REST [7]) which
propagates the primacy of loose coupling. Flexibility, adaptivity and robustness
are direct consequences from the loose coupling of REST and are particularly
useful for software architectures in distributed data driven environments such as
the Web [18].

According to the Richardson maturity model [19] REST is identified as the
interaction between a client and a server based on three principles:

– the use of URI-identified resources

– the use of a constrained set of operations, i.e., the HTTP methods, to access
and manipulate recourse states

– the application of hypermedia controls, i.e., the data representing a resource
contains links to other resources. Links allow a client to navigate from one
resource to another during his interaction.



The Linked Data design principles1 also address the use of URI-identified re-
sources and their interlinkage. However Linked Data is only concerned with the
provisioning and retrieval of data. An extension of Linked Data with REST to
allow for resource manipulation is therefore natural, and enables a lightweight,
flexible distributed programming model on the web.

Following the motivation to look beyond the exposure of fixed datasets, the
extension of Linked Data with REST technologies has been proposed and ex-
plored for some time [1, 27] and led recently to the establishment of the Linked
Data Platform2 W3C working group.

Especially in data driven scenarios an increased value comes from the combi-
nation of data and the functionality to manipulate them. The increased value of
such compositions is reflected in the constant growth of the mashup ecosystem
of web APIs [26].

In a REST architecture, client and server are supposed to form a contract
with content negotiation, not only on the data format but implicitly also on
the semantics of the communicated data, i.e., an agreement on how the data
have to be interpreted [25]. Since the agreement on the semantics is only im-
plicit, programmers developing client applications have to manually gain a deep
understanding of the provided data, often based on natural text descriptions.

The combination of RESTful resources originating from different providers
suffers particularly from the necessary manual effort to use them. The reliance on
natural language descriptions has led to mashup designs in which programmers
are forced to write glue code with little or no automation and to manually
consolidate and integrate the exchanged data.

On the other hand, traditional service composition approaches that aim to
decrease the manual effort lead to a tight coupling between client and server,
i.e., they sacrifice flexibility and are prone to failures due to server-side changes.
Traditional composition approaches often fail to leverage links between resources
and do not provide straightforward mechanisms to dynamically react to state
changes of resources. The reaction on state changes becomes especially important
in a distributed programming environments, since a client can not ex ante predict
the influence of other clients on the resources, i.e., REST does not allow a client
to make assumptions on resource states.

We propose to leverage the combination of REST with Linked Data for a
data and resource driven programming approach that enables a straight-forward
development of applications build on semantic web resources. The main goal of
the programming approach is a high degree of automation and the preservation
of loose coupling by

– leveraging links between resources (i.e., hypermedia controls) provided by
Linked Data

– specifying desired interactions dependent on resource states, which is enabled
by a uniform state description format, i.e., RDF.

1 http://www.w3.org/DesignIssues/LinkedData.html
2 http://www.w3.org/2012/ldp/charter



The development of applications in a REST framework is especially challeng-
ing, since the hypermedia controls and the resource states can only be determined
during runtime, however, programmers have to specify their desired interactions
at design time. A further requirement for our programming approach in a web
based environment is a fast and scaleable execution of the applications: A rapid
interaction with resources from many different providers has to be possible to
allow for the development of useable web based applications. Further, we want
to cover a great variety of application and communication scenarios.

Example 1. Lin et al. [14] propose a scenario where the search for information
objects identifies additional actions that can be performed on the objects. E.g.,
the search for a movie presents actions such as reading reviews, adding it to
a netflix queue and listening to the soundtrack. Our approach goes beyond the
presentation of actions from different providers, and allows to develop clients that
execute the actions in a specified dynamic manner: A client in which users can
look for movies; if the review rating of an identified movie is above a threshold
the movie is added to the users netflix queue and the soundtrack is played. Such
clients can be applications such as apps for a handheld device or be deployed on
the web themselves as encapsulated program resources.

In this paper we describe

– how self-descriptive resources can be designed to enable loosely coupled
clients;

– a service model for REST based on state transition systems as formal ground-
ing;

– a declarative rule-based execution language to allow an intuitive specification
of the interaction with resources from different providers;

– an execution engine as artifact to perform the defined interactions in a
scaleable manner.

Example 2. To illustrate how we address the problem of designing a program-
ming framework for REST enabled by Linked Data we use the example of a web
blog API in the remainder of the paper. On the web blog users have accounts
and blog entries are shown in a timeline. A blog is a suitable example, since it
requires many different types of data centric interactions beyond simple data
retrieval, i.e., create, read, update and delete of blog entries on the timeline and
information about the users. Further in a social media context the value of com-
position can easily be observed, i.e., a client wants to share the functionality or
data from other services with the users of the blog. In particular we are looking
at a scenario where resources from a restaurant recommendation service are used
to create new blog entries.

The rest of the paper is structured as follows: In Section 2 we detail the
existing work. In Section 3 we describe the methods with which we intend to
leverage the advantages of Linked Data based REST architectures. We conclude
in Section 4.



2 Related Work

Pautasso introduces an extension to BPEL [17] to allow a composition of REST
and traditional web services. To allow for a BPEL composition REST services
are wrapped in WSDL descriptions.

There are several approaches that extend the existing WS-* stack with se-
mantic capabilities by leveraging ontologies and rule-based descriptions (e.g., [22,
6, 4]) to achieve an increased degree of automation in high level tasks, such as
service discovery, composition and mediation. Those approaches extending WS-
* became known as Semantic Web Services (SWS). An Approach to combine
RESTful services with SWS technologies in particular WSMO-Lite [24] was in-
vestigated by Kopecky et al. [11]. In contrast to SWS do REST architectures not
allow to define arbitrary functions, but are constrained to a defined set of meth-
ods and are build around another kind of abstraction: the resource. Therefore
our approach is more focused on resource/data centric scenarios in distributed
environments (e.g., in the Web).

The scripting language S [3] allows to develop Web resources for REST in-
teractions with a focus on performance due to parallelisation of calculations. In
their definition resources can make use of other resources, thus also enabling a
way of composing REST services. S does not explicitly address flexibility aspects
of REST and has no explicit facilities to leverage hypermedia controls or to infer
required operations from resource states.

RESTdesc [23] is an approach in which RESTful Linked Data resources are
described in N3-Notation. The composition of resources is based on an N3 rea-
soner and stipulates manual interventions of users to decide which hypermedia
controls should be followed.

Hernandez et al. [10] proposes a model for semantically enabled REST ser-
vices as a combination of pi-calculus [15] and approaches to triple space comput-
ing [5] pioneered by the Linda system [9]. They argue, that the resource states
can be seen as triple spaces, where during an interaction triple spaces can be
created and destroyed as proposed in an extension of triple space computing by
Simperl et al. [20].

Similar to the idea of triple spaces is the composition of RESTful Linked
Data resources in a process space, proposed by Krummenacher et al. [12] based
on resources described using graph patterns. Speiser and Harth [21] propose
similar descriptions for RESTful Linked Data Services. Our approach shares the
idea that graph pattern described resources read input from and write output
to a shared space. We want to improve on this approach by providing a rigid
service model and a more explicit way of defining the interaction with resources.

3 Methodology

In this section, we describe in more detail how we want to address the challenges
we face in the development of a flexible and scalable programming framework.
We address



– resource descriptions to allow to predict the effect of the execution of a
functionality before invocation;

– a formal service model as grounding to describe the interactions that are
offered and RESTful Linked Data resources, potentially spread over different
servers;

– an execution language to instantiate a concrete interaction between a client
and resources, which preserves the adaptability, robustness and flexibility of
REST.

3.1 Resource Descriptions

In a RESTful interaction with Linked Data resources only the HTTP methods
can be applied to the resources. The semantics of the HTTP methods itself is
defined by the IETF3 and do not need to be explicitly described.

Table 1: Overview of HTTP methods
Method safe requires input intuition

GET x Retrieve the current state of a resource.
OPTIONS x Retrieve a description of possible interactions.
DELETE Delete a resource

PUT x Create or update a resource.
POST x Send input as subordinate to a resource.

Table 1 shows an overview of the HTTP methods. We can distinguish be-
tween safe and non-safe methods, where safe methods guarantee not to affect
the current states of resources. Further, some of the methods require additional
input data to be provided for their invocation. The communicated input data
can be subject to requirements that need to be described to allow an automated
interaction. Furthermore, the effect on the state of resources an application of a
non-safe method has, can depend on the input data. The dependency between
communicated input and the resulting state of resources also needs to be de-
scribed. Therefore, only the non-safe HTTP methods that require input data
need further description mechanisms. Note, that states of not directly addressed
resources can also be influenced by non-safe HTTP methods that require input
data.

The state of a Linked Data resources is expressed with RDF. It is sensible to
serialise the input data, i.e., data that is submitted to resources to manipulate
their state, in RDF as well. To convey the resulting state change after application
of a HTTP method we use RDF output messages. In previous work [16] we
analysed the potential of graph patterns, based on the syntax of SPARQL4, to
describe required input as well as their relation to output messages. The resulting

3 http://www.ietf.org/rfc/rfc2616.txt
4 http://www.w3.org/TR/rdf-sparql-query/#GraphPattern



graph pattern descriptions are attached to the resource and can be retrieved via
the HTTP OPTIONS method on the respective resource. Therefore the resources
stay self-descriptive, i.e., their current state can be retrieved with HTTP GET,
the possibilities to influence their state with HTTP OPTIONS.

Example 3. In our web blog example the user accounts, the timeline and the
blog entries are resources a client can interact with. Further the restaurant rec-
ommendations are resources from another service

– Simply reading the blog entry, requires a GET on the entry without any
input data and does not change the state of any resource.

– Applying a DELETE on an a blog entry does not require input; its effect is
inherently defined by the method: the entry is erased, i.e. a state change.

– Submitting a new entry means to POST input data to the timeline. In a
composed scenario the input data can be derived from the restaurant rec-
ommendations. The result of the POST is the creation of a new resource.
Further, if the input contains optionally a username, a link could be set
in the corresponding user account to the newly created blog entry. The in-
formation about input requirements and the relation to resulting resource
states are described with the graph patterns attached to the timeline.

Figure 1 illustrates the timeline resource of our example, with a set of entries
in the current state and the graph pattern that describe how a new entry can
be POSTed.

Fig. 1: Self-descriptive resource: current state can be accessed with GET, in-
put/output description with OPTIONS

3.2 REST Service Model

A REST service can be identified with the resources it exposes. An interaction
within a REST architecture is based on the manipulation of the states of the
exposed resources.

We want to develop a service model, that allows to formalise the functionali-
ties exposed by a service based on Linked Data resources. A formal service model
serves as rigid specification of how the use of individual HTTP methods influ-
ences resource states and how these state changes are conveyed to interacting
clients.



We model a Linked Data-based RESTful service as a REST state transition
system (RSTS) similar to a state machine as defined by Lee and Varaiya [13].
The behavior of the clients themselves is not in the scope of this model, rather
all possible interaction paths of a client with the resources are formalised.

Definition 1. An RSTS is defined as a 6-tuple RSTS = {R,Σ, I,O,M, δ} with

– a set of resources R = {r1, r2, ...}
– a set of states Σ = {σ1, ..., σm}with σk = (

⋃
ri∈R r

k
i ) a complete state of the

RSTS with
• rki the RDF representation of the state of ri ∈ R in state σk

– input alphabet I = {(r, g) : R×G} where
• G the set of all possible RDF graphs

– output alphabet O = {(c, o) : C × 2R where
• C the set of all HTTP status codes

• R =
⋃m
k=1

⋃
ri∈R r

k
i , the set of all possible states of all resources

– the set of HTTP methods5 M = {GET,DELETE,PUT, POST}
– update function δ : Σ × I → Σ ×O, which can be decomposed in
• output functions δoµ : Σ × I → O for every µ ∈M given by

∗ δoget(σk, (ri, ∅)) = (c , rki )
∗ δodelete(σk, (ri, ∅)) = (c , ∅)
∗ δoput(σk, (ri, g)) = (c , σk+1\σk)
∗ δopost(σk, (ri, g)) = (c , σk+1\σk)

• state change functions δsµ : Σ × I → Σ for every µ ∈M given by
∗ δsget(σk, (ri, ∅)) = σk

∗ δsdelete(σk, (ri, ∅)) = σk\{rki }
∗ δsput(σk, (ri, g)) = σk+1

∗ δspost(σk, (ri, g)) = σk+1

R defines the set of URI identified resources that are (potentially) exposed
by the service. Note that the set of resources can be infinite, since a service can
allow to create additional resources.

A state σk ∈ Σ in the RSTS is defined as the set of states of all resources
that are (potentially) exposed by the service, serialised with RDF. We consider
the serialisation of a state of a resource that does not exist to be an empty set.
Therefore the complete serialisation of a state in the RSTS is finite, since only
the existing resources have to be described.

The transitions between states are described with an update function δ that
maps from a state in RSTS and an element of an input alphabet to a state in
RSTS and an element of an output alphabet. The elements of the input alphabet
I are tuples defining an addressed resource and RDF input data. The elements
of the output alphabet O are tuples consisting of an HTTP status code and RDF
output data.

5 For brevity we focus here on the four most important methods. Other methods can
be added analougously



The update function can be decomposed in output functions δoµ, that just
maps to the output, and state change functions δsµ, that just map to a state, for
every HTTP method µ ∈M respectively.

The intuition behind the state change functions is that a state transition in
the RSTS is effected by influencing resource states with HTTP methods. Safe
methods that do not change any resource states, describe self-transitions, i.e.,
transitions that start and end in the same state.

Resources not necessarily allow the use of all HTTP methods. Note that all
state change functions are defined for every resource, i.e., every resource can be
addressed with all methods: If a resource does not allow for the application of a
specific method the state change function describes a self-transition.

The intuition behind output functions is, that the application of an HTTP
method on a resource also results in a defined output, that communicates the
success with an HTTP status code. Further, the output contains an RDF message
that describes the by the HTTP method effected state change.

Figure 2 illustrates a state transition in RSTS where an entry is POSTed to
a blog timeline. Note, that a client could derive the input for the POST method
from the states of other resources.

Fig. 2: State transition of a RSTS, with excerpts of two states.

The possible interactions with the resources of several services can easily be
formalised together in one RSTS as the side-by-side composition [13] of the tran-
sition systems of the individual services. Intuitively the side-by-side composition
results in an RSTS, whose states contain the set of the states of the resources
from both services.

The defined service model serves as formal grounding of the execution lan-
guage described in Section 3.3. However, the self-descriptive resources are suffi-
cient to define a RESTful services:

– The current state of Linked Data resources - and therefore the state of the
RSTS - can be accessed as RDF.

– The possible transitions and the state they result in is declared with the
graph pattern descriptions.



3.3 Execution Language

In a resource-driven environment applications retrieve and manipulate resources
exposed on the Web. Since the resources can potentially be accessed by a mul-
titude of clients, applications have to react dynamically on the state of the
resources. Therefore an important factor in the development of resource-driven
applications is the dependency between the invoked transitions and resource
states..

Definition 2. The dependency between the invoked state transitions (i.e., ap-
plied HTTP methods) and the states of resources is that

1. input data for the transition is derived from RDF detailing the states of
resources and/or

2. the transition is only invoked if the resources are in a specified state.

Example 4. A client might want to post a restaurant recommendations to the
timeline of the blog, but only of restaurants in towns the users live in. The
restaurant recommendations are resources from another service. The retrieved
RDF state representations of the recommendations are used to POST entries to
the timeline (1). However, a recommendation is only POSTed if a user account
specifies that a user lives in the town of the recommended restaurant (2).

Therefore, state transitions that are to be invoked, have to be defined, to
specify the interaction of a client with RESTful Linked Data resources and con-
gruously the desired path through the RSTS. Further the conditions, subject to
the current states of resources, under which a specific transition is to be invoked
have to be specified.

To allow programmers to formalise their desired interactions we propose a
declarative rule-based execution language.

Definition 3. A rule ρ is of the form µ(r) : −Q where µ ∈ M , r ∈ R and Q a
conjunctive query.

The head of a rule corresponds to an update function of the RSTS in that
they describe an HTTP method that is to be applied to a resource. The rule
bodies are conjunctive queries that allow programmers to express their intention
under which condition a method is to be applied. Thus, programmers can define
an interaction pattern with a set of rules for their client applications.

The use of conjunctive queries is motivated by the idea that clients have to
maintain a knowledge space (KS) in which they store their knowledge about the
states of the resources they interact with [12]. KS is filled with the RDF data
the client receives after applying an HTTP method, as defined by the output
functions of the RSTS. The output always informs the client about the current
state after the application of the method.

Concretely SPARQL queries can be employed, which are evaluated over KS.
Queries are also used to dynamically, i.e., during runtime

– derive input data from the states of other resources, as stored in KS and



– identify the resource an HTTP method has to be applied to, i.e., leveraging
hypermedia controls.

To derive input data from the states of other resources, as stored in KS, construct
queries can be employed. In case no input is required, an ask query is sufficient.

To preserve the flexibility provided by REST our execution language has to
be able to make use of links in the resource states to other resources. Rather
than specifying a resource explicitly to which a method is applied, a SPARQL
select query can be used to extract the URI of the addressed resource from KS.

Example 5. In our Web blog example a user account could provide links to the
accounts of the friends of the user. A client that wants to GET data about
the friends of a specified user can instead of addressing the friends accounts
directly, SELECT the friends from the retrieved data in KS after retrieving the
information about the specified user. Thus every time the client performs its
interactions the friends are identified at runtime and only the current friends are
retrieved.

Further the execution language allows to define input and output of programs
as graph patterns. The input pattern describes the structure of data that can
initially be imported in KS to start the interaction as defined by the rules.
After the interaction is completed the output pattern is evaluated over KS,
thus extracting output data as result of the interaction. The notion of input
and output allows to deploy the defined interaction itself as a resource in the
Web, e.g., as servlet or cgi-bin, which allows to encapsulate the interaction with
resources and expose the functionality of a program. Note that the input pattern
and output pattern are equivalent to the description pattern of other resources
as described in section 3.1.

An interpreter that can be integrated in applications can be used as as exe-
cution engine for the rule language. The engine can implements the KS as well
as the functionality to invoke an interaction with resources as defined with the
execution language.

To achieve a fast scalable interpreter the execution engine can be build similar
to a query engine, which allows a multithreaded, parallel evaluation of multiple
queries (e.g., based on the Rete algorithm [8]).

To enable a wide variety of applications the engine can include an extension to
support the interaction with REST resources that are not based on Linked Data.
The engine can store data entities (e.g., binaries, JSON documents) received from
such services separately. A triple pointing to a received non-RDF entity can be
included in KS, thus the entities can be used in the logic of the execution rules.
However, an interaction with such non-RDF entities requires to fall back to a
more mashup-like programming approach.

4 Conclusion

In this paper we described how Linked Data Resources can be extended with de-
scriptions for RESTful manipulation. The natural extension of Linked Data with



RESTful manipulation of resources enables a framework with uniform semantic
resource representations for REST architectures. We have proposed to exploit
the advantages resulting from the combination of REST and Linked Data in a
programming framework for the Semantic Web. We have sketched a declarative
rule-based execution language with a state transition system as formal grounding
and the challenges we address with these language, i.e., achieving scalability and
performance while preserving the flexibility and robustness of REST. Further
we outlined an execution engine for the language.
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