
Applied Ontology 3 (2008) 41–62 41
DOI 10.3233/AO-2008-0048
IOS Press

AEON – An approach to the automatic
evaluation of ontologies

Johanna Völker a,∗, Denny Vrandečić a, York Sure a and Andreas Hotho b

a Institut AIFB, Universität Karlsruhe (TH), Karlsruhe, Germany
E-mail: {voelker, vrandecic, sure}@aifb.uni-karlsruhe.de
b Universität Kassel, Germany
E-mail: hotho@cs.uni-kassel.de

Abstract. OntoClean is an approach towards the formal evaluation of taxonomic relations in ontologies. The application of
OntoClean consists of two main steps. First, concepts are tagged according to meta-properties known as rigidity, unity, depen-
dency and identity. Second, the tagged concepts are checked according to predefined constraints to discover taxonomic errors.
Although OntoClean is well documented in numerous publications, it is still used rather infrequently due to the high costs of
application. Especially, the manual tagging of concepts with the correct meta-properties requires substantial efforts of highly
experienced ontology engineers. In order to facilitate the use of OntoClean and to enable the evaluation of real-world ontolo-
gies, we provide AEON, a tool which automatically tags concepts with appropriate OntoClean meta-properties and performs
the constraint checking. We use the Web as an embodiment of world knowledge, where we search for patterns that indicate
how to properly tag concepts. We thoroughly evaluated our approach against a manually created gold standard. The evaluation
shows the competitiveness of our approach while at the same time significantly lowering the costs. All of our results, i.e. the
tool AEON as well as the experiment data, are publicly available.

Keywords: OntoClean, ontology evaluation

1. Introduction

Ontologies (Staab & Studer, 2004) have become an important means for knowledge interchange and
integration as they provide a shared conceptualization of a domain of interest. The raise of the Semantic
Web (Berners-Lee et al., 2001) fuels the need for domain-independent methodologies and guidelines for
ontology engineering to efficiently and effectively build ontologies (Fernández-López et al., 1999; Noy
& McGuinness, 2001; Sure & Studer, 2002; Tempich et al., 2005). Industrial strength ontology engi-
neering additionally asks for cost-effective engineering of ontologies (Bontas et al., 2006). By nature,
the realization of the Semantic Web leads to distributed nets of knowledge, and plenty of reasoning will
take place on heterogeneously created ontologies. For reasoning algorithms to yield useful results the
underlying ontologies need to offer a high quality. To ensure high quality, ontologies can be evaluated
according to different criteria (Gómez-Pérez, 2004). Despite the need for high quality ontologies only
very few approaches for ontology evaluation exist so far.

OntoClean (Guarino & Welty, 2000) is the most well-known methodology for ontology evaluation.
More precisely, OntoClean enables the formal analysis of concepts and taxonomic relationships based on
the philosophical notions rigidity, unity, dependency and identity (known as OntoClean meta-properties).

*Corresponding author.

1570-5838/08/$17.00 © 2008 – IOS Press and the authors. All rights reserved

42 J. Völker et al. / AEON – An approach to the automatic evaluation of ontologies

By defining the OntoClean meta-properties, the ontology engineer can capture more of what the ontology
means in a concise and formal way. For example, by stating if a certain concept is rigid or not helps to
understand if this concept is meant to be used as a role, that applies to an individual, or rather as an
essential type. By raising this questions and the ontology engineer answering them, the ontology will be
more specific and easier to be used consistently.

The application of OntoClean consists of two main steps. First, all concepts are tagged with regards to
the OntoClean meta-properties. Second, the tagged concepts are checked against predefined constraints,
with constraint violations indicating potential misconceptualisations in the subsumption hierarchy. Al-
though OntoClean is well documented in numerous publications, and its importance is widely acknowl-
edged, it is still used rather infrequently due to the high costs for application. Several tools supporting the
OntoClean methodology have been developed and integrated into ontology editors such as ODEClean
for WebODE (Fernández-López & Gómez-Pérez, 2002), OntoEdit (Sure et al., 2003) or Protégé (Noy
et al., 2000). The main obstacle for applying OntoClean is still the manual tagging of concepts with the
correct meta-properties which requires substantial efforts of highly experienced ontology engineers.

In order to solve this problem, we have developed AEON, an approach to automatising both steps
of OntoClean. By means of AEON, we can automatically tag any given ontology with respect to the
OntoClean meta-properties and perform the constraint checking. For creating the taggings, our imple-
mentation of AEON1 makes extensive use of the World Wide Web (WWW) as the currently biggest ex-
isting source of common sense knowledge. In line with several approaches such as Cimiano et al. (2005)
and Etzioni et al. (2004) we defined a set of domain independent patterns which can be considered as
indicators for or against Rigidity, Unity, Dependence and Identity of given concepts in an ontology.

To evaluate our automatic tagging approach we created a gold standard, i.e. a manually tagged middle-
sized real-world ontology, and compared AEON results against it. A number of OntoClean experts as
well as ontology engineering experts were involved in the creation of the more than 2000 taggings in the
gold standard. Each expert had to tag the same ontology with OntoClean meta-properties. Although the
purpose of OntoClean is to force the ontology designers to make explicit their own ontological assump-
tions concerning the concepts used for a given ontology, with no claim for homogeneous ontological
choices, yet the extent of experts disagreement resulting from our experiments suprised us, showing
again the difficulty of applying OntoClean in real-world settings. We see it as an advantage of our ap-
proach that it is based on the text corpus of the whole web, instead of being defined by a small group
or a single person. As key result of our evaluation our approach compares favorably with respect to the
quality of the automatic taggings while reducing significantly the time needed to do the tagging.

In order to check the OntoClean constraints automatically, we decided to reuse an existing OWL DL
formalization of the OntoClean meta-properties and constraints (OntoClean ontology). We reified the
tagged ontology and were then able to automatically check the tagged ontology according to the Onto-
Clean ontology. We expected two types of errors when analysing the inconsistencies. First, the tagging
of a concept is incorrect, and second, the corresponding taxonomic relationship is incorrect. We found
both kinds of errors in our experimental data and looked at some of the errors in more detail to under-
stand some rationale behind. In the end, we were thus able to point the creators of the ontology to the
inconsistencies and we requested changes in the ontology to fix them.

The outline of the paper is as follows. In the next section, we briefly introduce the OntoClean meta-
properties and the most important OntoClean constraints. In Section 3, we present the conceptual ideas
of the AEON tool which creates meta-property taggings in an automated way. We start by describing

1http://ontoware.org/projects/aeon/.

J. Völker et al. / AEON – An approach to the automatic evaluation of ontologies 43

the architecture of its implementation which based on the application of patterns to the Web. For each
meta-property we defined a set of patterns allowing to obtain evidence for or against a certain meta-
property tagging (e.g. +R or -R). We give some examples for those patterns and describe the intuition
behind them. In Section 4.2 we then present our evaluation of AEON. In particular, we illustrate the
methodology we adopted for the creation of a gold standard, report lessons learned, describe our tech-
nical settings and present the results of the experiment in which we compared the automatically created
taggings against the gold standard. In Section 5, we describe AEON’s support for the second step of
OntoClean, i.e. the checking of constraints based on the meta-property taggings. We also present some
examples for the kind of inconsistencies we found in the tagged ontology. Finally, we discuss some
related work (cf. Section 6) and conclude in Section 7.

2. OntoClean in theory

We provide a brief introduction to OntoClean, for a more thorough description refer to Guarino &
Welty (2000) and Guarino & Welty (2004), for example. In the OntoClean vocabulary, properties are
what is commonly called concepts or classes (e.g. in RDF/S or OWL). Meta-properties are, therefore,
properties of properties. Within this work we will use the term meta-property in the usual OntoClean
way, whereas we will refrain from using the term property but rather stick to the more common term
concept.

2.1. OntoClean process

Applying the OntoClean methodology consists of two main steps.

– First, every single concept of the ontology to be evaluated is tagged with occurrences of the core
meta-properties, which are described below. Thus, every concept has a certain tagging like +R+U-
D+I, where for example +R denotes that a concept carries Rigidity and +U denotes that the concept
carries Unity. We call an ontology with tagged concepts a tagged ontology (wrt. OntoClean, to be
precise).

– Second, after the tagging, all subsumption relations of the ontology (in the following also called
subClassOf relations) are checked according to predefined constraints. Any violation of a constraint
indicates a potential misconceputalisations in the subsumption hierarchy.

The key idea of OntoClean is to constrain the possible taxonomic relations by disallowing subsump-
tion relations between specific combinations of tagged concepts. This way, OntoClean provides a unique
approach by formally analyzing the concepts intensional content and their subsumption relationships. In
other words, applying OntoClean means comparing the taxonomical part of a tagged ontology versus a
predefined ideal taxonomic structure which is defined by the combination of meta-properties and con-
straints.

After performing the two steps the result is a tagged ontology and a (potentially empty) list of mis-
conceptualisations. According to this list an ontology engineer may repair (in an OntoClean sense) the
ontology. It may make sense to apply OntoClean after repairing and evolving the ontology again.

2.2. OntoClean meta-properties

As already indicated, the main ingredients of OntoClean are four meta-properties and a number of
rules. The four meta-properties are: rigidity (R), unity (U), dependence (D) and identity (I). They base

44 J. Völker et al. / AEON – An approach to the automatic evaluation of ontologies

on philosophical notions as developed by Strawson and others, even dating back to Aristotle. Here we
will offer a short description of these meta-properties.

Rigidity. Rigidity is based on the notion of essence. A concept is essential for an instance iff such
instance is necessarily an instance of this concept, in all worlds and at all times. Iff a concept is essential
to all of its instances, the concept is called rigid and is tagged with +R. Iff it is not essential to some
instances, it is called non-rigid, tagged with -R. An anti-rigid concept is one that is not essential to all
of its instances. It is tagged ∼R. An example of an anti-rigid concept would be TEACHER, as no teacher
has always been, nor is necessarily, a teacher, whereas HUMAN is a rigid concept because all humans are
necessarily humans and neither became nor can stop being a human at some time.

Unity. Unity tells us what is part of the object, what is not, and under what conditions the object is
whole (Guarino & Welty, 2004). This answer is given by an unity criterion (UC), which describes the
conditions that most hold among the parts of a certain entity to consider that entity as a whole. For
example, there is an unity criterion for the parts of a human body, as we can say for every human body
which parts belong to it. Concepts carrying an UC have Unity and are tagged +U else -U.

Dependence. A concept C1 is dependent on a concept C2 (and thus tagged +D), iff for every instance
of C1 an instance of C2 must exist. An example for a dependent concept would be FOOD, as instances
of FOOD can only exist if there is something for which these instances are food. This does not mean that
an entity being food ceases to exist the moment all animals die out that regarded it as food, it just stops
being food.

Identity. A concept with identity is one, where the instances can be identified as being the same at any
time and in any world, by virtue of this concept. This means that the concept carries an identity criterion
(IC). It is tagged with +I, and with -I otherwise. It is not important to answer the question of what this
IC is (this may be hard to answer), it is sufficient to know that the concept carries an IC. For example,
the concept HUMAN carries an IC, as we are able to identify someone as being the same or not, even
though we may not be able to say what IC we actually used for that. On the other hand, a concept like
RED would be tagged -I, as we cannot tell instances of red apart because of its color.

OntoClean differentiates between the two tags I and O, whereby the first means, that the concept
simply carries an IC and the second that it carries an own IC. The difference is not relevant for this
work, as the tagging +O may just be treated like the tagging +I, as +O implies +I anyway and there are
no subsumption rules about the tag O.

2.3. OntoClean constraints

A number of OntoClean rules is applied on the tagged ontology. We may use the existing OntoClean
rules to check a tagged ontology for consistency. Here, we will give some illustrative example for these
rules. For a full list refer to Guarino & Welty (2004). As shown in (Sure et al., 2003) such rules can be
formalized as logical axioms and validated automatically by an inference engine.
∼R cannot subsume +R. Having a concept C subsuming the concept D, with C tagged ∼ R and D

tagged +R, would lead to the following inconsistency: D must always hold true for all of its instances.
D, as a subsumed concept, would always imply C for all of its instances. Therefore, there are at least
some instances of C that are necessarily C as they are D. Thus C cannot be anti-rigid, as the tagging
says, because this would mean that it is not necessarily true for any of its instances – which would be
a contradiction. An example is FOOD, an anti-rigid concept, subsuming APPLE, a rigid concept. As it is
explained in (Guarino & Welty, 2004), nothing is essentially food – it may or may not be eaten. On the
other hand, an apple is always an apple. But if apples were subsumed by FOOD, there would be some

J. Völker et al. / AEON – An approach to the automatic evaluation of ontologies 45

food that would essentially be food, namely apples, since every apple would always be an apple and thus
food – which would be a contradiction to the statement that no food is essentially food.

+I cannot subsume −I . If this rule was broken, it would mean that instances of the subsumed con-
cept can not be identified – although they are also instances of the subsuming concept, which explicitly
allows for the identification of the instances. This would be a contradiction, revealing an error in our
taxonomy (or tagging).

+D cannot subsume −D. FOOD is an example for a dependent concept. Modeling the concept
CANDY, we decide that everything with more than 20% sugar is candy, thus the concept would be inde-
pendent. We let FOOD subsume CANDY, and the formal analysis shows this rule is broken. This points us
to either an error in the taxonomy or in the tagging. In the last example we see that the quality of the
taxonomical analysis is only as good as the quality of the applied tagging.

3. Tagging approach

Our approach to the automatic assignment of meta-properties according to the OntoClean methodol-
ogy is based on three fundamental assumptions. First, we believe that the nature of concepts is to some
degree reflected by human language and what is said about instances of these concepts in the language
corpus. Because of this, we consider statistics about the occurrences of lexico-syntactic patterns (see
Section 3.2) as a feasible means to capture the meta-properties of ontological concepts. Second, in line
with similar approaches by Grefenstette (1999), Keller et al. (2002), Resnik & Smith (2003), Cimiano
et al. (2004) and Cimiano et al. (2005) we think that using the Web as a corpus is an effective way
of addressing the typical data sparseness problem one encounters when working with natural language
corpora. Finally, from our point of view, the Web being the biggest source of common-sense knowl-
edge available constitutes a perfect basis for computational comprehension of human intuition as to the
philosophical notions of essence, unity and identity.

3.1. Architecture and implementation

Our core contribution is the development and the evaluation of the tagging component of AEON.
The tagging component matches lexico-syntactic patterns on the Web to obtain positive and negative
evidence for rigidity, unity, dependence and identity of concepts in an RDFS or OWL ontology. The
architecture is roughly depicted by Fig. 1. It consists of an evaluation component, which is responsible
for training and evaluation, a classifier for mapping given sets of evidence to meta-properties such as +R
or -U, a pattern library and a search engine wrapper.

The pattern library is initialized by means of an XML file containing a set of abstract patterns for
each meta-property (see Listing 1 for an example). Each of these patterns includes a specification of the
type of evidence it produces, e.g., negative evidence for rigidity. Moreover, it contains a declaration of
one or more variables and a set of Web queries which can be instantiated by replacing the regarding
variables by the labels of the concepts to be analysed. Finally, a linguistic filter, i.e. a regular expression
over tokens and part-of-speech tags, is defined for filtering the results obtained by the above mentioned
queries (see Section 3.3).

Given a set of instantiated patterns (e.g. “is no longer an apple”) the search engine wrapper uses
the Google™ API in order to retrieve web pages or snippets, i.e. parts of web pages containing the
regarding search string, from the Web. For normalization purposes (see below) it also queries the web
for all occurrences of the regarding concept, such as “apple” for example.

46 J. Völker et al. / AEON – An approach to the automatic evaluation of ontologies

Fig. 1. Tagging architecture of AEON.

<pattern>
<variable name="x" />
<evidence type="false" for="R" />
<google regex="is\t\w+ no\t\w+ longer\t(DT\w+\t)?(NN|NP|NNS|NPS)

x\t[^(NN|NP|NNS|NPS)]">
<query string="is no longer a x" />
<query string="is no longer an x" />
<query string="is no longer x" />

</google>
</pattern>

Listing 1. Negative evidence for rigidity (R).

The linguistic analyser provides methods for tokenization, lemmatizing and part-of-speech (POS) tag-
ging, which are required for some fundamental preprocessing of the snippets and HTML pages obtained
from the Web and for an appropriate matching of the linguistic patterns described above. By what we call
Linguistic Filtering we analyse, e.g., all those snippets returned by Google™, which satisfy the query
“is no longer a computer” (cf. Listing 1). If the regular expression associated with the query does not
match, the particular snippet is not counted as a hit and thus does not provide any evidence with respect
to the rigidity of COMPUTER. This way, we avoid, for instance, false matches in case of statements such
as “He is no longer a computer hacker”. The assumption underlying our implementation of linguistic
filtering is that any common or proper noun immediately following the concept variable within the regu-
lar expression (e.g. by the term “computer”) would imply that the lexicalization of the concept does not
represent the head of the corresponding noun phrase, i.e. the part which carries the essential semantic
information. Patterns which are structurally different from the one shown by Listing 1 may therefore
require a similar treatment of preceding noun phrases, e.g., to avoid false evidence for the unity of EM-
PLOYEE when a phrase like “the computer of an employee consists of ” is returned by Google™. For the
same reasons, linguistic filtering is also applied in the normalization process.

J. Völker et al. / AEON – An approach to the automatic evaluation of ontologies 47

Finally, for each pattern i contained in the above mentioned pattern library the positive or negative
evidence evidence(p, i, c) for a concept c having a certain meta-property p ∈ {R, U , D, I} is given by:

evidence(p, i, c) =
∑

q∈Qi
lf (hits(qc))

lf (hits(c))
,

where Qi is the set of queries associated with pattern i, qc is the instantiation of query q for concept c, and
hits(qc) as well as hits(c) represent the number of hits obtained for qc or c, respectively. lf is a function
implementing the linguistic filtering described above.

Given a concept c and the evidence values obtained for all patterns the decision whether or not a
meta-property p applies to c is made by a classifier. A set of classifiers – one for each meta-property –
has been trained on a small number of examples provided by human annotators (cf. Section 4.2). The
manual effort rests with the creating of a gold standard ontology and classifiers to be trained on this
ontology.

3.2. Patterns

During the last decades, lexico-syntactic patterns have become generally accepted as an effective
means for extracting various types of lexical or ontological relationships such as hyponymy and
meronymy (cf. Hearst, 1992; Charniak & Berland, 1999; Hahn & Schnattinger, 1998). Nevertheless,
there has been little if any work on the use of pattern-based approaches towards the extraction of meta-
properties, i.e. properties of concepts or relations. In order to find a suitable set of patterns, we therefore
evaluated an overall number of 19 pattern candidates2 against the original OntoClean example ontol-
ogy (Guarino & Welty, 2004) before finally choosing a small subset of particularly promising patterns
for the evaluation of our approach. All of these patterns are domain-independent, thus being well suited
for the WWW as a very heterogeneous corpus.

Rigidity. The intuition behind the patterns we defined for Rigidity is the following: if any individual
can become or stop being a member of a certain class, then it holds that the membership of this class,
e.g. the property being a student, is not essential for all its individuals. Therefore, we can obtain negative
evidence with respect to Rigidity from the following patterns:

is no longer (a|an)? CONCEPT
became (a|an)? CONCEPT
while being (a|an)? CONCEPT

Unity. As explained in Section 2, a concept is tagged with +U if for each of its instances all parts
can be identified and if they share a common Unity Criterion which holds true for exactly these parts.
Because of this, in order to determine whether a given concept has unity or not we have to find answers
to questions such as “what is part of an object? and what is not?” or “under which conditions is the
object a whole?”. If we can answer these questions for at least most of the instances of the concept, we
can take this as positive evidence for Unity.

2The initial set of patterns is included in the AEON release which can be downloaded from http://ontoware.org/projects/
aeon/.

48 J. Völker et al. / AEON – An approach to the automatic evaluation of ontologies

part of (a|an)? CONCEPT

Moreover, since instances of concepts which are not countable usually do not carry a unity criterion,
we can get positive evidence for Unity by searching for the following patterns:

(one|two) CONCEPT

Of course, one and two seem to be somewhat arbitrary, but since Google™ is not yet able to process
queries containing regular expressions we had to confine ourselves to what we considered as the most
frequent of all possible variations of this pattern.

Similarly, negative evidence can be obtained by a pattern which indicates non-countability of a con-
cept.

amount of CONCEPT

Identity. According to Guarino & Welty (2004), identity criteria are often based on the identity of
certain parts or characteristics. Therefore, the following patterns can provide, in general, some positive
evidence for Identity:

CONCEPT consists of (two|three) parts
CONCEPT is composed of (two|three) parts

Additional positive evidence for identity can be obtained by the rather straight-forward pattern:

CONCEPT is identified by

Negative and positive evidence, respectively, can be obtained by these merely linguistic patterns check-
ing whether the name of the concept is an adjective or a noun.

Both patterns are matched on the results of Google™ queried for nothing but the concept name.
Please note that linguistic preprocessing as described in Section 3.1 is required to allow this kind of
lexico-syntactic pattern matching, since these patterns assume the text to be an alternate sequence of
words and POS tags. The tags JJ, JJR and JJS indicate an adjective, whereas NN, NP, NNS and NPS are
indicators for a common or proper noun.

(JJ|JJR|JJS) CONCEPT
(NN|NP|NNS|NPS) CONCEPT

Also, countability means that the instances of a concept are obviously identifiable (or else they would
not be countable). Therefore we reuse some of the patterns that we have already used as positive or neg-
ative evidence for Unity. Note that even identical feature vectors would lead to different classification
results for Unity and Identity as long as the training data is different.

(one|two) CONCEPT
amount of CONCEPT

J. Völker et al. / AEON – An approach to the automatic evaluation of ontologies 49

Dependence. Among the meta-properties rigidity, unity, dependence and identity, we consider depen-
dence as the most difficult one to learn automatically. Maybe, this is because of the fact that relational
knowledge, i.e. knowledge involving more than one concept, is required in order to detect dependence.
Nevertheless, we tried to capture dependence of concepts by the following pattern:

cannot be (a|an)? CONCEPT without

Additional patterns. Thanks to the flexible architecture of AEON adding further patterns is a very
easy task which simply requires an extension of the pattern library in XML format. This way, we also
tested several more patterns which we initially had in mind. However, preliminary testing in Google™
mostly resulted in a very small number of hits that would have lowered the efficiency of AEON without
significantly improving its output.

3.3. Discussion

The described approach is original and poses quite a number of problems. We solved many of them,
but some remain for further research. Both kinds of problems are described in this section.

Certain patterns could return a lot of inappropriate evidence. Searching for the fragment “is no longer
a computer” would also return “is no longer a computer hacker”, which is false evidence about the
Rigidity of computers. To solve this problem we introduced linguistic preprocessing and patterns that
recognize “computer” not being the subject of the given example. Thus we can get rid of a lot of false
evidence.

The other problem occurs with high level, abstract or seldom used concepts: they just do not return
hits, or return only a small, and thus usually unreliable number of evidence. However, we do not consider
this as a big problem in general, since this kind of very abstract concepts mostly appear in upper-level
ontologies which are typically smaller and less dynamic than domain ontologies. If we do not get any
hits, the concept will not be part of possible constraint errors. So it does not really bother the user with
wrong warnings but rather simply ignores this concept.

A much bigger problem is given by the highly ambiguous nature of human language. So far, our
approach does not distinguish between different concepts which could be meant by the word “glass”, for
example. Whereas the “glass” which can be used to drink water certainly has Unity, the “glass” windows
are made of does not have Unity. Linguistic patterns do not help in this case. We will try to solve this
problem by comparing the context of the word – given by a Google™ snippet or a Web page – with the
semantic neighborhood of the regarding concept.

Natural language is not as strict and formal as the OntoClean meta-properties. The best known ex-
ample is the English verb to be, which can have various meanings based heavily on context, like sub-
sumption, definition or constitution. But exactly these different meanings play a crucial role within the
OntoClean methodology. Thus, the translation of the OntoClean definitions of meta-properties to com-
monly used language patterns was quite challenging. With the patterns given in this section we hope to
have achieved a good balance between language ambiguity, pragmatic indication of meta-properties and
number of occurrences for a wide range of concepts.

An open issue is the differentiation between Non-, Anti- and Semi-Rigidity by automatic means. Right
now we just consider Rigidity and Non-Rigidity, but the more detailed division may lead to an even better
evaluation of the ontology.

50 J. Völker et al. / AEON – An approach to the automatic evaluation of ontologies

4. Tagging evaluation

4.1. Manual tagging

For the evaluation and training of our automatic methods, we needed a gold standard tagging of an
ontology with the OntoClean meta-properties. Although OntoClean is already some years old and ap-
peared in a number of publications, actual tagged ontologies were found only extremely scarcely. Our
best resource was the example ontology in (Guarino & Welty, 2004) and some examples in the other
publications. This amounted to about 30–40 tagged concepts. Welty et al. (2004) describe the creation
of another ontology evaluated with OntoClean, but this is not publicly available. To the best of our
knowledge there are no further available tagged ontologies.

For this reason, we had to acquire a new gold standard and searched for a generic, domain-independent
ontology with a reasonably big number of concepts. By choosing these selection criteria we intended
to ensure the reusability of the gained tagging experience and the trained classifiers for future ontol-
ogy evaluation efforts. We finally decided to use the freely available PROTON3 (Terziev et al., 2004)
ontology, which has been developed within the European IST project SEKT4 to facilitate the use of
background or preexisting knowledge for automatic metadata generation. After merging the System, Top
and Upper modules of PROTON we obtained an ontology consisting of 266 concepts, as diverse as
ACCIDENT, ALIAS, HAPPENING or WOMAN.

We asked three methodology and ontology engineering experts to tag the PROTON ontology accord-
ing to the OntoClean methodology, because we wanted to base the evaluation of our own techniques on
this human tagging. Most of them told us that based on their experience with OntoClean the manual tag-
ging of an ontology such as PROTON with Rigidity, Unity, Identity and Dependence would take more
than one week. Some even considered this as an effort of one month – which would of course render any
evaluation of the ontology far too expensive to be efficient.

Finally, we were able to convince two of them to create a manual tagging of PROTON, whereas the
third tagging was done by one of the authors of this paper. Each of these experts tagged 266 concepts
with three to four meta-properties – which gave us a total number of 2926 taggings. The tagging process
itself was very strenuous, and often uncertainty arose. Decisions were debatable and the documentation
of OntoClean was open to interpretation. The experts tagged the ontology in the given time of four to
six hours, but they achieved an agreement far lower than expected (refer to Table 2). We assume that the
allocated time presents a realistic investment in an ontology building setting. Concepts similar to those
in the example ontology in (Guarino & Welty, 2004) were often tagged consistently, but the agreement
on the other concepts was low (close to the baseline given by random tagging). This suggests that the
experts rather worked by analogies (not surprisingly, given the time constraints) to the examples (an
approach that is very common for humans) than by applying the definitions of the meta-properties.

Taking into account that OntoClean is only a method to evaluate the taxonomic relationships of an
ontology, these findings point to doubts concerning the efficiency of manual tagging. Although there
are some implementations that support the tagging with OntoClean meta-properties in existing ontology
engineering environments (refer to Section 6), the number of actually tagged ontologies is obviously far
too low. This again points to a discrepancy between the expected work and the expected benefit of using
OntoClean. To turn OntoClean into a feasible and more frequently used ontology evaluation method, a
far more precise and yet broader understandable description of OntoClean must become available, or else

3http://proton.semanticweb.org.
4http://www.sekt-project.com.

J. Völker et al. / AEON – An approach to the automatic evaluation of ontologies 51

an approach for the automatic tagging of concepts must lower the time to tag ontologies dramatically.
The latter approach requires far less training to the individual ontology engineer and evaluator.

The upper level ontology DOLCE was created with the principles of OntoClean in mind. WordNet
on the other hand was not created with ontological categories in mind, but rather adhering to linguistic
structures. Aligning those two should reveal numerous errors in WordNet, by OntoClean standards, due
to the different nature of the two. In Gangemi et al. (2003), where this task is described, the authors say
that the alignment of DOLCE and WordNet yielded almost only constraint violations regarding rigidity
and much less on all other meta-properties. Thus, it was essential to get reliable results for rigidity, more
than for the other meta-properties.

Another problem is that tagging an ontology implies further ontological decisions possibly unintended
by the ontology creators. Subjective point of views going further than the ontology is already committed
to can be introduced through the tagging. For example, regarding the concept Dalai Lama we could
state this concept is not rigid: a person is chosen to become the Dalai Lama. Thus a question of believe
becomes relevant: buddhist religion claims that one does not become the Dalai Lama, but rather that
one is the Dalai Lama across multiple reincarnations. Tagging an ontology, therefore, increases the
ontological commitment. Our approach dodges this problem by basing the taggings on statistics over
a large corpus instead of an individual or small group’s subjective point of view, and then pointing to
possible errors in the ontology.

4.2. Setting and results

As described in Section 4.1 we decided to use the System, Top and Upper module of the PROTON
ontology for the evaluation of our approach. The merged ontology consists of 266 concepts, most of
them annotated with a short natural language description. The list of all concepts together with their
descriptions was given to three human annotators in the following called A1, A2 and A3. All of them were
assumed to be experts in using the OntoClean methodology. Nevertheless, whereas Rigidity, Identity and
Dependence were considered by all annotators, only two of them also assigned Unity tags to some of
the concepts. Table 1 shows the number of concepts and their corresponding taggings created by each
of the human annotators. The data sets labeled A1/A2, A1/A3, A2/A3 were obtained by the intersection

Table 1

Tagged concepts

R U I D

+ − ∼ + − ∼ + − ∼ + − ∼
A1 147 69 50 156 81 29 194 72 0 151 113 0
A2 208 39 0 103 138 3 189 58 0 31 216 0
A3 201 64 0 0 0 0 223 42 0 63 1 0

avg 185.3 57.3 16.7 86.3 73.0 10.7 202.0 53.3 0.0 81.7 110.0 0.0

A1/A2 122 3 20 77 61 11 143 21 0 23 94 0
A1/A3 125 27 15 0 0 0 171 19 0 47 1 0
A2/A3 161 14 0 0 0 0 163 12 0 9 0 0

avg 136.0 14.7 11.7 25.7 20.3 3.7 159.0 17.3 0.0 26.3 31.7 0.0

A1/A2/A3 106 2 6 0 0 0 126 8 0 9 0 0

52 J. Völker et al. / AEON – An approach to the automatic evaluation of ontologies

Table 2

Human agreement

A1/A2 A1/A3 A2/A3 A1/A2/A3

Relaxed Strict Relaxed Strict Relaxed Strict Relaxed Strict
R (%) 58.7 50.6 63.0 57.4 71.1 71.1 46.3 43.9
U (%) 61.1 56.6 N/A N/A N/A N/A N/A N/A
I (%) 66.4 66.4 71.7 71.7 71.1 71.1 54.5 54.5
D (%) 48.6 48.6 75.0 75.0 15.0 15.0 15.0 15.0

avg (%) 58.7 55.6 69.9 68.0 52.4 52.4 38.6 37.8

of two of the single data sets.5 Obviously, A1/A2/A3, which is the intersection of all three data sets –
the set of concepts which are tagged identically by all human annotators – is extremely sparse.

In order to illustrate how difficult it was for the human annotators to tag the ontology according to
the OntoClean methodology we measured the human agreement between the data sets (cf. Table 2).
Strict means that two taggings were considered equal only if they were totally identical. relaxed means
that − and ∼ were considered the same. Since our approach so far does not distinguish between Semi-
and Anti-Rigidity, for example, the strict agreement can be neglected for the following evaluation. As
shown by Table 2 the average human agreement is extremely low, which means close to the random
baseline and sometimes much lower than the results we obtained by automatic tagging. Given these
figures indicating the difficulty of this task, we believe any kind of automatic support could be of great
use for formal ontology evaluation. Just to give one example on the problem of agreement we look at
the concept ISLAND: two annotators tagged it with being rigid, one said it is non-rigid. The third tagger
explained, that there exist islands that can turn into peninsulas due to tidal effects. Such problems were
encountered throughout the PROTON ontology. A complete list of the taggings can be downloaded at
the AEON website.6

Baseline. In order to obtain an objective baseline for the evaluation of AEON which is statistically
more meaningful than the human agreement (see Table 2) we computed a random baseline for the
F -measure as follows: let x be the overall number of concepts to be tagged, p the number of posi-
tive and n = x − p the number of negative examples. Given a random tagging for all n concepts we
can assume that half of them are tagged as + and equally many are tagged as −. Of course, the fraction
of positives within the whole data set tends to be the same as in each of the randomly chosen subsets
S+ and S− of size n

2 . Therefore, the number of true positives (TP) and true negatives (TN) is given by
TP = p

x ∗ x
2 = p

2 and FP = (1 − p
x) ∗ x

2 = x
2 − p

2 = x−p
2 = n

2 whereas the false positives (FP) and false
negatives (FN) can be computed by TN = n

x ∗ x
2 = n

2 and FN = (1 − n
x) ∗ x

2 = x
2 − n

2 = x−n
2 = p

2 .
Obviously, the Precision P+ for the positive examples (for example, all concepts tagged as +R) is

given by P+ = TP/(TP + FP), whereas the Precision for the negative examples can be obtained by
P− = TN/(TN + FN). Recall can be computed by R+ = TP/(TP + FN) and R− = TN/(TN + FP),
respectively.

Given Recall and Precision we can obtain the F -measure for positive and negative examples by F+ =
2∗P+∗R+

P++R+
and F− = 2∗P−∗R−

P−+R−
. This leads to a macro-average F -measure of F = 1

2 ∗ (F+ + F−), which

5In case a concept was tagged by only one of the annotators we assumed the agreement to be equal to the tag assigned by
this annotator. Please note that all the data sets are available for download from http://ontoware.org/projects/aeon/.

6http://ontoware.org/projects/aeon.

J. Völker et al. / AEON – An approach to the automatic evaluation of ontologies 53

Table 3

Random baseline (F -measure)

R U I D

+ − M-avg + − M-avg + − M-avg + − M-avg
A1 52.5 47.2 49.9 54.0 45.3 49.6 59.3 35.1 47.2 53.5 45.9 49.7
A2 62.7 24.0 43.4 45.8 53.6 49.7 60.5 32.0 46.2 20.1 63.6 41.8
A3 60.1 32.6 46.4 N/A N/A N/A 62.7 24.1 43.4 66.3 3.0 34.7

avg 58.4 34.6 46.6 49.9 49.5 49.7 60.8 30.4 45.6 46.6 37.5 42.1

A1/A2 62.7 24.1 43.4 50.8 49.1 50.0 63.6 20.4 42.0 27.7 61.8 44.7
A1/A3 60.0 33.5 46.7 N/A N/A N/A 64.3 16.7 40.5 66.2 4.0 35.1
A2/A3 64.8 13.8 39.3 N/A N/A N/A 65.1 12.1 38.6 66.7 N/A N/A

avg 62.5 23.8 43.1 50.8 49.1 50.0 64.3 16.4 40.4 53.5 32.9 39.9

A1/A2/A3 65.0 12.3 38.7 N/A N/A N/A 65.3 10.7 38.0 66.7 N/A N/A

we consider as a reasonable baseline for the evaluation of our approach. A detailed overview of the
concrete baselines we determined for all data sets is given by Table 3.

Settings. Since we decided to evaluate our system separately for R, U , I and D, we made 7∗4∗2 = 56
experiments (for each of the human annotators and the agreement data sets, each of the meta-properties,
as well as with and without linguistic filtering) using a number of Weka7 classifiers. In order to detect
the limitations of our approach and to see what we can potentially get out of the data which we are able
to provide, we first tried many different types of classifiers, such as Support Vector Machines, Bayesian
classifiers and Decision Trees. Since the latter turned out to perform best we finally decided to focus on
the class of Decision Trees – among them ADTree, RandomForest and J48, for example. The features
given to these classifiers were sets of evidences obtained by all patterns for the regarding meta-property
(see Section 3.1). Precision, Recall and F -measure for both positive and negative examples as well as the
macro-average F -measure were determined by a 10-fold cross-validation (Kohavi, 1995) with stratified
sampling (cf. Särndal et al., 2003). That is we divided each of the data sets into k = 10 partitions,
trained on k − 1 and tested on the remaining one part of the data set. This procedure was repeated k
times before the results were averaged to compute the overall performance or error rate, respectively. In
the general case, such k-fold cross validation leads to a better error estimation than a single split into
test and training data set, in particular if only very few samples are available.

Note that for training and evaluation we only used those concepts which were annotated in the re-
garding data set and for which we obtained at least some evidence. The percentage of tests which
failed, because we did not get any Google™ hits for the instantiated patterns was about 20% for rigid-
ity, 5% for identity and around 10% for unity. Because of this, in many cases the number of exam-
ples we gave to the classifiers was extremely low – especially for the agreement data sets A1/A2,
A1/A3, A2/A3 and A1/A2/A3. The reason why the results are nevertheless very promising, certainly
is the good quality of the classification features which we achieved by using a pattern-based ap-
proach.

Results. One of the main findings of our experiments was that linguistic filtering can help in the
task of pattern-based ontology evaluation. Whereas the differences between the results with and without

7http://www.cs.waikato.ac.nz/ml/weka/.

54 J. Völker et al. / AEON – An approach to the automatic evaluation of ontologies

Table 4

Rigidity (best results with linguistic filtering)

P R F Classifier

+ − + − + − M-avg Baseline No LF
A1 65.6 57.5 71.7 50.5 68.5 53.8 61.2 49.9 63.5 RandomForest
A2 87.7 41.6 91.5 32.3 89.6 36.4 63.0 43.4 65.9 RandomTree
A3 79.6 36.4 82.6 32.0 81.1 34.0 57.6 46.4 52.9 RandomTree

avg 77.6 45.2 81.9 38.3 79.7 41.4 60.6 46.6 60.8

A1/A2 91.3 60.0 94.0 50.0 92.6 54.5 73.6 43.4 72.1 RandomForest
A1/A3 80.8 39.3 83.2 35.5 82.0 37.3 59.6 46.7 62.1 ADTree
A2/A3 93.8 20.0 93.8 20.0 93.8 20.0 56.9 39.3 61.4 RandomTree

avg 88.6 39.8 90.3 35.2 89.5 37.3 63.4 43.1 65.2

A1/A2/A3 94.5 0.0 100.0 0.0 97.2 0.0 48.6 38.7 47.9 NBTree

Table 5

Identity (best results with linguistic filtering)

P R F Classifier

+ − + − + − M-avg Baseline No LF
A1 75.9 34.9 78.3 31.9 77.1 33.3 55.2 47.2 51.7 RandomForest
A2 80.9 37.5 80.9 37.5 80.9 37.5 59.2 46.2 54.3 ADTree
A3 88.7 38.6 87.5 41.5 88.1 40.0 64.1 43.4 52.6 RandomForest

avg 81.8 37.0 82.2 37.0 82.0 36.9 59.5 45.6 52.9

A1/A2 88.7 25.0 89.3 23.8 89.0 24.4 56.7 42.0 51.5 RandomTree
A1/A3 92.6 60.0 97.6 31.6 95.0 41.4 68.2 40.5 53.3 NBTree
A2/A3 96.8 60.0 97.5 54.5 97.1 57.1 77.1 38.6 59.8 RandomForest

avg 92.7 48.3 94.8 36.3 93.7 41.0 67.3 40.4 54.9

A1/A2/A3 97.5 55.6 96.7 62.5 97.1 58.8 78.0 38.0 58.4 RandomForest

linguistic filtering tend to be marginal for Rigidity and Unity (cf. Tables 4 and 6), linguistic filtering
clearly improved the results for Identity and Dependence (Tables 5 and 7). And in fact, the only time
the baseline was missed in our experiments was in a run-through without linguistic filtering (see Ta-
ble 7).

Another interesting result of the evaluation was that (except for the very sparse data sets of Unity
and Dependence) our system performed significantly better on the agreement, i.e. the intersection of
two or three data sets. This is probably due to the fact that those concepts which were tagged identi-
cally by at least two of the human annotators are easier to tag – maybe, because they are less ambigu-
ous.

The overall conclusion we draw from the evaluation of AEON was that despite the weaknesses of
our pattern-based approach (see Section 3.3) the first results are already very promising. Given the
small amount of training data we had and the fact that we used standard Weka classifiers with marginal
parameter tuning we hope to get even better results in future experiments after analyzing the data in
more detail.

J. Völker et al. / AEON – An approach to the automatic evaluation of ontologies 55

Table 6

Unity (best results with linguistic filtering)

P R F Classifier

+ − + − + − M-avg Baseline No LF
A1 66.9 49.4 72.1 43.2 69.4 46.1 57.7 49.6 50.9 DecisionStump
A2 51.7 63.2 34.5 77.8 41.4 69.8 55.6 47.7 60.1 ADTree
A3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

avg 59.3 56.3 53.3 60.5 55.4 58.0 56.7 48.7 55.5

A1/A2 54.8 51.9 60.6 45.9 57.6 48.7 53.1 50.0 57.0 RandomForest
A1/A3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
A2/A3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

avg 54.8 51.9 60.6 45.9 57.6 48.7 53.1 50.0 57.0

A1/A2/A3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 7

Dependence (best results with linguistic filtering)

P R F Classifier

+ − + − + − M-avg Baseline No LF
A1 67.5 42.9 69.2 40.9 68.4 41.9 55.1 49.7 57.7 RandomForest
A2 33.3 81.9 38.5 78.3 35.7 80.0 57.9 41.8 42.6 RandomForest
A3 100.0 0.0 100.0 0.0 100.0 0.0 50.0 34.7 50.0 RandomForest

avg 66.9 41.6 69.2 39.7 68.0 40.6 54.3 42.1 50.1

A1/A2 42.9 64.0 25.0 80.0 31.6 71.1 51.3 44.7 36.4 DecisionStump
A1/A3 100.0 0.0 100.0 0.0 100.0 0.0 50.0 35.1 50.0 RandomForest
A2/A3 100.0 0.0 100.0 0.0 100.0 0.0 50.0 N/A 50.0 RandomForest

avg 81.0 21.3 75.0 26.7 77.2 23.7 50.4 39.9 43.2

A1/A2/A3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

5. Constraint checking

5.1. Implementation

Creating correct taggings is only one part (although the harder one) in discovering taxonomic errors
according to the OntoClean methodology. Equipped with these taggings we are able to check the hierar-
chical part of the ontology with regards to the meta-property constraints defined by OntoClean. In order
to check these constraints automatically, we decided to reify the ontology and use a formalization of the
constraints in OWL DL8 in order to check the reified ontology. This section describes the approach in
detail. The approach is based on the work described in (Welty, 2006).

We took the formalisation of OntoClean in OWL DL9 as depicted in Table 8. Axioms (1)–(7) formalize
the reification of the subsumption axioms with the transitive subClassOf relation and its inverse, domain,

8http://www.w3.org/TR/owl-ref/.
9The ontology is taken from http://www.ontoclean.org/ontoclean-dl-v1.owl.

56 J. Völker et al. / AEON – An approach to the automatic evaluation of ontologies

Table 8

OntoClean constraints meta-ontology in DL

TRANS(subClassOf) (1)
hasSubClass ≡ subClassOf−1 (2)

subClassOf ≡ hasSubClass−1 (3)
� � ∀hasSubClass.CLASS (4)
� � ∀subClassOf.CLASS (5)
� � ∀hasSubClass−1.CLASS (6)
� � ∀subClassOf−1.CLASS (7)

RIGIDCLASS � CLASS (8)
NONRIGIDCLASS � CLASS (9)
ANTIRIGIDCLASS � NONRIGIDCLASS (10)

UNITYCLASS � CLASS (11)
NONUNITYCLASS � CLASS (12)
ANTIUNITYCLASS � NONUNITYCLASS (13)

DEPENDENTCLASS � CLASS (14)
NONDEPENDENTCLASS � CLASS (15)

SORTALCLASS � CLASS (16)
NONSORTALCLASS � CLASS (17)

CLASS ≡ (NONRIGIDCLASS � RIGIDCLASS)� (18)
(NONDEPENDENTCLASS � DEPENDENTCLASS)�
(SORTALCLASS � NONSORTALCLASS)�
(UNITYCLASS � NONUNITYCLASS)

NONDEPENDENTCLASS � DEPENDENTCLASS � ⊥ (19)
NONSORTALCLASS � SORTALCLASS � ⊥ (20)

UNITYCLASS � NONUNITYCLASS � ⊥ (21)
NONRIGIDCLASS � RIGIDCLASS � ⊥ (22)

RIGIDCLASS ≡ ∀subClassOf.¬ANTIRIGIDCLASS (23)
UNITYCLASS � ∀subClassOf.¬ANTIUNITYCLASS (24)

DEPENDENTCLASS � ∀hasSubClass.DEPENDENTCLASS (25)
SORTALCLASS � ∀hasSubClass.SORTALCLASS (26)

and range. Axioms (8)–(17) describe the tagging hierarchy as described in Section 2.2 (note that besides
axioms (10) and (13) these axioms are redundant due to axiom (18). The class SORTAL describes the
identity meta-property). Axioms (18)–(22) state the complete partition of all classes by the tags, i.e. each
class is either +R or -R, +U or -U, etc. Finally, the axioms (23)–(26) describe the actual constraints, as
partially given in Section 2.3. Just to take an example, axiom (25) describes the constraint with regards
to dependency, i.e. +D cannot subsume -D. Note that the ontology, in particular axioms (1) and (23),
infer that all rigid classes have to be subsumed by rigid classes.

We took the tagging created in the previous sections and formalised them in OWL DL as well, taking
each tagging and interpreting it as a concept instantiation of the respective concept described in the
OWL DL constraint ontology. Then we added the reification of the class hierarchy. This is done with the
following steps:

1. Create an individual iC for every class C of the original ontology;
2. For each tag, declare the individual that relates to the class from the original ontology to belong

to the class corresponding to that tag within the constraint ontology. For example, if a class C is

J. Völker et al. / AEON – An approach to the automatic evaluation of ontologies 57

tagged +R, take the related individual iC and add the fact RIGIDCLASS(iC). If a class D is tagged
-U, take the individual iD and add the fact NONUNITYCLASS(iD), etc.;

3. For each axiom of the form C � D add a property instance subClassOf(iD, iC).

Diagnosis
The thus created ontology can be simply checked for satisfiability by an OWL DL reasoner (actually,

even much weaker reasoners would be sufficient due to the limited language fragment used in the con-
straint ontology). Standard reasoning services and ontology debugging tools can be applied in order to
discover and repair inconsistencies.

For our experiments, we used RaDON,10 a tool for inconsistency diagnosis based on KAON2.11

RaDON features a number of algorithms for checking consistency and coherence of both TBox and
ABox – among them an algorithm for identifying a set of minimal inconsistent subontologies for any
given ontology. The algorithm starts with the inconsistent ontology, and (i) tries to find any minimal
inconsistent subontology (Haase et al., 2005). Then, (ii) it removes any axiom from this minimal in-
consistent subontology – which fixes (at least) one inconsistency in this part of the ontology. Finally,
(iii) the algorithm starts all over again beginning with step (i) until the whole ontology is consistent.
Obviously, this algorithm is non-deterministic, but it gives us a good approximation of the total number
of inconsistencies in the ontology.

Example
Take the classes APPLE and FOOD. APPLE is tagged +R, whereas FOOD is tagged ∼R (as described

in Section 2.3). Now for the sake of the example let us assume that APPLE is defined as a subclass of
FOOD. We reify this axiom as described above, which results in the following formalization:

ANTIRIGIDCLASS(food) (a)
RIGIDCLASS(apple) (b)
subClassOf(apple, food) (c)
Together with axiom (23) from the constraint ontology (cf. Table 8)
RIGIDCLASS ≡ ∀subClassOf.¬ANTIRIGIDCLASS (23)

This leads to an unsatisfiability: apple is a RIGIDCLASS (b), which has a local range axiom for
the subClassOf relation (23) so that from the instantiated relation (c) we must infer that food be-
longs to the ¬ANTIRIGIDCLASS class description – which is a clear contradiction to the given fact
ANTIRIGIDCLASS(food) (a).

5.2. Analysis and examples

Table 9 shows the number of inconsistencies (each of them corresponding to a constraint violation)
which were detected by RaDON for the sets of taggings manually created by A1, A2 and A3. On average,
17 constraint violations were found per annotator – most of them related to rigidity and identity. This
also holds for the agreements, i.e. the data sets consisting of those taggings where two or three annotators
agreed upon the same meta-property tagging for each concept. As shown by the lower part of the table
the overall number of inconsistencies drops significantly for the intersection of any two human taggings

10http://radon.ontoware.org/.
11http://kaon2.semanticweb.org/.

58 J. Völker et al. / AEON – An approach to the automatic evaluation of ontologies

Table 9

Constraint violations for manual taggings

Inconsistencies Constraint violations

R U D I

A1 24 20 2 1 1
A2 14 7 0 1 6
A3 13 3 0 0 10

avg 17.0 10.0 0.7 0.7 5.7

A1/A2 5 1 1 1 2
A1/A3 2 1 0 0 1
A2/A3 2 1 0 0 1

avg 3.0 0.3 0.3 1.0 1.3

A1/A2/A3 2 0 0 0 2

Table 10

Constraint violations for automatic taggings

Inconsistencies Constraint violations

R U D I

A1 74 23 43 1 7
A2 17 3 8 5 1
A3 31 1 0 0 30

avg 40.7 9.0 17.0 2.0 12.7

A1/A2 13 1 6 1 5
A1/A3 5 2 0 0 3
A2/A3 7 3 0 0 4

avg 8.3 2.0 2.0 0.3 4.0

A1/A2/A3 3 0 0 0 3

to an average of 3.0 constraint violations per data set.12 This can be explained by the fact that the number
of agreed taggings is much lower than the overall number of tagged concepts (cf. Tables 1 and 2).

How does this compare to the automatically generated taggings? After training a classifier on each
of the data sets we obtained seven fully automatic taggings. Since AEON so far has not been trained
to distinguish between an anti-rigid and non-rigid (respectively, anti-unity and non-unity) tagging we
converted all taggings to their stricter counterpart wherever possible, in order to obtain an upper bound
for the number of constraint violations. The results of the inconsistency diagnosis computed for these
taggings are presented by Table 10. As expected, the average number of constraint violations per data
set increased significantly from 17 to 40.7. The automatic unity taggings seems to cause far more incon-
sistencies than it is the case for any of the manual taggings – probably, due to the fact that anti-unity tags
are very rare in the manually created tagging sets.

12The agreement statistics represent lower bounds as they are computed in a cautious manner with respect to the number
of possible inconsistencies. If at least one of the individual annotators tagged the regarding concept as -R whereas the others
agreed upon ∼R, we assumed the agreement to be -R (or -U, respectively).

J. Völker et al. / AEON – An approach to the automatic evaluation of ontologies 59

In the following we present some illustrative examples for inconsistencies which were detected in the
ontology, and discuss possible reasons for the corresponding constraint violations.

Discussion
We expected two different kinds of errors when analysing the unsatisfiabilities: (i) the tagging was

incorrect, e.g., because the annotators interpreted a concept in a different way than its author (presum-
ably) did, or (ii) the subsumption relation was wrong, i.e. contradictory to a plausible meta-property
assignment. We assumed that the OntoClean constraints – in our reification they are represented by the
TBox axioms in Table 8 – are correct.

An example of an error of the first kind is given by the following facts:

ANTIRIGIDCLASS(company) (a)
RIGIDCLASS(mediaCompany) (b)
subClassOf(mediaCompany, company) (c)
The facts contradict axiom (23) from the constraint ontology:
RIGIDCLASS ≡ ∀subClassOf.¬ANTIRIGIDCLASS (23)

This error uncovers the improper tagging given by the taggers: COMPANY and MEDIACOMPANY should
be tagged in a compatible way. As of now, COMPANY is said to be not rigid for all of its instances,
whereas MEDIACOMPANY is rigid for its instances. Granted that the subsumption of MEDIACOMPANY by
COMPANY is correct, the error must be with the tagging of the two concepts. But here the taggers seem
to have two different notions of companies in mind when they tagged COMPANY and MEDIACOMPANY.
If COMPANY is understood as an anti-rigid concept, then being a company is the role an organization can
have: a university, which is an educational organisation, can become a company; or a company can turn
to become a not-for-profit charity organisation. In this case, the concept company means an organisation
that is meant to generate profit. On the other hand, if COMPANY is tagged as a rigid concept actually is a
type for individuals: now, a company can not cease to be a company any more, but a change as described
above would basically require to generate a new individual. It depends heavily on the conceptualisation
which of the two company concepts are useful within a given ontology. The example given above shows
a confusion with regards to the concepts, and thus a possible source for errors.

An error of the second kind was discovered in the subsumption relation between GROUP and POLIT-
ICALPARTY, which is only an indirect relation: GROUP is, in PROTON, actually a superclass of ORGA-
NIZATION which in turn is a superclass of POLITICALENTITY which is a superclass of POLITICALPARTY.
The problem here is indeed in the subsumption relation between GROUP and ORGANIZATION: a group
is defined in PROTON as “a group of agents, which is not organized in any way” (Terziev et al., 2004).
This description is not applicable for an organization (since an organization is, by its very nature and
as shown in its name, organized). In formal terms, group was tagged as ∼U, whereas organization (and
also political party) were tagged as +U, which causes an inconsistency (based on axioms 1 and 24 of
the constraints meta-ontology). The ontology would need to be changed to reflect that (such a change is
discussed in (Guarino & Welty, 2004), where, incidentally, this very same pair, organization and group,
is taken as an example).

Another example of a subsumption relation that required closer inspection was the subsumption of HO-
TEL by BUILDING. Is HOTEL rather the role or the function of a building, whereas the building describes
the object itself? Then the building would have a height, whereas the hotel would have a manager. A
good example to illustrate the difference would be the number of rooms: it is counted differently for ho-

60 J. Völker et al. / AEON – An approach to the automatic evaluation of ontologies

tels than for buildings. This illustrates that it is not obvious if HOTEL should be subsumed by BUILDING

or not, as the constraint violation suggested.
All the given examples are taken from the automatically tagged ontology. They illustrate that AEON

points to possible taxonomic errors in an ontology, and guides the ontology engineer towards problematic
parts of the ontology.

6. Related work

Applying OntoClean for ontology evaluation has been proposed, e.g., for traditional ontology engi-
neering methodologies such as Fernández-López et al. (1999) and Sure et al. (2002). Checking for the
described constraint violations after tagging reveals design errors during the cyclic engineering of on-
tologies. There are several OntoClean plug-ins created for ontology engineering suites to support this,
in particular for Protégé (Noy et al., 2000), WebODE (Arpírez et al., 2001) and OntoEdit (Sure et al.,
2003). They allow the manual tagging of ontologies, integrated within the ontology engineering task,
and also partially check the consistencies according to the OntoClean rules described in Section 2. As
we have seen in Section 4.1, the biggest problem when applying OntoClean is not the proper user inter-
face for a manual tagging nor the possibility to check the ontology for formal taxonomic constraints, but
rather the high cost of tagging itself. This is where the work presented here comes into play. To the best
of our knowledge no other approach is known which automatizes the OntoClean tagging task as we do.

The constraint checking described here is based on ideas presented in (Welty, 2006). There an OWL
ontology is presented that captures the taxonomic restrictions given by OntoClean in OWL DL, and also
shows how off the shelf tools can be used to clean an ontology. We reuse the ontology offered there
in our experiments. The paper further investigates the source of the problem with the low agreement
between taggers that we encountered in Section 4.1.

Recently a refinement of OntoClean was suggested (Welty & Andersen, 2005). There the meta-
property of Rigidity is further investigated under temporal and modal aspects. The framework we present
here is extensible with regards to further or refined meta-properties, but finding appropriate patterns will
remain a challenge. New patterns need to be evaluated experimentally.

Among the related work there is also a vast amount of research on text-mining using lexico-syntactic
patterns. Most of them are based on the assumption that certain natural language expressions can pro-
vide evidence for lexical relationships such as hyponymy or meronymy (Hearst, 1992; Charniak &
Berland, 1999). Given that these can be mapped more or less directly to particular ontological relation-
ships pattern-based approaches have been frequently applied within the area of ontology learning, i.e.
the automatic generation of ontologies from natural language text. Whereas some of them use locally
available text corpora as the most important resource for ontology extraction others have specifically
been developed for Google-based pattern matching (Cimiano et al., 2005). Obviously, the latter are most
similar to our approach, being different only in the ultimate goals of the learning process.

7. Conclusion and outlook

Despite the fact that ontology evaluation is a critical task for ontology engineering there currently exist
only few approaches. OntoClean is the most well-known approach that takes into account the intension
of the concepts when checking the taxonomic structure of the ontology. First, applying OntoClean per
se helps ontology engineers to better understand an ontology. Second, applying OntoClean allows for

J. Völker et al. / AEON – An approach to the automatic evaluation of ontologies 61

an evaluation of the formal properties of an ontology to detect potential misconceptualisations. Our
approach focusses on facilitating the latter.

Tagging ontological concepts according to OntoClean is very expensive as it requires a lot of ex-
perts time and knowledge. The approach provided in this paper is giving a helpful hand by enabling
an automatic tagging. Instead of claiming full automatic tagging and evaluation against OntoClean’s
meta-properties, we only take into account the concepts we are pretty sure of in our tagging and point
to potential formal errors in the taxonomy at hand. But, such a tagging is only the beginning and can
be considered a crucial building block for the next generation of integrated ontology engineering en-
vironments such as developed by the NeOn project.13 While the user of such a system is creating or
evolving an ontology, the system checks automatically the taxonomical relationships in the background,
pointing to possible inconsistencies and likely errors. For those taggings where the system’s confidence
is high enough, suggestions will be given to the user. These suggestions can be substantiated with an
explanation based on the patterns found on the Web, which is much more intuitive for most users than
the formal definition of a meta-property.

The flexible architecture described in Section 3 can easily be extended to check for further constraints,
not represented by OntoClean’s rules. For example, if we find evidence that HUMAN BEING consists
of AMOUNT OF MATTER then we could conclude that there is probably no taxonomic relationship be-
tween both concepts. Mereological relationships may be regarded as well. Due to the strong usage of
Google™ and its snippets, we are even able to pinpoint to the very evidence of why two relationships
should or should not exist. This way the automatic tagger can act as a kind of agent, who does not just
point to errors, but also explains why a certain change is needed.

With the availability of the methods and the software presented in this paper we hope to turn the usage
of OntoClean from a few experts’ method to a widespread and standard technique for the intensional
ontological analysis for large numbers of ontologies, raising the quality of ontologies in common use.

Acknowledgements

Research reported in this paper has been partially financed by the EU in the IST-2003-506826 project
SEKT (http://www.sekt-project.com) and the IST-2005-027595) project NeOn (http://www.neon-
project.com). Special thanks to Aldo Gangemi and Daniel Oberle for their time spent on tagging our
reference ontology and thus making the evaluation possible. We also thank our students, Hua Gao and
Qiu Ji, who did parts of implementation work. And finally, many thanks to Philipp Cimiano, Peter Haase,
Stephan Bloehdorn and Christoph Tempich for helpful comments and interesting discussions.

References

Arpírez, J.C. et al. (2001). WebODE: a scalable workbench for ontological engineering. In Proceedings of Int. Conference on
Knowledge Capture (K-CAP), Victoria, Canada.

Berners-Lee, T., Hendler, J. & Lassila, O. (2001). The semantic web – a new form of web content that is meaningful to
computers will unleash a revolution of new possibilities. Scientific American, 284(5), 28–37.

Bontas, E.P., Tempich, C. & Sure, Y. (2006). ONTOCOM: A cost estimation model for ontology engineering. In I. Cruz et
al. (eds), Proceedings of the 5th International Semantic Web Conference (ISWC 2006), Lecture Notes in Computer Science
(LNCS) (Vol. 4273, pp. 625–639). Berlin–Heidelberg: Springer-Verlag.

13http://www.neon-project.org/.

62 J. Völker et al. / AEON – An approach to the automatic evaluation of ontologies

Charniak, E. & Berland, M. (1999). Finding parts in very large corpora. In Proceedings of the 37th Annual Meeting of the ACL,
College Park, MD, USA (pp. 57–64).

Cimiano, P., Handschuh, S. & Staab, S. (2004). Towards the self-annotating web. In Proceedings of the 13th World Wide Web
Conference, New York, NY, USA (pp. 462–471).

Cimiano, P., Ladwig, G. & Staab, S. (2005). Gimme the context: Context-driven automatic semantic annotation with C-
PANKOW. In A. Ellis & T. Hagino (eds), Proceedings of the 14th World Wide Web Conference Chiba, Japan (pp. 332–341).
New York: ACM Press.

Etzioni, O. et al. (2004). Web-scale information extraction in KnowItAll (preliminary results). In Proceedings of the 13th WWW
Conference, New York, NY, USA (pp. 100–109).

Fernández-López, M. & Gómez-Pérez, A. (2002). The integration of OntoClean in WebODE. In Proceedings of the EON2002
Workshop at 13th EKAW, Siguenza, Spain.

Fernández-López, M., Gómez-Pérez, A., Sierra, J.P. & Sierra, A.P. (1999). Building a chemical ontology using methontology
and the ontology design environment. Intelligent Systems, 14(1), 37–46.

Gangemi, A. et al. (2003). Sweetening WordNet with Dolce. AI Magazine, 24(3), 13–24.
Gómez-Pérez, A. (2004). Ontology Evaluation. In Handbook on Ontologies in Information Systems. Berlin: Springer.
Grefenstette, G. (1999). The WWW as a resource for example-based MT tasks. In Proceedings of ASLIB’99 Translating and

the Computer 21, London, UK.
Guarino, N. & Welty, C.A. (2000). A formal ontology of properties. In Knowledge Acquisition, Modeling and Management,

Juan-les-Pins, France (pp. 97–112).
Guarino, N. & Welty, C.A. (2004). An overview of OntoClean. In Handbook on Ontologies in Information Systems (pp. 151–

172). Berlin: Springer.
Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H. & Sure, Y. (2005). A framework for handling inconsistency in

changing ontologies. In Y. Gil, E. Motta, V.R. Benjamins & M.A. Musen (eds), Proceedings of the Fourth International
Semantic Web Conference (ISWC2005), LNCS (Vol. 3729, pp. 353–367). Berlin: Springer.

Hahn, U. & Schnattinger, K. (1998). Towards text knowledge engineering. In Proceedings of AAAI’98/IAAI’98, Madison, WI,
USA.

Hearst, M. (1992). Automatic acquisition of hyponyms from large text corpora. In Proceedings of the 14th International Con-
ference on Computational Linguistics, Nantes, France (pp. 539–545).

Keller, F., Lapata, M. & Ourioupina, O. (2002). Using the web to overcome data sparseness. In Proceedings of EMNLP-02,
Pennsylvania, PA, USA (pp. 230–237).

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of
the 14th International Joint Conference on Artificial Intelligence (pp. 1137–1145). San Mateo, CA: Morgan Kaufmann.

Noy, N., Fergerson, R. & Musen, M. (2000). The knowledge model of Protégé-2000: Combining interoperability and flexibility.
In R. Dieng & O. Corby (eds), Proceedings of the 12th EKAW, LNAI, Juan-les-Pins, France (pp. 17–32). London: Springer.

Noy, N. & McGuinness, D.L. (2001). Ontology development 101: A guide to creating your first ontology. Technical Report
KSL-01-05 and SMI-2001-0880, Stanford Knowledge Systems Laboratory and Stanford Medical Informatics.

Resnik, P. & Smith, N.A. (2003). The Web as a parallel corpus. Computational Linguistics, 29(3), 349–380.
Staab, S. & R. Studer, eds (2004). Handbook on Ontologies in Information Systems. Berlin: Springer.
Sure, Y. & Studer, R. (2002). On-To-Knowledge Methodology (Chapter 3, pp. 33–46). England: Wiley and Sons.
Sure, Y., Angele, J. & Staab, S. (2003). OntoEdit: Multifaceted inferencing for ontology engineering. Journal on Data Seman-

tics, 1, 128–152.
Sure, Y., Staab, S. & Studer, R. (2002). Methodology for development and employment of ontology based knowledge manage-

ment applications. SIGMOD Rec., 31(4), 18–23.
Särndal, C.-E., Swensson, B. & Wretman, J. (2003). Model assisted survey sampling (Springer series in statistics).
Tempich, C. et al. (2005). An argumentation ontology for distributed, loosely-controlled and evolving engineering processes of

ontologies (DILIGENT). In C. Bussler et al. (eds), ESWC 2005, Heraklion, Crete, Greece, LNCS. Berlin: Springer.
Terziev, I., Kiryakov, A. & Manov, D. (2004). Base upper-level ontology (bulo) guidance. SEKT deliverable 1.8.1, Ontotext

Lab, Sirma AI EAD (Ltd.).
Welty, C. (2006). OntOWLClean: Cleaning OWL ontologies with OWL. In B. Bennet & C. Fellbaum (eds), Proceedings of

Formal Ontologies in Information Systems FOIS 2006, Baltimore, MD. Amsterdam: IOS Press.
Welty, C. & Andersen, W. (2005). Towards OntoClean 2.0: a framework for rigidity. Journal of Applied Ontology, 1(1), 107–

116.
Welty, C., Mahindru, R. & Chu-Carroll, J. (2004). Evaluating ontology cleaning. In D. McGuinness & G. Ferguson (eds),

AAAI2004. San Jose, CA: AAAI/MIT Press.

