
Semantic MediaWiki in Operation:
Experiences with Building a Semantic Portal

Daniel M. Herzig and Basil Ell

Institute AIFB
Karlsruhe Institute of Technology

76128 Karlsruhe, Germany
{herzig, basil.ell}@kit.edu
http://www.aifb.kit.edu

Abstract. Wikis allow users to collaboratively create and maintain con-
tent. Semantic wikis, which provide the additional means to annotate
the content semantically and thereby allow to structure it, experience
an enormous increase in popularity, because structured data is more us-
able and thus more valuable than unstructured data. As an illustration
of leveraging the advantages of semantic wikis for semantic portals, we
report on the experience with building the AIFB portal based on Seman-
tic MediaWiki. We discuss the design, in particular how free, wiki-style
semantic annotations and guided input along a predefined schema can
be combined to create a flexible, extensible, and structured knowledge
representation. How this structured data evolved over time and its flex-
ibility regarding changes are subsequently discussed and illustrated by
statistics based on actual operational data of the portal. Further, the
features exploiting the structured data and the benefits they provide are
presented. Since all benefits have its costs, we conducted a performance
study of the Semantic MediaWiki and compare it to MediaWiki, the non-
semantic base platform. Finally we show how existing caching techniques
can be applied to increase the performance.

1 Introduction

Web portals are entry points for information presentation and exchange over the
Internet about a certain topic or organization, usually powered by a community.
Leveraging semantic technologies for portals and exploiting semantic content has
been proven useful in the past [1] and especially the aspect of providing seman-
tic data got a lot of attention lately due to the Linked Open Data initiative.
However, these former approaches of semantic portals put an emphasis on for-
mal ontologies, which need to be build prior to the application by a knowledge
engineer resulting in formal consistent and expressive background knowledge [1,
2]. This rather laborious process yields further efforts when changes and adjust-
ments are required. Beside this disadvantage, [3] points out that versioning of
the structured knowledge is missing and the community features are essential,
but insufficient. Recently, [4] showed how the popular content management sys-
tem Drupal, which will support semantic data from version 7, can be applied for

2

building semantic applications. We pursue an alternative approach, leveraging
communities for the creation and maintenance of data.

One of the most successful techniques to power communities of interest on the
web are wikis. Wikis allow users to collaboratively create and maintain mainly
textual, unstructured content. The main idea behind a wiki is to encourage peo-
ple to contribute by making it as easy as possible to participate. The content is
developed in a community-driven way. It is the community that controls content
development and maintenance processes. Semantic wikis allow to annotate the
content in order to add structure. This structure allows to regard the wiki as a
semi-structured database and to query its structured content in order to exploit
the wiki’s data and to create various views on that data. Thus wikis become
even more powerful content management systems. Moreover due to the seman-
tic annotations, structured content becomes available for mashups with semantic
content residing outside the wiki, for example as Linked Open Data.

In this paper we describe how we use the semantic wiki Semantic MediaWiki1

[5, 6] (SMW) for creating a portal for our institute, which can be accessed at
http://www.aifb.kit.edu. The portal manages the web presence of the AIFB
institute, an academic institution with about 150 members. The portal is a
semantic web application with about 16.7k pages holding 105k semantic anno-
tations. Table 1 gives an overview in numbers of the portal. While wikis provide
free, wiki-style semantic annotations with the complete freedom regarding the
adherence to any vocabulary, users can be guided to adhere to use certain vo-
cabularies by providing form-based input. The importance of the right balance
between unstructured content, which is better than no content, and structured
content, which is more efficient to use, was studied already by [2]. However, this
approach focussed on automatic crawling of structured data and did not regard
the user as the primary provider.

This paper is structured as follows: In Section 2 we report on design and
development decisions and in particular discuss the free, wiki-style editing versus
guided user input. Further, we report on the development efforts and on the
subsequent usage and maintenance. In Section 3 we show the advantages and
features made possible by the semantics of the portal. And finally, we report in
Section 4 on performance tests and compare Semantic MediaWiki to its non-
semantic base platform MediaWiki, before we conclude in Section 5.

2 Designing and Developing the Portal

The most common and original application of Semantic MediaWiki and wiki
systems in general is collaborative knowledge management, e.g. for communities
such as semanticweb.org. In this section we present the portal we built using
Semantic MediaWiki and in particular its features exploiting semantic technolo-
gies.

1 http://semantic-mediawiki.org/

3

2.1 Free Annotations versus Guided Input

A wiki provides the users with the means of rather easy and unconstrained
adding and changing of content, in the sense that they just need to know the
simple wiki markup and have a web browser. Further, the users can publish con-
tent themselves without the assistance of a webmaster. One aim when designing
the portal was to have low barriers for the institute’s members to contribute,
extend and maintain the content. Hence, we considered a wiki as an appropriate
choice. In contrast to regular wiki systems, Semantic MediaWiki allows to se-
mantically annotate the content. This free and independent annotation paradigm
has the advantage of being flexible, and expandable. Moreover, it does not re-
quire the knowledge of a predefined schema. The underlying notion is that more
annotations are in general better than less annotations even if they are not well
organized and do not follow a predefined vocabulary or ontology. However, when
using inline queries, see Section 3.1, one has to know the exact property names,
since formal queries are strictly sensitive and minor derivations are not tolerated.
The same is true for many applications building on top of the structured data.
They are often build on a specific schema or vocabulary. Thus, one has to find
the right balance between a predefined schema and keeping it flexible and ex-
pandable at the same time. For the case of Semantic MediaWiki, templates and
forms2 allow to restrict the user to a predefined set of annotations. A template
defines the logic and the appearance of a part of a page. It keeps placeholder
variables, which are filled by the instantiating page. Inserting annotations in the
template entails the annotation of all pages using the template with the same
annotations. Consequently, changing the annotation inside a template cascades
this change to all pages and thereby allows a flexible modification of the struc-
tured data. Forms provide a graphical user interface for using templates correctly
and do not even require the usage of wiki markup. Thereby the combination of
forms and templates allows to have a set of predefined annotations.

For the portal, we created about 30 templates and corresponding forms for
all major, reoccurring resources, like people, lectures, publications, and so on.
Figure 1 shows an example form for editing a page about a project. Forms can
consist of different types of fields, e.g. for text, dates, choices, etc. Behind each
field is an annotation, i.e. a property. By entering a value in a field, the value is
assigned to the corresponding property. It is good practice to import these prop-
erties from already existing vocabularies3, e.g. FOAF4 for persons, if applicable.
In order to keep the possibility for free, unconstraint annotations, the forms can
contain text areas, which can contain text with arbitrary annotations. Thereby,
we tried to find a balance between guided input with predefined annotations and
the possibility to have free annotations.

The advantage of this mixture of guided input and open annotations is that
the structure of the data can evolve dynamically, which we report on in Sec-
tion 2.3.
2 http://www.mediawiki.org/wiki/Extension:Semantic_Forms
3 http://semantic-mediawiki.org/wiki/Help:Import_vocabulary
4 http://xmlns.com/foaf/spec/

4

Fig. 1. The left side shows guided input via a form. The form consists of several
different input fields. The content of each field is assigned to a predefined annotation.
The form holds also free text areas, which can contain text with arbitrary annotations.
The right hand side shows entirely free, wiki-style editing without any constraints
regarding predefined annotations.

2.2 User Roles

When we proposed a wiki system for the portal, the first concern from colleagues
was the fear that everybody can edit it, even anonymously. This is of course not
the case. We used MediaWiki’s internal user right management5 to create four
different groups: The anonymous web surfers can only read regular pages, i.e.
those in the main namespace. The authenticated users may also read pages in
other namespaces and in addition are allowed to edit pages, except for pages
in the template and form namespace. The latter can only be manipulated by
admins. The fourth group are bureaucrats, which have the same rights as admins,
but in addition they can appoint and withdraw the admin right.

Since having an extra user account might impose a barrier for people to par-
ticipate, we used the Lightweight Directory Access Protocol (LDAP) extension6

for MediaWiki and an SSL encrypted connection between the portal and the
LDAP server. This allows to use already existing user accounts for the authen-
tication at the portal.

5 http://www.mediawiki.org/wiki/Manual:User_rights
6 http://www.mediawiki.org/wiki/Extension:LDAP_Authentication

5

2.3 Development and Dynamics of the Structured Knowledge
Representation

The development efforts of the portal can be broadly separated into four differ-
ent areas: system setup, visual design and custom function development, data
import, and finally template development, which comprises modeling the struc-
tured data, i.e. the properties and classes.

Setting up a SemanticMediaWiki takes less than one hour7 and developing
a so-called skin, i.e. the look and feel of the platform, depends on the given
specifications. In our case, it took a student developer about 80 hours to meet
our organization’s 148 pages in length design guideline.

In order to measure the efforts of the development, we counted the edits, i.e.
the revisions, of artifacts and the newly created artifacts over time. Figures 2
and 3 show these counts per month, where each point represent the count ac-
cumulated over the month marked on the horizontal axis. The life cycle phases,
i.e. development, internal release for testing, and release into production are
illustrated in the figures as well.

Dynamics of the Structured Knowledge Representation As discussed in Sec-
tion 2.1, Semantic MediaWiki provides the means to keep a flexible, structured
data schema consisting of properties and classes. Figure 2 shows how these el-
ements changed over time and how often new elements were added. Categories
group pages and correspond to classes in the structured representation. Regard-
ing the manipulation of classes and properties, one can see that most of the
structured data layout was done at the very beginning of the project in April
2009. In particular, the classes involved were known right from the beginning
and relatively few changes were needed during the subsequent phases. The same
holds for the properties in an alleviated form. Still, one can see that a small, but
steady number of properties and classes were added or changed over the course
of the project with the exception of the peaks in March 2010. In this month, the
annual institute report about events, publications, and people was prepared. The
data for the report was exported from the portal. Since the editors requested
changes and additions to the data, e.g. splitting names into first and last name
or adding the location of publication to some publication types, we needed to
change the structure in the portal accordingly. In particular, the class structure
underwent refactoring, e.g. splitting the class employee into former and active
members.

All these adjustments were done in an agile way driven only be requirements
and demands. In particular, one has to keep in mind that all changes happen
on the application level. Touching the underlying database was never necessary
nor taking the system offline for modifications. Furthermore, the wiki provides a
versioning system, which tracks all changes, also those of properties and classes,
a crucial capability for semantic portals [3].

7 http://www.mediawiki.org/wiki/Manual:FAQ#How_do_I_install_MediaWiki.3F

6

0
50

10
0

15
0

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

20
09

−
04

20
09

−
05

20
09

−
06

20
09

−
07

20
09

−
08

20
09

−
09

20
09

−
10

20
09

−
11

20
09

−
12

20
10

−
01

20
10

−
02

20
10

−
03

20
10

−
04

20
10

−
05

20
10

−
06

New Properties and Property Edits per Month

Testing

R
el

ea
se

Development Production

● edits on properties
new properties

0
5

10
15

20
25

30

●

●

●

●

●

●

● ●

●

●

●

●

● ● ●

20
09

−
04

20
09

−
05

20
09

−
06

20
09

−
07

20
09

−
08

20
09

−
09

20
09

−
10

20
09

−
11

20
09

−
12

20
10

−
01

20
10

−
02

20
10

−
03

20
10

−
04

20
10

−
05

20
10

−
06

New Categories and Category Edits per Month

Testing

R
el

ea
se

Development Production

● edits on categories
new categories

Fig. 2. The plot on the left side shows the number of new property types and edits
on property types per month. The plot on the right side show the number of new
categories and edits on categories. Categories correspond to classes of the structured
data. Since properties and classes are the elements of the structured data, these plots
show the evolution of the structured data over time.

0
20

00
40

00
60

00
80

00
10

00
0

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

20
09

−
04

20
09

−
05

20
09

−
06

20
09

−
07

20
09

−
08

20
09

−
09

20
09

−
10

20
09

−
11

20
09

−
12

20
10

−
01

20
10

−
02

20
10

−
03

20
10

−
04

20
10

−
05

20
10

−
06

New Articles and Article Edits per Month

Testing

R
el

ea
se

Development

Production

● edits on articles
new articles

0
50

0
10

00
15

00
20

00

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●

41 28 12 13 15 16 40 13 1 3 7 11 0 0 0

20
09

−
04

20
09

−
05

20
09

−
06

20
09

−
07

20
09

−
08

20
09

−
09

20
09

−
10

20
09

−
11

20
09

−
12

20
10

−
01

20
10

−
02

20
10

−
03

20
10

−
04

20
10

−
05

20
10

−
06

New Templates and Template Edits per month

Testing

R
el

ea
se

Development

Production

● edits on templates
new templates

Fig. 3. The plot on the left side shows the number of new articles and edits on articles
per month for the different periods from development to production. The high numbers
during the development phase are due to automatic batch jobs populating the portal
with content. The plot on the right side shows new templates and edits on templates.
Since these can only be edited by admins, this plot allows to estimate the development
effort as well as the maintenance effort after the release. The peak in March 2010 was
the result of implementing the annual reporting, see Section 2.3.

7

pages 16.716

templates 219

forms 30

uploaded files 1.773 (1.2 GB)

users (total) 142

active users (last 91 days) 83

annotations (property instances) 104.182

property types 191

categories (classes) 40

OWL/RDF 238k triples

code base 132 MB

database 99.5 MB

Table 1. The portal in numbers as of June 2010.

Data Migration and Template Development In order to populate the platform,
we used the Pywikipediabot framework8, a Python application for manipulating
wiki pages via scripts. The loading of the existing data into the platform explains
the high peak on the left plot of Figure 3. Creating the templates was the most
time consuming task. However, the peak at the start of the testing period is
solely due to the tidy visual requirements.

Usage and Maintenance Since the release, we observe a steady user participation
with an average of 550 edits/month on articles and about 195 new pages/month,
as shown in the production period in left plot of Figure 3. About 83 users or 66%
of the full time employees of our institute contributed within the last 3 months,
i.e. April 18th to June 18th 2010. At the same time, manipulation of templates
declined constantly, from 200 to less than 10 edits/month, which suggests that
the maintenance by the admins is within reasonable bounds, which can be seen
in the right plot of Figure 3.

2.4 Multilingual Content

MediaWiki per se is monolingual and uses interwiki-links to point to another wiki
holding an article on the same topic in a different language. Since we wanted
users to have one single point of data entry, we abstained from setting up a wiki
in each language. However, we needed an English and German view on our web
presence. Therefore, we chose to create subpages for the English version of a
German page by adding /en to the page name. The users add the German and
the English content via one form for predefined resources.

8 http://meta.wikimedia.org/wiki/Pywikipediabot

8

2.5 Challenges during Design and Development

The biggest challenge during the development was the creation of templates
and trimming them to the strict design guidelines. Whereas it is acceptable for
most wiki applications to have little blemish and accept the free and sometimes
untidy appearance, an official web presence should avoid it, e.g. all empty vari-
ables in templates needed to be hidden. Moreover, due to the tidy appearance
requirement, some annotations contain markup, e.g. for italic font style or font
size, which is desirable in the structured data representation. Furthermore, the
templates combine the description of the appearance of a page and the logic
at the same time, which makes them complex and overcharged and require ad-
vanced knowledge of the wiki markup for further development and maintenance.
Therefore, template manipulations are restricted to admins in our portal.

3 Where Semantics Help - Features of Semantic
MediaWiki

In the previous section we reported on the development process and the dynamics
of the structured data. In this section, we show the features taking advantage of
the structured data.

3.1 Inline Queries

The biggest advantage of SMW, beside its flexible annotation paradigm, is the
possibility to reuse data across the platform by querying it from other pages.
These inline queries allow to request sets of data or just single property values
and display them on a page in various result formats, such as tables, list, charts,
maps, etc. This reuse of data avoids data redundancy, e.g. the information about
a person, like name, email, or phone number, is entered once on the page about
this person and then later this information is queried and displayed on pages
about projects, publications, etc., where this person is involved in. If the data
changes on the source page, the data on the requesting page changes accordingly
when the inline query is executed again. Inline queries create dynamic pages.
Figure 4 illustrates an example of an inline query and its results as it appears
on the requesting page.

3.2 Querying Linked Open Data Sources

We created an extension that allows querying external sources using the sim-
ple syntax of inline queries [7]. This mediation-based approach allows for either
displaying or importing externally retrieved data from the Linked Open Data
source Freebase, other SMWs, or from CSV files, in order to enrich the wiki’s
content with external data. In the first two cases a mediator translates an inline
query into a query in the query language supported by the remote source, which
is MQL in the case of Freebase. Figure 5 illustrates an example. Translation is

9

(1)	

{{#ask:	 [[Category:Employee]]	
	 	 	 [[Posi:on::Professor||Professorin]]	

	 |	 ?Picture	
	 |	 ?Telephon	
	 |	 ?Email	
	 |	 ?Room	
	 |	 sort=Lastname	
	 |	 format=template	
	 |	 template=Personlist	

}}	

(2)	

Fig. 4. An inline query requesting all employees, which are professors, and information
about them (1) and its result representation (2).

not a task of solely syntactical transformation but also involves ontology map-
ping. The mappings are stored in the wiki as annotations. Thus they can be
contributed and maintained by users.

In our portal we query the SMW of semanticweb.org in order to retrieve
events, such as conferences or workshops and present them on a timeline in order
to offer visitors of our page an interactive conference radar with up-to-date
information. Moreover, we are using Freebase to retrieve location information
about the institute’s industrial and academic partners, in order to be able to
sort them by region.

Fig. 5. Using the Freebase mediator an inline query such as in i) is translated into an
MQL query such as in ii) by using the mapping information such as in iii).

3.3 Exploiting the Semantics for Search

One certain advantage of having the content of the portal available in a struc-
tured form is the ability to exploit it for search. [8] presents an approach for

10

semantic search in wikis, which we apply for the portal9. This approach allows
to use keywords as the means to express an information need, because most
users are used to this common search paradigm. These keywords are then trans-
formed into interpretations using the structured data of the wiki as the search
space. The interpretations are shown to the user, who can select the interpreta-
tion fitting best to his information need and further refine it in the next step.
Figure 6 shows an example search over the structured data for employees, their
email addresses, and office location. In contrast to the inline queries, which use a
simple, but formal query syntax and are therefore inadequate for ad-hoc search,
Ask The Wiki is suitable for end users and exploits the semantic annotations.

Fig. 6. This figures shows the result of a search for all employees, their emails, room
numbers, and corresponding building numbers. The facets menu on the right hand side
allows to refine the result based on the structured data.

4 Performance

MediaWiki, the platform powering Wikipedia, runs on many sites and is well
known for being scalable and fast. Although the usefulness of the features pro-
vided by Semantic MediaWiki get the interest of many potential users, often
skepticism about SMW’s resource requirements, its stability and scalability are
brought forward. In this section, we report on stress tests conducted on both
Semantic MediaWiki and MediaWiki with the data from the portal in order to
allow for their comparison.

9 http://www.aifb.kit.edu/web/Spezial:ATWSpecialSearch

11

Test Environment We performed the tests with a common desktop computer,
which has one CPU with 2GHz, 2 GB memory and runs on Debian 5.010. The
wiki runs on an Apache web server with PHP 5 and uses a MySQL database11.
The load tests are conducted with Apache JMeter and the server was monitored
by sysstat12. The client sending the requests was connected through the same
100 MBit backbone to the server.
This system configuration is a common single machine setting and by no means
laid out for high-performance. However, it allows to compare the two systems,
MediaWiki 1.15.3 and Semantic MediaWiki 1.5. The wiki holds the data of the
AIFB portal, see Table 1 for an overview. The data contains annotations in the
SMW syntax. If SMW is not enabled, MediaWiki interprets these statements
just as text. SMW allows to restrict the usage of inline queries, e.g. the maximal
number of conditions, query depth, and maximal retrieved results, in order keep
reasonable bounds. However, these settings were all set to unlimited for the tests.
The response time at the client side, i.e. from sending the request until receiv-
ing the response, is taken as the performance metric. For the measurements, 310
pages (∼ 2% of all pages) accessible from the main page within 2 clicks were cho-
sen. The pages are a representative subset of all pages, ranging from pages with
little semantic annotations and queries to pages that make heavy use of these
features. On average a page holds 10 inline queries and 12 semantic annotations.

4.1 MediaWiki vs. Semantic MediaWiki

A test consisted of N parallel users requesting the 310 pages in random order.
Figure 7 shows a box-plot illustrating the response times in milliseconds for
MediaWiki (MW) and Semantic MediaWiki (SMW), and Semantic MediaWiki
with Caching (SMW+C) for N = {1, 10, 25, 50} parallel users. It shows that
the response times are linear with respect to the number of parallel users. This
linear behavior becomes apparent in Table 4.1, which shows the throughput, i.e.
the number of served requests per second. The throughput is constant at about
4.7 requests/sec for MW and 4.1 requests/sec for SMW, which means that using
SMW costs about 13% in performance compared to MW during operation.

However, it is unexpected that the spread of the response times over the 310
pages is so little, as illustrated in the box-plot of Figure 7. Especially in the case
of SMW, the pages contain semantic annotations and in particular inline queries,
which need to be parsed and processed. The response time should depend on the
number and complexity of these queries. This low spread is due to the implicit
caching. The web server has a build-in PHP code cache (APC), which MW and
therefore also SMW exploits. Also, a page is not rendered for each request, but
only when necessary. In addition, the database caches requests (InnoDB). All
these build-in caches absorb most of the additional overhead by SMW during
regular operation and make it possible to run SMW at a constant cost of about

10 AMD Athlon 64 3200+, 2.6.26-2-amd64 kernel
11 Apache 2.2.9, PHP 5.2.6-1+lenny3 with APC 3.0.19, MySQL 5.0.32
12 Apache JMeter 2.3.4, sysstat 7.0

12

●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●
●●
●●●●
●
●●●●●●●●●●●●●

●
●

●●
●●
●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●
●
●

●●●●●●●●●●●

●

●●

●
●

●●●●

●

●

●●●

●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●
●
●●●●●●●●●●●

●

●●●

●
●
●

●●●●●
●●●
●●●●●●●●●●

●

●●

●
●

●●
●●●●●

●●●

●

●

●●●●
●
●●●●●●●●
●●●●●
●●●
●
●●●●●
●●●
●●●●

●●●●

●
●
●
●●●●

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0
14

00
0

re
sp

on
se

 ti
m

e
in

 m
s

Response Times of MW, SMW, and SMW+Cache for N Users

N=1 N=10 N=25

N=50

N=100

M
W

S
M

W

S
M

W
+

C

M
W

S
M

W

S
M

W
+

C

M
W

S
M

W

S
M

W
+

C

M
W

S
M

W

S
M

W
+

C

S
M

W
+

C

Fig. 7. Box-plot illustrating the response time per page for MW, SMW, SMW+Cache
with N parallel users requesting 310 pages in random order.

13% in performance decrease compared to the non-semantic MediaWiki, see
Table 4.1. The bottle neck resource during these tests was the CPU for MW and
SMW for all runs with more than one user. The CPU was consumed for about
95% by the web server and 5% by the database.

N 1 10 25 50 100

MW 4.36 4.75 4.75 4.73 n/a

SMW 3.83 (-12 %) 4.10 (-14%) 4.13 (-13 %) 4.13 (-13%) n/a

SMW+C > 25.68 (+489%) > 90.80 (+1810%) > 96.78 (+1930%) > 96.31 (+1930%) > 95.01

Table 2. Throughput (requests/sec) for N parallel users. The percentages are com-
pared to the MediaWiki (MW) baseline. When applying the cache (SMW+C) the
server’s limits were not met.

In order to avoid the implicit caching behavior and to assess the actual re-
source requirements, we performed a cold test run, i.e. we restarted the machine
after each page was requested once, and repeated this for 10 times. Figure 8
shows the average response time over the 10 runs for each page. The pages are
sorted by number of inline queries in ascending order, which is displayed on the

13

horizontal axis, and subsequently by the number of templates. It can be seen that
the response time for MW increases slightly with the number of templates per
page. In the case of SMW, one can say that more queries cause a higher response
time in general. However, the response time depends mostly on the particular
query, which can be seen on the high peaks. The highest peak is a page pre-
senting a list of all people through an inline query, which retrieves an image for
each person and creates a custom sized thumbnail for it. The same holds for the
other high peaks. These pages all contain one query, which involves operations
on images. Queries retrieving only textual information are far less expensive, e.g.
pages containing 20 and more inline queries take all less than 2 seconds to serve,
if no images are involved. Since images are static content, which can easily be
cached, we applied a cache, which is discussed in the following section.

Fig. 8. Response times (cold) for 310 pages sorted by increasing number of inline
queries, which is shown on the horizontal axis. The high peaks in the center of the plot
are due to inline queries involving image operations.

4.2 Caching Dynamic Pages

In order to accelerate the performance of a web site and to reduce the load of
the web server, reverse proxies are applied. A reverse proxy is a cache installed
in front of a web server responding to requests, if the requested content is avail-
able in the cache, or otherwise routing the request to the web server. A popular
web cache is Squid13, which is supported by MediaWiki, see Figure 9 for an
overview of the setup. While it works well with static content, such as HTML
documents or image files, it becomes harder when dynamic content comes into
play. In the context of Semantic MediaWiki, dynamic content is foremost pro-
duced by inline queries requesting data from other sites of the wiki or from other
13 http://www.squid-cache.org

14

sources outside the wiki when querying via mediator. The page holding the inline
query is dynamic in the sense that its appearance and displayed content changes
although the source code of the page does not. Therefore, we encountered the
problem that the Last-Modified entry in the HTTP header remained the same,
because the web server did not recognize a change. Since this entry is used by
the cache to determine whether a page is still fresh, we needed to modify the
caching mechanism. We chose an aggressive caching strategy by suppressing the
Last-Modified entry and set a hard maximal expiration time of 3 hours for
pages. Thereby, implicit changes of a dynamic page will be updated within this
period at the latest. When a page is edited directly, it is immediately purged
from the cache. Images and other static content is cached for longer periods.
Applying the cache yields a huge performance increase to about 90 requests/sec
as shown in Table 4.1 and Figure 7. However this is by far not the limit, since
the CPU was used to about 30%, even for 100 parallel users. One needs to setup
multiple physical clients sending requests to asses the actual limit when using a
cache, which was beyond our scope.

Squid
Web

Apache

MySQL

LDAP LDAP
Server

Authen'cated	 users	

SMW	

Fig. 9. The infrastructure stack of the portal. Anonymous readers get the content
served from the Squid cache, if available. Authenticated users are directly connected
to the web server.

4.3 Performance in Operation

The portal is online since more than six month now with only one interrup-
tion due to an DoS attack, which we addressed by restricting the number of
connections to the web server. Therefore, we regard the solution as stable and
quite robust. There are between 60k and 120k hits per day, which results in an
average CPU usage of 6% and an average load of 0.1 on our production web
server, which has 2 CPUs14 and 2GB memory. The median response time, in
this case the time between arrival of a request at the server and the sending of

14 Intel(R) Xeon(R) CPU E5450 @ 3.00GHz

15

the response, is about 2 ms on average, where cache hits take slightly less than
2ms and cache misses take about 200ms to serve on average. The cache has a
request hit ratio of about 80% and a size of about 550MB on disk.

5 Conclusion

In this paper we have shown how to apply the wiki paradigm of collaborative
editing to a web portal using semantic technologies. We discussed how free, un-
constrained annotations can be combined with predefined annotations in order
to allow flexible and expendable structured data. Further, we reported on how
the structured data made available by semantic annotations evolved over time
and that it was possible to extend and change it during operation without touch-
ing the underlying database. How the semantic data is used and taken advantage
of by Semantic MediaWiki’s features is illustrated by several examples. Finally,
we evaluated the performance and compared it to its non-semantic alternative
and showed how caching can be applied to boost the performance. Taking ev-
erything in consideration, one can see how Semantic MediaWiki can be used as
a successful portal platform providing the advantages of semantic technologies.

6 Acknowledgments

Special thanks go foremost to Martin Zang, whose dedication to this project
contributed a big part to its success. Also Nicole Arlt and Fabio Garzotto are
thanked for their commitment as well as Philipp Sorg and the IT team at AIFB
for their valuable feedback and technical support. Work presented in this paper
has been funded by the EU IST FP7 project ACTIVE under grant 215040.

References

1. Maedche, A., Staab, S., Stojanovic, N., Studer, R., Sure, Y.: Semantic portal -
the seal approach. In Fensel, D., Hendler, J., Lieberman, H., Wahlster, W., eds.:
Spinning the Semantic Web. MIT Press, Cambridge, MA. (2003) 317–359

2. Hotho, A., Maedche, A., Staab, S., Studer, R.: Seal-II the soft spot between richly
structured and unstructured knowledge. Journal of Universal Computer Science
7(7) (2001) 566–590

3. Lara, R., Han, S.K., Lausen, H., Stollberg, M., Ding, Y., Fensel, D.: An evaluation
of semantic web portals. In: IADIS Applied Computing International Conference.
(2004) 23 – 26

4. Corlosquet, S., Delbru, R., Clark, T., Polleres, A., Decker, S.: Produce and con-
sume linked data with drupal! In: 8th International Semantic Web Conference
(ISWC2009). Volume 5823 of LNCS., Springer (2009)

5. Krötzsch, M., Vrandecic, D., Völkel, M., Haller, H., Studer, R.: Semantic wikipedia.
Journal of Web Semantics 5(4) (2007) 251–261

6. Krötzsch, M., Vrandecic, D., Völkel, M.: Semantic mediawiki. In: Proceedings of the
5th International Semantic Web Conference (ISWC2006). Volume 4273 of LNCS.,
Springer (2006) 935–942

16

7. Ell, B.: Integration of external data in semantic wikis. Master’s thesis, Hochschule
Mannheim (2009)

8. Haase, P., Herzig, D.M., Musen, M., Tran, D.T.: Semantic wiki search. In: 6th
European Semantic Web Conference (ESWC2009). Volume 5554 of LNCS., Springer
Verlag (2009) 445–460

