
Neural Citation Recommendation:
A Reproducibility Study

Michael Färber, Timo Klein, and Joan Sigloch

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
michael.faerber@kit.edu

{ufpzp,uzoqf}@student.kit.edu

Abstract. Context-aware citation recommendation is used to overcome
the process of manually searching for relevant citations by automatically
recommending suitable papers as citations for a specified input text. In
this paper, we examine the reproducibility of a state-of-the-art approach
to context-aware citation recommendation, namely the neural citation
network (NCN) by Ebesu and Fang [1]. We re-implement the network and
run evaluations on both RefSeer, the originally used data set, and arXiv
CS, as an additional data set. We provide insights on how the different
hyperparameters of the neural network affect the model performance of
the NCN and thus can be used to improve the model’s performance. In
this way, we contribute to making citation recommendation approaches
and their evaluations more transparent and creating more effective neural
network-based models in the future.

Keywords: recommender systems, bibliometrics, citation context

1 Motivation

Citing sources is an essential part of academia to guarantee transparency and
truthfulness. However, the process of finding relevant and appropriate citations
is becoming increasingly time-consuming and difficult due to the sheer amount
of new literature published every year [1]. Citation recommendation [2] has been
proposed to overcome this issue. This task refers to the idea of generating a
ranked list of potentially suitable citations in an automated way, thus facilitating
the process of choosing correct citations.

According to He et al. [3], there are two types of citation recommendation
tasks, namely global citation recommendation and local citation recommendation.
The former is used to propose candidates for the bibliography of a given
scientific manuscript that does not yet have a bibliography. Local citation
recommendation, on the other hand, proposes candidates for a given citation
placeholder (e.g., “[1]”) located in the written text of a scientific document. In

Copyright c© 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

order to generate recommendations, the text surrounding the placeholder, often
referred to as the citation context, is used as an input into the recommender
system. The output consists of a ranked list containing candidates for the query
placeholder.

In recent years, several approaches to global and local citation
recommendation have been proposed [2]. In this paper, we analyze the
reproducibility of one specific local citation recommendation approach, namely
the neural citation network (NCN) by Ebesu and Fang [1]. We chose this
approach due to its currentness, its promising results on a large data set, and
its wide acceptance in the scientific community (based on citation counts). Note
that we were unable to run the source code published online by Ebesu and
Fang. Furthermore, the Python version used by Ebesu and Fang is outdated.
Thus, after re-implementing the network, we used both the original data set and
another data set for training and evaluating the NCN in order to examine its
performance under varying circumstances.

Overall, we make the following contributions in this paper:
1. We re-implement the NCN by Ebesu and Fang [1], a state-of-the-art

approach to local citation recommendation.
2. We run extensive experiments based on the NCN using the original data set

RefSeer and arXiv CS as a further data set.
3. We analyze the evaluation results and give noteworthy conclusions for the

future development of local citation recommendation approaches.
The rest of this paper is structured as follows: We give an overview of the

NCN architecture in Sec. 2. In Sec. 3, we present our experimental setup and
the evaluation results. We conclude in Sec. 4.

2 The Neural Citation Network

The NCN proposed by Ebesu et al. [1] consists of an encoder-decoder model
coupled with an attention mechanism (see Fig. 1).

Encoders. Encoders are deployed as part of the NCN in order to turn the
raw citation context and the citing/cited authors’ names into feature tensors
holding important information about the context and the authors, respectively.
1. Context encoder. The part of the NCN that is responsible for encoding

the citation context is a time-delay neural network (TDNN) introduced by
Collobert et al. [4]. It allows multiple forward propagations through the
network at once, leading to all feature maps being calculated in parallel. The
TDNN used by Ebesu and Fang consists of a convolutional layer followed by
both a pooling layer and a fully connected layer.

2. Author encoder. In order to include author information when generating
citation recommendations, the NCN comprises an author encoder, which
uses the same architecture as the context encoder (outlined above). It is
separately applied to (1) the embeddings of the authors’ names Aq of
the document from which the query context originated as well as (2) the
embeddings of the authors’ names Ad of all documents in the database. The

2

Attention

Lorem ipsum…

Citation context

encoder (TDNN)

probability for

cited document yi

Decoder (RNN)

embedding of

citation context
s = [f(Xq) + f(Aq) + (fAd)]

ci

cited paper’s title xi
d

given as word embeddings

updated hidden

state hi

hidden state

hi-1

Citing author

encoder (TDNN)
Aq

softmax

embedding of

citing author

Cited author

encoder (TDNN)
Ad

embedding of

cited author

Xq

citation context q

Fig. 1: Architecture of the neural citation network (NCN).

author encoder is applied multiple times using TDNNs with varying region
filter sizes in the convolutional layer.
The final representation which results from applying the context encoder
and author encoders is denoted as

s = [f(Xq) ⊕ f(Aq) ⊕ f(Ad)],

with a given citation context representation Xq.
Decoder. The NCN’s decoder is a recurrent neural network (RNN) that

makes use of the gated recurrent unit (GRU) [5] as a gating mechanism as well
as the attention mechanism [6]. It is applied to the title of every document that
can be used as a citation for the query citation context.2 The purpose of the
decoder is to generate scores for every document in the database indicating its
suitability as a citation for the given query context. The scores can ultimately
be used to generate citation recommendations for the query context.

Attention mechanism. The NCN makes use of the attention mechanism
originally introduced by Bahdanau et al. [6]. With the help of attention, the
encodings sj that originate from the context and author encoders are given
weights dependent on the decoder output hi−1 for the word prior to i. The
result is a context vector ci which is made up of a weighted sum of the encoder
outputs sj in accordance to their relevance. Attention is used to put emphasis
on encodings that are particularly important for the current time step. The
attention mechanism is implemented as a feed-forward neural network that
concludes with a softmax layer converting attention vectors aij into attention
scores αij . These indicate the importance of the encoder output sj for the ith

word in the title of the document currently being decoded. To illustrate, in

2 For very large databases, a pre-selection algorithm may make sense to save
computing time. See Section 3.2 for further information.

3

Fig. 2: Illustrative example of attention weights.

Fig. 2, we visualize the matrix αij for the target sentence “Imagenet classification
with deep convolutional neural networks” by the well-known authors “Alex
Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton” after the sequence was tokenized
and preprocessed. The context for this example was set to “Neural networks are
really cool, especially if they are convolutional” with the authors “Chuck Norris,
Bruce Lee.” This toy example visualizes how the decoder sensibly puts little
emphasis on the citing authors as compared to the context and cited authors.
The context vector ci is determined for every word i in the document title.

3 Evaluation

3.1 Data Sets

We used two data sets in our evaluation.
1. RefSeer. Following Ebesu and Fang [1], we used RefSeer [7] as our first

data set. Although we followed Ebesu and Fang’s instructions on creating
their evaluation data set, we were unable to generate the exact same data set
based on the original RefSeer data as we were unable to find any information
about citing authors within the data set, only cited authors. For comparison,
we decided to randomly select 4.5 M out of the generated 14.9 M citation

4

Fig. 3: Distribution of citation context and citation title lengths in the
preprocessed arXiv CS data set.

contexts in order to end up with the same data set size as the one used by
Ebesu and Fang. Note that the data set we reused did not contain author
information of the citing papers. We thus expected poorer performance than
that of the model published by Ebesu and Fang.

2. arXiv CS. We used the arXiv.org publications in the computer science
domain as our second data set, as proposed by Färber et al. [8] for
citation-based tasks. We cut off the citation contexts and citation titles at
lengths of 100 and 30 words, respectively, to achieve a trade-off between
model performance and training time (see Fig. 3). Overall, we used 502,353
pairs of citations and citation contexts. We chose this data set in order
to obtain insights into how well our models perform under different
circumstances than the ones presented by Ebesu and Fang. Thus, our paper
is not only a replicability paper (with a focus on repeating prior experiments
to see when the methods work) but also a reproducibility paper (repeating
experiments in new contexts).

For model training and evaluation, we split the data sets into 80% training, 10%
validation, and 10% test data sets and set a seed to ensure reproducibility.

3.2 Model Re-Implementation

We rebuilt the NCN from scratch. Our final code is available on GitHub.3

We used PyTorch to reimplement the network, which was originally coded
in TensorFlow version r0.11. We used the torchtext package to convert the
data set into a suitable format for PyTorch and to facilitate the preprocessing

3 See https://github.com/X3N4/neural_citation.

5

https://arxiv.org/
https://github.com/X3N4/neural_citation

Table 1: Results of our replicability and reproducibility studies on the neural
citation network (NCN) [1] using the recall@10 metric. We show the total number
of trainable parameters (“# Param.”) as an indicator of model complexity.

Model RefSeer arXiv CS
Param. Recall@10 # Param. Recall@10

Embedding, conv filters, hidden: 64
Ebesu & Fang [1] 7,890,916 0.0929 7,919,716 0.1637
Batch size: 32 7,890,916 0.0876 7,919,716 0.1662
Vocab size: 30k 11,740,916 0.0945 11,769,716 0.1672
Filters: [4,4,5,6,7] 8,009,828 0.0916 8,038,628 0.1661
GRU layers: 1 7,865,956 0.0914 7,894,756 0.1592
GRU layers: 3 7,915,876 0.0846 7,944,676 0.1643
Combined improvements 11,884,788 0.0925 11,913,588 0.1621

Embedding, conv filters, hidden: 128
Size: 128 16,138,660 0.0878 16,253,604 0.1748
Filters: [4,4,5,6,7] 16,614,052 0.0849 16,728,996 0.1797
Impr. Filters, Batch size:32 16,614,052 0.0835 16,728,996 0.1637
Vocab size: 30k 23,828,660 0.0911 23,943,604 0.1705
Combined improvements 24,304,052 0.0871 24,518,068 0.1695

Embedding, conv filters, hidden: 256
Batch size: 32 33,764,644 0.0877 34,223,908 0.1268

steps. Furthermore, we used the SpaCy library in combination with torchtext to
tokenize the data set. After lemmatizing the data and removing stopwords using
the combined SpaCy and nltk stopword corpora, we numericalized the data set
using a vocabulary size of 20,000 tokens for citation contexts, citation titles, and
authors. To facilitate propagating batches through the network, we made use of
the bucketing technique that Ebesu and Fang used as well. Like Ebesu and Fang,
we further use the BM25 ranking function in the decoder part of the network to
preselect citation titles for a given citation context.

3.3 Evaluation Results

Citation recommendation approaches are difficult to evaluate, as the citation
provided by the original authors cannot be seen as the unequivocal ground
truth. Therefore, we did not consider ranking metrics but solely recall@k as
our evaluation metric. Table 1 shows the evaluation results.

RefSeer. We were unable to run our code on exactly the same data set as
Ebesu and Fang did, and our model for RefSeer does not include citing authors’
information (see Sec. 3.1), leading to a slightly different number of parameters.
Presumably due to the missing citing author information, our results are worse
than the ones reported by Ebesu and Fang (namely, recall@10 of 0.0929 instead
of around 0.29). Overall, all of the recall@10 values were in a similar range.
However, using other setups than the one proposed by Ebesu and Fang seems
promising.

6

arXiv CS. We evaluated our trained models on the first 20,000 of the
50,235 test examples, which significantly reduced the evaluation running time
and allowed us to perform detailed ablation studies.

By applying the hyperparameters used by Ebesu and Fang, our
reimplemented NCN yielded a recall@10 of 0.1637, as compared to 0.29 in
the original paper. Thus, we were unable to replicate the performance of the
original model. We hypothesize that this is a result of our significantly smaller
dataset, which comprised only 9.44% of the original paper’s training examples
(401,882 examples compared to 4,258,383 in the original paper). In order to tune
performance, we used differing hyperparameter settings and evaluated our model
after every modification. Our changes included the use of different vocabulary
sizes when preprocessing the data set as well as varying batch and embedding
sizes when propagating data through the network. We also altered the number
of filters in the convolutional layer of the TDNN encoder and the number of
GRU layers in the RNN decoder. Table 1 shows that the best configuration
achieved a 9.77% improvement compared to Ebesu and Fang’s hyperparameter
values (recall@10 of 0.1797 vs. 0.1637). While the NCN’s performance increases
with larger capacity in general, this effect only persists up to a certain size.4 In
particular, enlarging the embedding size past 128 dimensions and increasing the
vocabulary to more than 20,000 tokens did not guarantee an improved recall@10
value. We suspect this to be the result of our small data set, as compared to the
model’s increased capacity [9].

In addition to experimenting with various architectural changes, we also
tried different batch sizes. Masters et al. [10] showed that training with smaller
mini-batches can lead to improved test performance. However, we were unable
to replicate these results for our best configuration. For the larger NCN models,
a decreased batch size instead led to inferior test performance. On the other
hand, our enhanced filter region sizes for the TDNN context encoder consistently
boosted the model’s performance. At the same time, this modification is
computationally cheap, in terms of both additional parameters and wall time,
as the TDNN encoders run in parallel.

We observed during the evaluation runs that models with a lower validation
loss generally achieved a better recall@10 value (given equal batch sizes). While
this intuitively makes sense, as we use the loss function to re-rank the top titles,
we can also find counterexamples.

3.4 Discussion

We believe that there is still room to improve the NCN, in terms of the model’s
hyperparameters and architecture. Our research shows that changing the filter
lengths in the convolutional layer of the network’s encoder leads to consistently
better results. Further investigation into their effects on model improvement

4 We use the term “model size” to refer to the embedding dimension, number of
convolutional filters, and the GRU dimension. These parameters are set to the same
value in most configurations.

7

may thus be rewarding. The original architecture only used Dropout [11] to
regularize the network. It may be worthwhile to investigate other regularization
techniques such as batch normalization [12] for convolutional layers or layer
normalization [13] for recurrent layers.

We conclude that the NCN leads to reasonable results even when applied to a
smaller data set, like the arXiv CS subset used in our paper. We believe a major
reason for not being able to achieve similar performance results on another data
set (arXiv CS) was the significantly smaller size of training examples [9]. Thus,
for the future, it might be more important to use large data sets than to further
tune model hyperparameters in order to obtain better recall@10 scores.

4 Conclusion

For this paper, we re-implemented the neural citation network [1] for citation
recommendation and ran evaluations on both RefSeer, the originally used data
set, and arXiv CS, as the second evaluation data set. We were unable to achieve
the same model performance as Ebesu and Fang did. However, we provided
insights on how the different hyperparameters can affect the NCN’s model
performance and how these insights can be used to further improve the model.
In this way, we exemplified how to make citation recommendation approaches
and their evaluations more transparent facilitating the creation of more effective
models in the future.

References

1. Ebesu, T., Fang, Y.: Neural Citation Network for Context-Aware Citation
Recommendation. In: Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval. SIGIR’17
(2017) 1093–1096

2. Färber, M., Jatowt, A.: Citation Recommendation: Approaches and Datasets.
CoRR abs/2002.06961 (2020)

3. He, Q., Pei, J., Kifer, D., Mitra, P., Giles, L.: Context-aware Citation
Recommendation. In: Proceedings of the 19th International Conference on World
Wide Web. WWW ’10 (2010) 421–430

4. Collobert, R., Weston, J.: A Unified Architecture for Natural Language Processing:
Deep Neural Networks with Multitask Learning. In: Proceedings of the 25th
International Conference on Machine Learning. ICML’08 (2008) 160–167

5. Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation. In: Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing. EMNLP’14 (2014) 1724–1734

6. Bahdanau, D., Cho, K., Bengio, Y.: Neural Machine Translation by Jointly
Learning to Align and Translate. In: Proceedings of the 3rd International
Conference on Learning Representations. ICLR’15 (2015)

7. Huang, W., Wu, Z., Mitra, P., Giles, C.L.: RefSeer: A citation recommendation
system. In: Proceedings of the 2014 IEEE/ACM Joint Conference on Digital
Libraries. JCDL’14 (2014) 371–374

8

8. Färber, M., Thiemann, A., Jatowt, A.: A High-Quality Gold Standard for
Citation-based Tasks. In: Proceedings of the Eleventh International Conference
on Language Resources and Evaluation. LREC’18 (2018)

9. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting Unreasonable
Effectiveness of Data in Deep Learning Era. In: Proceedings of the 2017 IEEE
International Conference on Computer Vision. ICCV’17 (2017) 843–852

10. Masters, D., Luschi, C.: Revisiting Small Batch Training for Deep Neural Networks.
CoRR abs/1804.07612 (2018)

11. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal
of Machine Learning Research 15(1) (2014) 1929–1958

12. Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. In: Proceedings of the 32nd International
Conference on Machine Learning. ICML’15 (2015) 448–456

13. Ba, L.J., Kiros, J.R., Hinton, G.E.: Layer Normalization. CoRR abs/1607.06450
(2016)

9

	Neural Citation Recommendation: A Reproducibility Study

