
Benchmarking Eventual Consistency: Lessons
Learned from Long-Term Experimental Studies

David Bermbach
Karlsruhe Institute of Technology

Karlsruhe, Germany
Email: david.bermbach@kit.edu

Stefan Tai
Karlsruhe Institute of Technology

Karlsruhe, Germany
Email: stefan.tai@kit.edu

Abstract—Cloud storage services and NoSQL systems typi-
cally guarantee only Eventual Consistency. Knowing the degree of
inconsistency increases transparency and comparability; it also
eases application development. As every change to the system
implementation, configuration, and deployment may affect the
consistency guarantees of a storage system, long-term experi-
ments are necessary to analyze how consistency behavior evolves
over time. Building on our original publication on consistency
benchmarking, we describe extensions to our benchmarking
approach and report the surprising development of consistency
behavior in Amazon S3 over the last two years.

Based on our findings, we argue that consistency behavior
should be monitored continuously and that deployment decisions
should be reconsidered periodically. For this purpose, we propose
a new method called Indirect Consistency Monitoring which allows
to track all application-relevant changes in consistency behavior
in a much more cost-efficient way compared to continuously
running consistency benchmarks.

I. INTRODUCTION

Over the last few years, cloud storage services and self-
managed NoSQL systems deployed on cloud compute services
have found widespread adoption. To cope with spiky work-
loads and the resulting elastic scalability requirements, low
latency and high availability demands, these systems tend to
relax consistency guarantees as required by the consistency vs.
availability and consistency vs. latency tradeoffs [1], [2]. This
resulted in a situation where most of these systems offer only
Eventual Consistency instead of strict consistency combined
with rich transactional guarantees. While this is attractive from
a storage system design perspective, it shifts complexity to the
application developer. On the other hand, developing applica-
tions on top of eventually consistent storage systems can be
done for many classes of applications [3], [4]; still knowing the
degree of inconsistency is helpful to an application developer
as the dimension of uncertainty is reduced: The quality of
service (QoS) guarantees become, to a degree, predictable.
Also, knowing about consistency behavior allows to increase
the efficiency of middleware solutions increasing consistency
guarantees outside of the storage system [5].

For QoS dimensions like latency or throughput, bench-
marking approaches, e.g., the Yahoo! Cloud Serving Bench-
mark (YCSB) [6], have been studied for a long time. In
the case of consistency guarantees and behavior, though,
benchmarks and measurement approaches have only been
developed over the last few years [7]–[13]. More recently,

Bailis et al. [14] presented an approach to also predict staleness
behavior of certain classes of storage systems.

In our original paper on consistency benchmarking in
2011 [8], we chose Amazon S31 as an example and studied its
consistency behavior. For S3, Amazon guarantees only Even-
tual Consistency but we were interested in the actual degree of
inconsistency visible to applications. In our experiments, we
discovered a rather curious behavior of periodically recurring
patterns. After publication, we also contacted Amazon about
this topic; while they would not comment on the root source of
the effects, they quickly made changes to the service resulting
in a different consistency behavior. Over the last two years,
we continued to benchmark S3 periodically as a long-term
experimental study and now present the extensive changes we
could see during that period.

Based on our observations, we argue that it is necessary for
application developers and operators to continuously monitor
QoS levels of cloud storage services and to periodically
reconsider the deployment decisions as the customer is entirely
at the provider’s mercy. For this purpose, we present a new
method called Indirect Consistency Monitoring which can be
used to monitor consistency behavior in a cost-efficient way
while being able to track all changes in consistency behavior
that actually affect the application running on top of it.

The remainder of this work is structured as follows: We
start with a few definitions and recap the main ideas of
our consistency benchmarking approach in section II. We
also describe a set of extensions that we added over the
last two years. Afterwards, in section III we describe the
setup and results of our long-term experimental study with
S3 before discussing our observations as well as the resulting
implications in section IV. Based on the lessons learned from
our long-term study, we derive and describe a new method
for consistency monitoring in section V. Finally, we show up
related work (section VI) before coming to a conclusion in
section VII.

II. CONSISTENCY BENCHMARKING

In this section, we will start with the definition of our
understanding of consistency. Afterwards, we will recap our
staleness measurement approach before discussing our exten-
sions of it.

1aws.amazon.com/s3



A. Consistency Definitions, Perspectives and Dimensions

In distributed storage systems, there are two competing
definitions of consistency: From the perspective of the database
community, consistency refers to the “C” in ACID2, i.e., the
adherence to integrity rules and a data schema. The distributed
systems perspective, which we will take for the remainder
of this work, is fundamentally different, though: a datastore
is in a consistent state if all replicas are identical and all
ordering guarantees of the corresponding consistency model
are observed [15], [16]. Originally, this definition requires all
data items to be identical. In practice, though, guarantees are
typically only provided per key [16].

Based on this, Eventual Consistency is a rather weak con-
sistency model not requiring any ordering guarantees and only
offering “eventual” replica convergence. I.e., an eventually
consistent storage systems guarantees that the system will –
in the absence of failures and further updates – eventually
converge towards a consistent state where all replicas are
identical [16]–[18].

As can be seen in the definition of consistency, there
are two dimensions of consistency: Staleness and Ordering.
While Staleness describes how “far” replicas are apart (either
in terms of time or missing versions), Ordering describes to
which degree incoming requests may be reordered on different
replicas. For instance, Sequential Consistency requires that all
replicas must execute all requests in the exact same order
whereas Causal Consistency requires this only for (potentially)
causally related operations.

There are also two perspectives on consistency: a data-
centric and a client-centric view. While the data-centric view
corresponds to the perspective of a provider, describing re-
quirements on synchronization processes (e.g., “all replicas
must agree on a total order of updates before applying the
updates”), the client-centric view is focused on the consistency
effects visible to the client of a storage system (this may, for
instance, be an application server). An example of such a guar-
antee is Monotonic Read Consistency (MRC) which requires
that a client will, after reading a version n, never again read a
version older than n [19]. We propose to use the client-centric
perspective for measurements which is common practice for
other QoS dimensions, e.g., latency and throughput.

B. How soon is eventual?

Based on [8], [9], staleness and MRC can be measured
by periodically writing to a storage system while continuously
reading the same key. The difference in time between the last
read of version n and the write timestamp of version n + 1
determines the client-centric t-Visibility [14] for systems with
dirty reads (which is the normal case for cloud storage services
and NoSQL systems).

As storage systems often use sticky sessions or route
requests to the respectively closest replica, this does not
guarantee that a comprehensive view spanning multiple clients
can be achieved in measurements. For this reason, in [8]
we extended [9] to use dedicated, geographically distributed
machines for reading at the same time, figure 1 shows an
abstract setup during benchmarks. The number of readers also

2Atomicity, Consistency, Isolation, Durability.

Fig. 1: Setup During Staleness and MRC Measurements

depends on the number of replicas as – under the assumption
that all readers issue a request at the same time and that
the load balancer randomly routes requests to replicas – the
probability of reaching all replicas is a function of the number
of readers. An optimal number of readers can then easily be
calculated.

During a benchmark the writer periodically writes a tuple
(writeTimestamp;version) to the storage system. All readers
record detailed logs for each read containing tuples (read-
Timestamp;writeTimestamp;version). An offline analysis (or an
online analysis lagging slightly behind) can then determine
MRC violations in each individual reader’s logs as well as the
maximum inconsistency window, the probability of stale vs.
fresh reads, and the version lag (k-Staleness [14]) based on all
reader logs.

Recently, we also added functionality to determine stal-
eness for delete operations, i.e., how long a version is still
readable after issuing a delete request. In this case, a set of
machines creates a workload on the respective key – the kind
(read/write) and intensity of the workload could potentially
influence the staleness for delete operations – until it is deleted
by the writer. Then the readers continuously issue read requests
for the same key. Based on the delete timestamp and the
timestamps when the deleted version could or could not be
read, it is then possible to determine a function describing the
probability of reading a value as a function of the time since
deleting the datum. Of course, this process must be repeated
many times to produce statistically significant results.

For geo-distributed storage systems, comparably distributed
readers are used, e.g., [7]. Potentially, more than one writer
instance (also geo-distributed) can be used whose writes are
then interleaved to study how the origin of the update affects
consistency behavior.

C. Beyond Staleness Measurements

As results can be obtained by the same experiment setup
as staleness measurements, we also described MRC mea-
surements in the last section even though it is an ordering
guarantee. Beyond MRC, there are also Read Your Writes
Consistency (RYWC), Monotonic Writes Consistency (MWC),
and Write Follows Read Consistency (WFRC) as client-centric
ordering guarantees. While RYWC requires that after writing



a version n a client will always be able to see the result of his
write or a newer version, MWC describes that two subsequent
writes by the same client will be serialized in their chronologic
order [19]. Note, that time is not part of this concept. While
all three guarantees are important to application developers,
MWC is especially critical since applications on top of systems
without MWC “are notoriously hard to program” [18].

MWC can be measured by having a machine issue two
directly subsequent write requests to the same key. While
it does not matter which value is returned directly after the
second write, the final serialization order must be correct. In
practice, it should suffice to wait for at least the duration of
the maximum inconsistency window including peak values –
in our experiments we checked several times over the course
of 24 hours. We propose to repeat these measurements for a
large number of keys to achieve statistical significance.

RYWC can be measured by having a machine write a
value and continuously read the same key for a long time.
After a while, the machine can issue another update and so
on. Essentially, this corresponds to the setup of the staleness
measurements of Wada et al. [9]. This approach provides
the necessary data to determine the probability of RYWC
violations as a function of time since the last update.

As this workload is rather simplistic, it might make sense to
use a more complex workload, e.g., [5]. This approach, though,
has the disadvantage that not the RYWC violations caused by
the storage system will be measured but rather those caused
by concurrent updates. For instance, client A may read a value
at time t0 and write an updated value at time t1. If client B
also updates the value between t0 and t1, then the update of
B will be lost and B will not be able to read his write back,
i.e., RYWC is violated. Hence, such a workload would create
RYWC violations even in the case of non-replicated storage
systems as long as latencies are > 0. As these violations are
not caused by the storage system but instead are a function
of the access pattern and number of clients, we propose to
use the more simplistic workload with just one machine to
only capture RYWC violations actually caused by the storage
system.

For the fourth client-centric ordering guarantee, WFRC, we
have not been able, yet, to find a way of measurement. See
also [16] for a more detailed discussion of the problems in
measuring this behavior.

III. EXPERIMENTS

In this section, we present the results of our long-term
experimental study using Amazon S3 as an example. While
the actual measurement results are obviously S3-specific, the
methods used are independent of concrete storage systems. We
also expect comparably unpredictable changes in consistency
behavior for other cloud storage services and NoSQL systems.

We will start by describing the results our staleness mea-
surements over time before continuing to other measurement
results.

A. Staleness and MRC Results

For each of our experiments, we deployed 12 readers on
EC2 small instances3 in the AWS region eu-west, 4 each in
every availability zone; we also deployed a writer instance in
zone A. We did so as S3 keeps replicas within a region but
distributed over several availability zones. In our experiments,
we varied both the test duration (24 hours or 7 days) and the
interval between updates (10 or 20 seconds), see table I.

In experiment 1 – which we actually repeated several times
with the same behavior – we observed the two periodicities
already reported in our original paper [8]: Alternating LOW
and SAW phases which we later determined to be correlated
to working hours since the experiment started at Monday
morning, 10.30h local time. Figure 2 shows how the maximum
observable t-Visibility values change over time, the chart has
been clipped at 20 seconds of staleness excluding peak values
of up to almost 35 seconds. During the SAW phases (“black
areas” in figure 2) staleness values changed in a sawtooth
pattern with a wavelength of slightly below two minutes.
Figure 3 shows a randomly selected excerpt from a SAW
phase. The rest of the time, i.e., during the LOW phases,
values were as expected distributed randomly. We believe, also
based on experiments where multiple files were targeted with
benchmarks at the same time, that the S3 implementation at
that time initiated update propagation either periodically or
upon a second write to the same bucket.

On October 20, 2011, we contacted Amazon regarding this
behavior. While they would not comment on the root source of
this effect, they quickly made changes to their implementation
which we were able to observe in experiments 2, 3 and 4:
While the daily patterns were still clearly visible (see figure 4,
the chart has been clipped at 25 seconds) and the LOW phase
had not changed, the SAW phase showed an “obscurified” but
still recognizable sawtooth pattern, see figure 5 for a randomly
selected excerpt from the SAW phase; experiments 2, 3, and
4 showed almost identical results. Interestingly, the median
of the staleness values increased so that the update actually
resulted in poorer consistency behavior.

Almost one year later, we again benchmarked S3 – a 24
hour experiment and another 7 day experiment to verify our
findings. Amazon must have made additional changes to their
system as the daily/weekly patterns of SAW and LOW phases
did not exist any longer. Furthermore, even maximum peak
values did not exceed 10 seconds any more; in fact, most peaks
are below one second. Figure 6 shows the results of experiment
6 (experiment 5 showed almost identical behavior); the chart
has been clipped at 500ms – still, we could count less than 50
peaks of more than one second out of 60,000 measurements.
This was actually the behavior we would have expected for
our original experiments in 2011.

Another year later, in September 2013, we repeated ex-
periments 5 and 6. During these experiments we observed that
the number of peaks had increased dramatically., Furthermore,
even though these peaks were typically between 6 and 10
seconds, there were also quite a few peaks still exceeding
10 seconds of staleness. Average values increased by about
100ms, median values doubled and standard deviation values

3aws.amazon.com/ec2



increased between 300% and 600% compared to experiments
5 and 6. While results are still far better than in 2011, they
are now, in 2013, effectively worse than in 2012. Especially,
the increase in variance has caused the consistency behavior to
become much more unpredictable. Figure 7 shows the results
of staleness measurements in experiment 7. When comparing
figures 6 and 7, note that figure 7 uses a logarithmic scale..

Figure 8 and table II show how the aggregated results have
evolved over time.

While analyzing the results of experiment 8, we also
discovered a curious “bump” in the chart showing the prob-
ability of reading non-stale data as a function of time since
the last update (see figure 9). When we went back to also
recheck the results of the other 7 experiments, we realized
that they all had the same “bump” in the very same time
interval. Further analysis revealed that there is also a temporary
increase in average read latency values right before the “bump”
(see figure 10 which shows the read throughput as well as
the average read latency over time). As this behavior keeps
reoccurring in all 8 experiments of which experiment 8 alone
is based on more than half a billion reads, we believe that this
is not random behavior.

Obviously, the increased read latency affects only fresh
reads while stale reads continue unaffectedly. The only expla-
nation that we can come up with, is that about 30ms after an
update started (we have single digit update latencies), the only
existing fresh replica blocks briefly to update another replica,
while a third (still stale) replica continues to serve requests.

Recently, we also extended our benchmarking approach to
measure the inconsistency window of delete operations, i.e.,
how long a value is still readable after having been deleted.
In the results of several experiments, we noted that there is
no influence of the workload before the delete on staleness of
deletes which indicates that Amazon uses a constant number of
replicas independent of the actual workload on a specific key.
It is, therefore, also unlikely that Amazon uses caching layers
in S3. The results of our delete experiments were comparable
to the results of experiments 7 and 8 so that it seems likely
that delete and update operations are implemented in a similar
way.

As already mentioned, our approach for staleness measure-
ments also logs the results of MRC violations and read error
rates. Table III gives an overview of the results. Note, that the
MRC results of experiments 2 and 3 have to be normalized
as most updates complete below 10 seconds so that during the
second half of the update interval MRC guarantees can only be
violated if there is a peak value with a staleness value beyond
10 seconds. A rough approximation of the normalized results
is to multiply the measured values with a factor of two, thus,
simply excluding all staleness values beyond 10 seconds.

Based on these results, we can see that the original Amazon
update slightly improved MRC behavior before really driving
the rate of MRC violations down in 2012 where we also
had the best staleness results. In our 2013 experiments, we
then again saw an increase in MRC violations – while the
values continue to be low, they still increased by a factor of
approximately 30 between 2012 and 2013.

TABLE I: Experiment Setups

Experiment Start Date Duration Write Interval Commment

1 Aug 29, 2011 7d 10s -

2 Nov 10, 2011 24h 20s one reader crashed

3 Nov 16, 2011 24h 20s -

4 Nov 17, 2011 24h 10s -

5 Oct 2, 2012 24h 10s -

6 Oct 3, 2012 7d 10s -

7 Sept 4, 2013 24h 10s -

8 Sept 6, 2013 7d 10s -

Fig. 2: SAW and LOW Phases in Experiment 1

Fig. 3: Excerpt from a SAW Phase in Experiment 1

Fig. 4: SAW and LOW Phases in Experiment 4

Fig. 5: Excerpt from a SAW Phase in Experiment 4



Fig. 6: Staleness Results of Experiment 6

Fig. 7: Staleness Results of Experiment 7

Fig. 8: Overview of Results in Experiments 1-8

TABLE II: Results of Experiments 1-8

Experiment Min. Avg. Median Max. Std. Dev.

1 1 3,029.48 31 32,716 4,276.60

2 8 6,072.17 7,969 21,439 4,431.88

3 9 6,220.37 8,603 48,281 4,731.92

4 7 6,277.14 8,648.5 42,922 4,553.42

5 6 36.65 21 9,854 183.62

6 6 48.81 23 8,663 132.10

7 7 147.77 37 10,594 767.56

8 5 223.14 47 15,165 908.35

TABLE III: MRC and Error Results of Experiments 1-8

Experiment % Prob. of MRC Violations Prob. of Read Errors

1 12.0461% 2.8 ∗ 10−9

2 4.8603% 7.2 ∗ 10−7

3 5.0634% 3.6 ∗ 10−5

4 10.6982% 6.8 ∗ 10−5

5 0.0013% 3.1 ∗ 10−7

6 0.0005% 10−7

7 0.0359% 5 ∗ 10−8

8 0.0364% 7.3 ∗ 10−8

Fig. 9: Probability of Reading Fresh Data as a Function of
the Time since the Last Update (Experiment 8)

Fig. 10: Influence of the Time since the Last Update on
Latency and Read Rates (Experiment 8)

B. Further Results

We also benchmarked MWC and RYWC violations. For
this purpose, we deployed a single EC2 small instance in
the Amazon region eu-west. For the MWC measurements,
this instance issued an update and directly afterwards issued
another update to the same key. We did this for 1000 keys.
Afterwards, we periodically checked over the course of 24
hours whether the value that could be read was identical to the
value of the second update. Neither of these checks returned
the value of the first update so that the result of our experiment
was, hence, that MWC seems to be guaranteed by S3. We ran
this benchmark on March 19, 2012 and September 4, 2013.

On the same dates we also ran our RYWC benchmark
where we first issued a write and then read this value back
100 times. This was repeated for 1000 writes and never read
any value older than the one our client had just written. We,
therefore, conclude that S3 also seems to guarantee RYWC.
Of course, both conclusions are only based on the random
sample we observed which does not preclude that violations
may occur from time to time.

IV. DISCUSSION

In our experiments, we have seen high variance in the
results over time caused by changes which will not be immedi-
ately noticed by a cloud storage customer. This can potentially
cause high unexpected cost to the cloud storage customer as
can be seen in the following example business case:

Imagine a scenario where a web shop has implemented its
stock management application on top of S3. Both check-out
operations and operations logging delivery of new products



will then concurrently update the same key in S3. In this
case, the rate of overselling could have suddenly increased
both in 2011 as well as in 2013 caused by the changes visible
in experiments 2 and 7 respectively. In both cases, average
staleness unexpectedly increased which would lead to higher
probabilities of reading stale data and, thus, to an increased
rate of overselling. Still, this could have been easily handled
by simply using a larger quantity of items stored per product
if the change in behavior had been known beforehand. If
now the price for having one more item in stock is lower
than the compensation cost for overselling, then the web shop
would have incurred a large jump in almost entirely avoidable
compensation cost.

On the other hand, when staleness results heavily improved
in 2012 (as seen in experiment 5), the web shop would have
been paying too much for inventory cost as the safety margin
for the quantity of items in stock could have been much lower.
Knowing about consistency behavior, hence, often directly
affects the budget of a cloud storage-based company. Further-
more, while weak consistency guarantees may be a problem,
changes in consistency behavior are even more problematic.

The problem here is that concrete consistency results are
typically not included in service level agreements (SLAs)
– to our knowledge no cloud storage provider is doing so.
Therefore, consistency behavior of a cloud storage system
is entirely unknown to the customer and may also, as we
have seen, frequently change without advance notice. For all
scenarios where consistency violations directly cause costs to
the customer, we, hence, propose to continuously monitor these
costs and their root sources4. If there is a sudden change, we
then propose that a cloud storage customer (re-)benchmarks the
system to identify where the effect is coming from. Based on
these results, appropriate action can be taken, e.g., changing
implementation details or business details like the minimum
stock amount in our example, contacting the provider about
the problem, or even switching the cloud storage provider.

Contacting the provider is almost always helpful since he
might – especially for more “unusual” quality dimensions like
consistency – not even know about the undesired side effects of
a change in implementation. If the customer is “big” enough,
e.g., Netflix5 in the case of AWS, he might even have the
necessary influence to persuade the provider to either include
the quality in SLAs or to make additional changes to the
implementation.

Furthermore, we already mentioned changing the provider
as a last resort which may come with problems of its own:
The lack of standardized cloud storage interfaces and varying
QoS levels [20] leads to a high degree of vendor lock-in
where the customer is tied to a specific provider’s offering.
Suitable mechanisms like Cloud Federation [21]–[27] should
be considered to reduce the degree of vendor lock-in and, thus,
to maintain the flexibility of provider selection.

Finally, using a self-managed NoSQL system running on
top of cloud compute services might in the end prove to be
the more economical choice over a hosted storage service.

4In our example above, the increase of the overselling rate could also have
been caused, e.g., by a change in shop customer behavior resulting in a higher
demand for said product.

5netflix.com

V. INDIRECT CONSISTENCY MONITORING

As just discussed, our results have several implications for
a cloud storage customer: He could promote and demand the
development and adoption of cloud standards, as well as use
cloud federation to maintain the flexibility of provider choice.
He also could ask for consistency guarantees to be part of the
SLAs – still, the customer would need to trust the provider
to fulfill the guarantees that were promised. Alternatively, he
could use a NoSQL system running on top of (potentially
private) cloud compute instances, but even here the application
is not safe from sudden changes in consistency behavior which
may, for instance, be caused by small changes to the network
routing settings within the datacenter.

All these implications, may they be about contracts or the
flexibility to make changes to the deployment, have the same
requirement: continuously updated information on consistency
behavior, i.e., running a consistency monitoring component.
While it may be tempting to deploy our consistency bench-
marking approach and keep it running permanently while
tracking the measurement results for sudden changes or long
term trends, this will usually not be feasible due to the cost
it causes. Roughly calculated, continuously running our S3
benchmarks as described in section III causes annual costs of
slightly below 20,000 USD6. While this amount may still be
worth the expense depending on the potential compensation
costs caused by inconsistencies, a continuous consistency
benchmarking is no longer reasonable when multiple storage
services or NoSQL systems running in various setups in several
regions are used. For private cloud deployments of NoSQL
systems, similar costs will be caused even though they will be
less directly visible.

For an economically feasible consistency monitoring so-
lution, we propose to use what we call Indirect Consistency
Monitoring – instead of measuring consistency behavior, we
propose to monitor KPIs (key performance indicators) that are
both directly affected by inconsistencies and less expensive to
track. Whenever one of those KPIs changes, we propose to
rerun our consistency benchmark, thus, significantly reducing
the cost of consistency monitoring as benchmarks are only
triggered when necessary. Indirect Consistency Monitoring
comprises four steps before it is actually up and running. We
will describe these in the following.

A. Step 1: Identify Datastore Interaction Patterns

In this step, the application source code is analyzed for
what we call datastore interaction patterns which might be
implemented as transactions or business processes in more
traditional enterprise systems. Such a datastore interaction
pattern comprises the following information: Where in the
source code is which data accessed in which way, i.e., which
sequence of reads and writes to which key is triggered by
which business operation.

For instance, a check-out operation in a web shop might
insert order data under a new key and update (i.e., read and
overwrite) the amount on stock for each ordered product under
already existing keys.

67971.60 USD for instances; 1.14 USD for S3 storage; 15.77 USD for
writes to S3; 11,720.69 USD for reads from S3



B. Step 2: Identify Potential Conflicts Between Patterns

In this step, the set of datastore interaction patterns is
analyzed to identify all patterns that access the same keys so
that there might be cross-effects between the corresponding
business operations. Furthermore, all patterns need to be found
which are in conflict with themselves either by accessing the
same key more than once or with parallel instances of the same
pattern. Conflicts occur whenever there is concurrent access to
the same key with at least one interaction pattern comprising
an update of said key.

For instance, the check-out pattern from above is in conflict
with itself when two web shop customers order the same
product so that the same (product) key is updated. It might also
influence a potential recommendation system pattern which
analyzes existing order data to recommend products based on
the customer’s past preferences.

C. Step 3: Identify Affected KPIs

In this step, only datastore interaction patterns with con-
flicts are of interest since patterns without conflict will usually
not be affected by eventually consistent guarantees. For each
of those conflicts, the effects of staleness and ordering changes
are analyzed: What happens if staleness increases or decreases?
What happens if MRC, RYWC and MWC behavior changes?
Which business KPIs will be affected?

For instance, changes in staleness behavior for our check-
out operation will affect the accuracy of the amount on stock.
So, the frequency and intensity of having more or less products
physically on stock than the amount persisted within the
storage system will be proportional to staleness behavior of
the storage system. Obviously, this also affects the frequency
of overselling. Hence, all these statistics could be used as a
KPI for staleness.

D. Step 4: Identify and Track Suitable KPIs

The result of the last step is a large selection of possible
KPIs which could be monitored instead of staleness and
ordering behavior. Some of those may be hard to track (e.g.,
the discrepancy between the amount physically on stock and
the amount persisted within the storage system) whereas others
may already be monitored for business intelligence purposes
(e.g., the amount of compensation cost due to overselling).
Therefore, it makes sense to identify KPIs that are already
monitored or for which monitoring can be added easily at
little or no additional cost. We propose to track at least one
KPI for each of the ordering guarantees as well as staleness:
Tracking more than one KPI for each guarantee may cause
additional monitoring cost but decreases the chance of starting
a consistency benchmark due to a KPI being affected by other
external effects (e.g., a delayed product delivery for the KPI
that describes the rate of overselling).

In our web shop example, the frequency of overselling is a
good KPI for staleness. RYWC describes whether a customer
is able to see his own writes (e.g., an order). Hence, a good
KPI for RYWC is the frequency of a customer issuing the
same order twice within a short timespan and canceling one
of them afterwards. MRC describes whether a client only sees
increasing versions. Therefore, a simple way to track MRC

Fig. 11: Flow Chart for Indirect Consistency Monitoring

would be to timestamp a frequently changing data item, e.g.,
the amount on stock, and have the end user’s browser cache
those timestamps. Whenever a new subpage of the webshop is
requested either directly or via AJAX, the information on the
sequence of timestamps seen can be piggybacked on top of
the HTTP request. The application servers could then directly
track the frequency of these MRC violations as a KPI for
MRC. An alternative KPI when using a middleware to increase
consistency guarantees outside of the storage system [5], would
be to track the rate of resolved MRC and RYWC violations
within this middleware component which is easily possible.
MWC describes whether two sequential updates are serialized
in the correct order. If a customer corrects his order during
the check-out process, he is vulnerable to MWC violations.
A good KPI is then tracking the number of failed credit card
charges after the customer changed his credit card data. Of
course, depending on the design of the application and the
concrete use case, other KPIs will be more suitable.

Figure 11 shows the flow chart of Indirect Consistency
Monitoring starting after having identified all KPIs and ending
at a point where changes to the consistency behavior have been
discovered so that suitable action can be taken.

E. Implementation and Tool Support

Indirect Consistency Monitoring is currently not directly
supported with a tool. With a combination of tools, though,



much can be automated: Our consistency benchmarking tool,
which is available as open source7, can be automatically
deployed and run by systems like Opscode Chef8 or [28]. Many
KPIs can be tracked by standard monitoring tools like Ganglia9

or even complex event processing solutions. The remainder can
be stitched together using cron jobs and shell scripts.

F. Discussion

Indirect Consistency Monitoring is a way to continuously
monitor consistency behavior visible to applications at very
little additional cost. It comes with a few caveats, though,
which we believe to be for most use cases negligible in
comparison to the benefits that are realized:

There may be false negatives, i.e., the consistency be-
havior changes but neither of the KPIs shows any changes.
In this case, the application workload obviously hides the
inconsistencies. For instance, if maximum staleness changes
from one to two seconds but keys are only accessed every
ten seconds, then the change in staleness behavior will not
be seen by the application. We believe that this is sufficiently
precise for most cases as inconsistencies not visible hardly
matter to the application. Of course, there is the risk that
the consistency behavior will continue to gradually change
until inconsistencies become visible so that some kind of pre-
warning would be appreciated. This is only possible if there
is a KPI that captures these small changes.

There may be false positives, i.e., the KPI changes but the
underlying consistency behavior did not change. This can be
addressed by tracking more than one KPI for each consistency
metric, but there is a trade-off between the complexity and
cost of KPI tracking and the frequency of running consistency
benchmarks.

There is much effort for the analysis of source code (our
four steps above) before the KPIs can be tracked and some of
this effort needs to be repeated at least for major updates to
the application. We believe that the analysis becomes feasible
if someone familiar with the application’s source code is doing
it and that KPIs can be chosen in a way so that updates will
not require re-analysis of the entire source code, i.e., using
KPIs that are based on core functionality which is unlikely
to change. In some cases, though, the cost for continuously
running our consistency benchmark may be lower, though, than
the cost of Indirect Consistency Monitoring. This is especially
true for MWC and RYWC which can easily be periodically
benchmarked with just one machine at very little cost.

All in all, Indirect Consistency Monitoring can be a way
to track consistency behavior in real world applications in
a feasible way. More work is necessary to prove that this
idea actually works in practice and is not a mere thought
experiment.

Upon a change in consistency behavior, the application
provider has several options. In each case, the “best” op-
tion depends on the concrete circumstances. For instance, a
provider can be contacted or switched, a different configuration
option of the storage service may show different consistency

7https://code.google.com/p/consistency-monitoring/
8opscode.com/chef
9ganglia.sourceforge.net

behavior, business details (e.g., the quantity stored per product)
can be adapted, the implementation of the application can be
changed, a self-hosted NoSQL system can be downgraded to
a previous version, etc. More work is needed to identify all
possible directions of action as well as to methodically select
the respectively “best” option.

The work by Rahman et al. [13] could be an alterna-
tive – possibly more precise – way to track changes in
consistency behavior with the goal of triggering consistency
benchmarks only when necessary. However, to our under-
standing this comes with the price of an additional significant
computational overhead. As Rahman et al. themselves point
out, their approach needs to constantly solve optimization
problems and “[...(they)] are not aware of an efficient (i.e.,
poly-time) solution to this problem[...]” [13]. Furthermore, to
our understanding their calculations of ∆- and k-atomicity
require full knowledge on all data written and seen by all
clients, i.e., additional communication with all application
servers is necessary. Depending on the number of application
servers, this can easily become too costly or live analysis may
no longer be possible due to the sheer data volume. When
trying to use their approach for consistency monitoring, we,
therefore, believe that at least steps 1 and 2 of our Indirect
Consistency Monitoring method need to be executed first to
identify suitable application subsets which actually can be
monitored using their approach.

Our Indirect Consistency Monitoring method is based on
the notion that every application provider monitors consistency
behavior himself. An alternative could be to have a company
offer continuous consistency monitoring with notifications in
case of changes as a service to application providers. This
may be feasible but comes down to an issue of trust: The
application provider needs to trust the monitoring company
not to have malicious intent (e.g., getting paid by the cloud
storage provider in exchange for a higher reported quality).
Furthermore, this alternative becomes infeasible if the cloud
storage provider offers different service level classes to differ-
ent groups of customers.

VI. RELATED WORK

There are several publications on the assessment of con-
sistency behavior.

Wada et al. [9] presented an approach for measuring time-
based staleness. During benchmarks, they have one machine
issue periodic writes while continuously reading with the
same machine. As they use only one machine for the bench-
mark, their approach is not limited to NTP10 accuracy but
in exchange incurs the disadvantage that it can only report
inconsistencies that cannot be hidden by session stickiness.
For this reason, they could not see any inconsistencies in their
measurements of S3.

In [8], we extended this approach by using multiple ma-
chines for reading and writing from and to the storage system.
Here, results are limited to NTP accuracy but are no longer
vulnerable to load balancer strategies like session stickiness or
routing the request to the closest replica. The results from [8]

10ntp.org



correspond to the results of experiment 1 in this paper which
we reevaluated.

In [7], we extended our approach to a tool suite which
is able to also capture changes to effective consistency be-
havior caused by parallel workloads, geo-replication, multi-
tenancy and failures. We used the extended approach to study
the effects of geo-replication strategies and different parallel
workloads in Apache Cassandra [29] and MongoDB11.

Anderson et al. [10], Golab et al. [11] and Rahman et
al. [13] of HP Labs present an alternative approach using
metrics based on Lamport’s definitions of safeness, regularity
and atomicity [30]. These definitions stem from the syn-
chronization of processes in multi-core systems. As access
times to the main memory as well as L1 cache (the same
holds for L2, L3, etc.) are very low, staleness values are
for multi-core systems negligible which is entirely different
in distributed storage systems. Since each of these metrics
also muddles staleness and ordering guarantees, they very well
fit the analysis of ordering guarantees for multi-core systems
where one out of two influence factors on the metric output
is close to zero. In the case of distributed storage systems,
though, it is entirely unclear which influence factor (staleness
or ordering) causes a concrete value. We, therefore, believe that
they cannot provide meaningful results – neither to storage
providers nor to application developers using said storage
system. The authors yet have to show how one can use their
results apart from ranking different systems. Additionally, as
these metrics are very coarse-grained capturing only maximum
deviations, they are best used for systems offering (almost)
strict consistency with very low variance which, as we have
seen in our experiments, is rarely if ever the case in eventually
consistent storage systems.

Zellag and Kemme [31] also present an alternative ap-
proach counting consistency anomalies for arbitrary cloud-
based applications in transactional and non-transactional data-
stores. At runtime, their approach builds a dependency graph
to detect cycles, i.e., consistency violations. To our knowledge,
their approach is currently limited to storage systems offering
at least Causal Consistency [16] which is not supported by
most cloud storage services like our example Amazon S3 or
NoSQL systems.

Patil et al. [32] also measure staleness in terms of time
within their implementation of YCSB++ extending the origi-
nal YCSB [6] benchmark. Their approach, though, can only
measure rough approximations of actual consistency behavior
due to the way values are measured.

Bailis et al. [33] use the distribution of network link
latencies and quorum configurations to simulate consistency
behavior for Dynamo-style [34] quorum systems. Their ap-
proach is, of course, limited to the usual bounds of simulation
precision but offers a more cost-effective way for studying
consistency behavior. It is unclear, though, whether Amazon
S3 is actually a quorum system12 and what network link
latencies and a potential quorum configuration might look like.

11mongodb.org
12In 2007, Vogels [35] mentioned that “Dynamo and similar Amazon

technologies are used to power parts of our Amazon Web Services, such as
S3.” – for cloud storage services, of course, this may change anytime.

Hence, their approach cannot be used to study the consistency
behavior of cloud storage services.

To our knowledge, no publications on consistency moni-
toring exist. All consistency benchmarking approaches might
also be candidates for consistency monitoring but are currently
too expensive to run continuously. We believe that all existing
benchmarking approaches could be used as benchmarking
component of our Indirect Consistency Monitoring method.
The approach by Rahman et al. [13] could – constrained by
the limitations outlined in section V-F – be an alternative
to tracking KPIs and, thus, enhance our Indirect Consistency
Monitoring method.

VII. CONCLUSION

In this work, we started with a short introduction to
different consistency definitions, perspectives and dimensions.
Afterwards, we recapped our approach for benchmarking con-
sistency [8] and presented a set of extensions.

Next, we described the results of the long-term experimen-
tal study which we ran between August 2011 and September
2013 using Amazon S3 as example. This study showed a large
variance in results over time: In 2011, we first saw daily and
weekly patterns as well as sawtooth periodicity during the day.
After we contacted Amazon in October 2011, these results
worsened regarding average and mean values but the sawtooth
pattern could no longer be seen as clearly as before. One
year later, in October 2012, all periodicities were gone and
S3 was effectively offering very good consistency levels. Until
September 2013, these results had again deteriorated slightly
– especially the variance of staleness values had increased.

Furthermore, when analyzing the probability of fresh reads
as a function of the time since the last update, we noticed a
curious “bump” in all our experiments which we believe is due
to the master replica blocking briefly while forwarding updates
to the second replica.

We also discussed that while MRC behavior was rather
poor in 2011 and 2012, it is now very good with probabilities
of violation well below 10−3. RYWC and MWC were not
violated in any of our experiments so that they at least
seem to be guaranteed. Our recent addition of consistency
benchmarking for delete operations showed similar behavior
as the update operation and results were independent of the
workload before issuing the delete.

Based on our experimental results and the more or less un-
expected variance over time, we argue that cloud storage cus-
tomers should continuously monitor the consistency behavior
that their provider is delivering. For this purpose, we presented
a new cost-efficient method for tracking changes in consistency
behavior, Indirect Consistency Monitoring. The basic idea
of our method is to monitor consistency behavior indirectly
by tracking KPIs that are directly affected by changes in
consistency behavior and to re-benchmark the system only then
when application-visible changes have affected the KPIs. This
way the frequency of expensive consistency benchmarking
runs can be reduced. Additionally, choosing KPIs that are both
easy and inexpensive to track asserts cost-efficiency of this
method.



Depending on the results of Indirect Consistency Mon-
itoring, appropriate measures can be taken like changes to
the application implementation or business details, or even
switching the provider. The latter is hindered by high degrees
of vendor lock-in which current cloud customers incur due to
a lack of standards. We believe that more efforts need to be
put into standardization to maintain the customer’s flexibility.

ACKNOWLEDGMENT

The authors would like to thank Amazon Web Services
who provided research grants for our experiments. We would
also like to thank Anton Tallafuss who benchmarked S3’s
consistency behavior for delete operations.

REFERENCES

[1] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” ACM SIGACT
News, vol. 33, no. 2, p. 59, 2002.

[2] D. Abadi, “Consistency tradeoffs in modern distributed database system
design: Cap is only part of the story,” Computer, vol. 45, no. 2, pp. 37
–42, feb. 2012.

[3] G. Young, “Quick thoughts on eventual consistency,” http://codebetter.
com/gregyoung/2010/04/14/quick-thoughts-on-eventual-consistency
(accessed Jun 21,2013), 2010.

[4] D. Terry, “The impact of eventual consistency on applica-
tion developers,” http:// littlemindslargeclouds.wordpress.com/2013/09/
27/ the-impact-of-eventual-consistency-on-application-developers/ (ac-
cessed Jan 13,2014), 2013.

[5] D. Bermbach, J. Kuhlenkamp, B. Derre, M. Klems, and S. Tai, “A
middleware guaranteeing client-centric consistency on top of eventually
consistent datastores,” in International Conference on Cloud Engineer-
ing (IC2E). IEEE, 2013.

[6] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of
the 1st ACM symposium on Cloud computing. ACM, 2010, pp. 143–
154.

[7] D. Bermbach, S. Sakr, and L. Zhao, “Towards comprehensive measure-
ment of consistency guarantees for cloud-hosted data storage services,”
in Proceedings of the Fifth TPC Technology Conference on Performance
Evaluation & Benchmarking (TPCTC 2013). Springer, 2013.

[8] D. Bermbach and S. Tai, “Eventual consistency: How soon is eventual?
an evaluation of amazon s3’s consistency behavior,” in Proceedings
of the 6th Workshop on Middleware for Service Oriented Computing.
ACM, 2011, p. 1.

[9] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu, “Data consistency
properties and the trade offs in commercial cloud storages: the con-
sumers’ perspective,” in 5th biennial Conference on Innovative Data
Systems Research, CIDR, vol. 11, 2011.

[10] E. Anderson, X. Li, M. Shah, J. Tucek, and J. Wylie, “What consistency
does your key-value store actually provide,” in Proceedings of the Sixth
Workshop on Hot Topics in System Dependability (HotDep), 2010.

[11] W. Golab, X. Li, and M. Shah, “Analyzing consistency properties for fun
and profit,” in Proceedings of the 30th annual ACM SIGACT-SIGOPS
symposium on Principles of distributed computing. ACM, 2011, pp.
197–206.

[12] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. López, G. Gibson,
A. Fuchs, and B. Rinaldi, “Ycsb++: benchmarking and performance
debugging advanced features in scalable table stores,” in Proceedings
of the 2nd ACM Symposium on Cloud Computing. ACM, 2011, p. 9.

[13] M. Rahman, W. Golab, A. AuYoung, K. Keeton, and J. Wylie, “Toward
a principled framework for benchmarking consistency,” in Proceedings
of the 8th Workshop on Hot Topics in System Dependability, 2012.

[14] P. Bailis, S. Venkataraman, M. Franklin, J. Hellerstein, and I. Stoica,
“Probabilistically bounded staleness for practical partial quorums,”
PVLDB, vol. 5, no. 8, 2012.

[15] A. Popescu, “Consistency in the acid and cap per-
spectives,” http://nosql.mypopescu.com/post/4373459618/
consistency-in-the-acid-and-cap-perspectives (accessed Aug 1,2013),
2011.

[16] D. Bermbach and J. Kuhlenkamp, “Consistency in distributed stor-
age systems: An overview of models, metrics and measurement ap-
proaches,” in Proceedings of the International Conference on Networked
Systems (NETYS). Springer, 2013.

[17] A. S. Tanenbaum and M. V. Steen, Distributed Systems - Principles
and Paradigms, 2nd ed. Upper Saddle River, NJ: Pearson Education,
2007.

[18] W. Vogels, “Eventually consistent,” Queue, vol. 6, pp. 14–19, October
2008. [Online]. Available: http://doi.acm.org/10.1145/1466443.1466448

[19] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M.
Theimer, and B. B. Welch, “Session guarantees for weakly consistent
replicated data,” in Parallel and Distributed Information Systems, 1994.,
Proceedings of the Third International Conference on. IEEE, 1994,
pp. 140–149.

[20] R. Fischer, C. Janiesch, J. Strach, N. Bieber, W. Zink, and S. Tai,
“Eine Bestandsaufnahme von Standardisierungspotentialen und -lücken
im Cloud Computing,” in Proceedings of the 11. Internationale Tagung
Wirtschaftsinformatik (WI), 2013, pp. 1359–1373.

[21] T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai, and M. Kunze,
“Cloud federation,” in CLOUD COMPUTING 2011, The Second Inter-
national Conference on Cloud Computing, GRIDs, and Virtualization,
2011, pp. 32–38.

[22] D. Bermbach, T. Kurze, and S. Tai, “Cloud federation: Effects of feder-
ated compute resources on quality of service and cost,” in International
Conference on Cloud Engineering (IC2E). IEEE, 2013.

[23] D. Bermbach, M. Klems, S. Tai, and M. Menzel, “Metastorage: A fed-
erated cloud storage system to manage consistency-latency tradeoffs,”
in Cloud Computing (CLOUD), 2011 IEEE International Conference
on. IEEE, 2011, pp. 452–459.

[24] K. Bowers, A. Juels, and A. Oprea, “HAIL: A high-availability and
integrity layer for cloud storage,” in Proceedings of the 16th ACM
conference on Computer and communications security. ACM, 2009,
pp. 187–198.

[25] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon, “RACS: a case
for cloud storage diversity,” in Proceedings of the 1st ACM symposium
on Cloud computing. ACM, 2010, pp. 229–240.

[26] Broberg, Buyya, and Tari, “Creating a Cloud Storage Mashup for
High Performance, Low Cost Content Delivery,” in Service-Oriented
Computing–ICSOC 2008 Workshops. Springer, 2009, pp. 178–183.

[27] J. Broberg, R. Buyya, and Z. Tari, “MetaCDN: Harnessing ’Storage
Clouds’ for high performance content delivery,” Journal of Network
and Computer Applications, vol. 32, no. 5, pp. 1012–1022, 2009.

[28] M. Klems, D. Bermbach, and R. Weinert, “A runtime quality measure-
ment framework for cloud database service systems,” in Proceedings
of the 8th International Conference on the Quality of Information and
Communications Technology. Springer, 2012, Inproceedings, to appear.

[29] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, pp. 35–40, 2010.

[30] L. Lamport, “On interprocess communication,” Distributed computing,
vol. 1, no. 2, pp. 86–101, 1986.

[31] K. Zellag and B. Kemme, “How Consistent is your Cloud Application?”
in SoCC, 2012.

[32] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. López, G. Gibson,
A. Fuchs, and B. Rinaldi, “Ycsb++: benchmarking and performance
debugging advanced features in scalable table stores,” in Proceedings
of the 2nd ACM Symposium on Cloud Computing. ACM, 2011, p. 9.

[33] P. Bailis, S. Venkataraman, M. Franklin, J. Hellerstein, and I. Stoica,
“Probabilistically bounded staleness for practical partial quorums,”
PVLDB, vol. 5, no. 8, 2012.

[34] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” in Proc. SOSP, 2007.

[35] W. Vogels, “Amazon’s dynamo,” http://www.allthingsdistributed.com/
2007/10/amazons dynamo.html (accessed Jan 13,2014), 2007.


