
Measuring Incoherence in Description

Logic-based Ontologies

Guilin Qi1 and Anthony Hunter2

1Institute AIFB
Universität Karlsruhe

D-76128 Karlsruhe, Germany
gqi@aifb.uni-karlsruhe.de

2Department of Computer Science
University College London, Gower Street

London WC1E 6BT,UK
a.hunter@cs.ucl.ac.uk

Abstract. Ontologies play a core role for the success of the Semantic
Web as they provide a shared vocabulary for different resources and ap-
plications. Developing an error-free ontology is a difficult task. A common
kind of error for an ontology is logical contradiction or incoherence. In
this paper, we propose some approaches to measuring incoherence in DL-
based ontologies. These measures give an ontology engineer important
information for maintaining and evaluating ontologies. We implement
the proposed approaches using the KAON2 reasoner and provide some
preliminary but encouraging empirical results.

1 Introduction

Ontologies play the core role for the success of the Semantic Web (SW) as
they provide shared vocabularies for different domains. There are many repre-
sentation languages for ontologies, such as Description Logics (DLs) [1]. High
quality ontologies are important for SW technology. However, in practice, it is
often difficult to construct an ontology which is error-free. A common error for
an ontology is incoherence, i.e. whether there are unsatisfiable concepts which is
interpreted as an empty set in all the models of its terminology. Incoherence can
occur for several reasons, such as modeling errors when constructing an ontol-
ogy and migration or merging of ontologies [16]. For example, when two upper
ontologies SUMO and CYC are used in a single document, there exist over 1000
unsatisfiable concepts. Currently, there are many discussions on how to debug
and diagnose terminologies in ontologies [9, 8, 17, 16]. Therefore, incoherence is
often viewed as negative information in an ontology. However, by measuring in-
coherence, we can get some useful information for maintaining and evaluating an
ontology. For example, by measuring the extent of incoherence of different on-
tologies, we can give a rank over them. That is, an ontology is more reliable than
another one if it contains less incoherent information. Similarly, by measuring
the extent of incoherence of different axioms, we get some ranking information



2 Guilin Qi, Anthony Hunter

on axioms which can be used to resolve incoherence [8]. Furthermore, there is a
trade-off in the amount of useful information in an ontology and the amount of
coherent information. For example, in the extreme, we could guarantee a coher-
ent ontology by only having the empty ontology. Obviously, this would not be
acceptable, and so we need to tolerate the possiblity of some incoherence in an
ontology. Once we do tolerate this possibility, we need to consider keeping track
of it, perhaps as part of a process of improvement, or as a way of isolating the
problematical parts of the ontology until we decide to how to fix those parts. So
for these tasks, it is helpful to know where and by how much there is incoherence.
This may include consideration of whether it is widespread, or localized. So the
size and overlaps of incoherent subsets can be useful diagnostic tools.

Incoherence in ontologies corresponds to inconsistency in knowledge bases in
classical logic, where a knowledge base is a finite set of classical formulae. A
knowledge base is inconsistent if and only if there is no model satisfying all its
formulae. We can regard the measures of inconsistency for a knowledge base
(proposed to date) as falling into one of the following three classes:(Formula-
centric measures) These measures take into account the number of formulae
required for inconsistency, and so fewer formulae in an inconsistency means a
higher degree of inconsistency (e.g. [10]); (Atom-centric measures) These
measures take into account the proportion of the language affected by inconsis-
tency, and so more propositional atoms involved in inconsistency means a higher
degree of inconsistency (e.g. [5, 11]); and (Conflict-centric measures) These
measures take into the account the number of conflicts each formula is involved
in, and so if each formula is involved in more conflicts, there is a higher degree
of inconsistency (e.g. [6]). Furthermore, given a measure of inconsistency of a
knowledgebase, using one of the above possibilities, we can ascribe the blame or
responsibility that each formula has in the set by drawing on an approach from
game theory, called Shapley values, that allows for a principled assignment [7].

In this paper, we propose some approaches for measuring incoherence in DL-
based ontologies. The approaches proposed in this paper are independent of spe-
cific DL languages. Our approaches are based on the scoring function introduced
by Hunter in [6]. There are two classes of measures of incoherence: measures of
incoherence for unsatisfiable concepts and measures of incoherence for termi-
nologies. First, we define the scoring function for an unsatisfiable concept and
use it to define a score ordering on unsatisfiable concepts. Second, we define the
scoring function for a TBox and use it to define an ordering on terminology ax-
ioms and an ordering on TBoxes. We implement the proposed approaches using
KAON2 reasoner1 and report preliminary but encouraging experimental results.

This paper is organized as follows. We first give some preliminaries on DLs
and related notions on incoherence in Section 2. We then discuss related work
in Section 3. Afterwards, we propose some measures of incoherence in DL-based
ontologies in Section 4. In Section 5, the applications of measures of incoherence
are given. Finally, we report preliminary evaluation results in Section 6 and
conclude this paper in Section 7.

1 c.f. http://kaon2.semanticweb.org



Measuring incoherence in DLs 3

2 Preliminaries

2.1 Description Logics

We now give a brief introduction of Description Logics (DLs) and refer the
reader to the DL handbook [1] for more details.

A DL-based ontology (or ontology) O = (T ,A) consists of a set T of concept
axioms (TBox) and role axioms, and a set A of assertional axioms (ABox).
Concept axioms have the form C ⊑ D where C and D are (possibly complex)
concept descriptions, and role axioms are expressions of the form R⊑S, where R
and S are (possibly complex) role descriptions. We call both concept axioms and
role axioms as terminology axioms. The ABox contains concept assertions of the
form C(a) where C is a concept and a is an individual name, and role assertions
of the form R(a, b), where R is a role and a and b are individual names.

The semantics of DLs is defined via a model-theoretic semantics, which expli-
cates the relationship between the language syntax and the model of a domain:
An interpretation I = (△I , ·I) consists of a non-empty domain set △I and
an interpretation function ·I , which maps from individuals, concepts and roles
to elements of the domain, subsets of the domain and binary relations on the
domain, respectively.

Given an interpretation I, we say that I satisfies a concept axiom C ⊑ D

(resp., a role inclusion axiom R ⊑ S) if CI⊆DI (resp., RI ⊆ SI). Furthermore,
I satisfies a concept assertion C(a) (resp., a role assertion R(a, b)) if aI∈CI

(resp., (aI , bI)∈RI). An interpretation I is called a model of an ontology O, iff
it satisfies each axiom in O.

2.2 Incoherence in DL-based ontologies

We introduce the notion of incoherence in DL-based ontologies defined in [4].

Definition 1 (Unsatisfiable Concept). A concept name C in an ontology
O, is unsatisfiable iff, for each interpretation I of O, CI = ∅. The set of all
unsatisfiable concept is denoted as US(O).

That is, a concept name is unsatisfiable in an ontology iff it is interpreted as an
empty set by all models of O.

Definition 2 (Incoherent Ontology). An ontology O is incoherent iff there
exists an unsatisfiable concept name in O.

For example, an ontology O = {A⊑B,A⊑¬B} is incoherent because A is un-
satisfiable in O. As pointed out in [4], incoherence does not provide the classical
sense of the inconsistency because there might exist a model for an incoherent
ontology. We first introduce the definition of an inconsistent ontology.

Definition 3 (Inconsistent Ontology). An ontology O is inconsistent iff it
has no model.



4 Guilin Qi, Anthony Hunter

However, incoherence and inconsistency are related with each other. Accord-
ing to the discussion in [4], incoherence is a potential cause of inconsistency.
That is, suppose C is an unsatisfiable concept in O, by adding an instance a
to C will result in an inconsistent ontology. For example, the ontology O =
{A⊑B,A⊑¬B} is incoherent but consistent (any interpretation which inter-
prets A as an empty set and B as an nonempty set is a model of O). However,
O′ = {A(a), A⊑B,A⊑¬B} is both incoherent and inconsistent.

In most of current work on debugging ontologies, the incoherence problem is
often discussed at the terminology level. That is, ABoxes are usually considered
as irrelevant for incoherence. Therefore, when we talk about an axiom in an
ontology, we mean only the terminology axiom.

In the following, we introduce some definitions which are useful to explain
logical incoherence.

Definition 4. [17] Let A be a concept name which is unsatisfiable in a TBox
T . A set T ′⊆T is a minimal unsatisfiability-preserving sub-TBox (MUPS) of T
if A is unsatisfiable in T ′, and A is satisfiable in every sub-TBox T ′′ ⊂ T ′. The
set of all MUPS of T with respect to A is denoted as MUA(T )

A MUPS of T and A is the minimal sub-TBox of T in which A is unsatisfiable.
For example, given an TBox T = {C ⊑ A,A⊑B,A⊑¬B}. C is an unsatisfiable
concept and it has one MUPS, i.e., T . Based on MUPS, we can classify unsatisfi-
able concepts into derived unsatisfiable concepts and root unsatisfiable concepts
as follows:

Definition 5 (Root and Derived). [9] C is a derived unsatisfiable concept in
T iff it satisfies the following condition: ∃i, j such that MUPSi(C) ⊇MUPSj(D),
for an unsatisfiable concept D. If C does not satisfy this condition then it is a
root unsatisfiable concept.

Definition 6. [17] Let T be an incoherent TBox. A TBox T ′⊆T is a minimal
incoherence-preserving sub-TBox (MIPS) of T if T ′ is incoherent, and every
sub-TBox T ′′⊂T ′ is coherent. The set of all MIPSs of T is denoted as MI(T ).

A MIPS of T is the minimal sub-TBox of T which is incoherent. Let us con-
sider the example used to illustrate Definition 4, there is only one MIPS of T :
{A⊑B,A⊑¬B}. We say a terminology axiom is in conflict in T if there exists a
MIPS of T containing it.

Algorithms have been given to calculate MUPS and MIPS in a given ontology
(see [17, 9]). It was shown in [17] that calculating MUPS is the same as the
satisfiability check if a glass-box algorithm is used, i.e., the algorithm is based
on the description logic tableaux reasoner.

3 Related Work

This work is related to the work on debugging terminologies and resolve in-
coherence [9, 8, 17, 16]. The first work on debugging erroneous terminologies is



Measuring incoherence in DLs 5

reported in [17] where the authors provide a specialized algorithm for the DL
ALC. The notions of MUPS and MIPS are introduced to explain logical incoher-
ences there. In [9], two orthogonal debugging approaches are proposed to detect
the clash/sets of support axioms responsible for an unsatisfiable classes, and to
identify root/derived unsatisfiable classes. Based on the debugging approach, in
[8], the authors give a tool to repair unsatisfiable concepts in OWL ontologies.
The basic idea is to rank erroneous axioms and then to generate a plan to re-
solve the errors in a given set of unsatisfiable concepts by taking into account
the axiom ranks. Although the above-mentioned work provides potential starting
points for measuring incoherence, they are not explicitly used for this purpose.
The approaches to measuring incoherence in ontologies are still underdeveloped.

Recently, some approaches for measuring inconsistency in an ontology have
been proposed [3, 12]. In [3], some inconsistency measures are proposed by adapt-
ing the approach based on Shapley values in [7]. The approach given in [12] is
defined by a four-valued semantics of DL ALC. Our approaches differ from these
approaches in that we consider measuring incoherence of an ontology instead
of inconsistency, although the measures of incoherence implicitly provides infor-
mation for degree of inconsistency of an ontology (recall that inconsistency and
incoherence are two different but related notions in DLs).

4 Measures of Incoherence

4.1 Measures of incoherence for unsatisfiable concepts

If an ontology is incoherent, there is at least one unsatisfiable concept in
its TBox. For these unsatisfiable concepts, some are more problematic than
others. For example, given a TBox T = {A⊑B,B⊑C,B⊑¬C}. A and B are
both unsatisfiable concepts. However, A is unsatisfiable because of B. That is,
if B becomes satisfiable, then A is also satisfiable. So in a sense, we may regard
B as more incoherent than A. However, we may argue that B is less incoherent
than A because the axioms involved in the conflict for concept B are a subset of
those for concept A. We develop an alternative (conflict-centric) characterization
here.

We define an ordering between two unsatisfiable concepts based on the scor-
ing function.

Definition 7. Let T be an incoherent TBox, and A be an unsatisfiable concept
name in T and MUA(T ) be the set of all MUPSs of T with respect to A. The
scoring function for A is a function ST ,A : ℘(T ) 7→ N (℘(T ) denotes the power
set of T ) such that for all T ′∈℘(T )

ST ,A(T ′) = |{Ti∈MUA(T ) : Ti∩T
′ 6=∅}|.

The scoring function ST ,A for A returns for each subset T ′ of T the number of
MUPS of T with respect to A that have overlap with T ′. The scoring function is
originally defined in [6] to compare two logical inconsistent sets of propositional
formulae. It is clear that we have the following proposition.



6 Guilin Qi, Anthony Hunter

Proposition 1. Let T be an incoherent TBox, and A be an unsatisfiable concept
names in T and MUA(T ) be the set of all MUPSs of T with respect to A. Suppose
ST ,A is the scoring function for A, then for all T ′∈℘(T )

ST ,A(T ′) = |MUA(T )| − |MUA(T \ T ′)|.

According to Proposition 1, the scoring function for T ′ gives the number of
MUPS that would be eliminated from T if T ′ were substracted from T .

Let T be an incoherent TBox, and A and B be two unsatisfiable concept
names in T . Let MA = ∪Ti∈MUA(T )Ti and MB = ∪Tj∈MUB(T )Tj . Suppose
|MA|<|MB |, then we add some dummy axioms to MA such that |MA| = |MB |.
The dummy axioms can be constructed by some fresh concept names. We can
define a score ordering as follows:

Definition 8. Assume that ST ,A and ST ,B are the scoring functions for A and
B respectively. ST ,A≤SST ,B iff there is a bijection f : ℘(MA) → ℘(MB) such
that the following condition is satisfied:

∀T ′ ∈ ℘(MA), ST ,A(T ′)≤ST ,B(f(T ′)).

As usual, ST ,A<SST ,B denotes ST ,A≤SST ,B and ST ,B 6≤SST ,A, and ST ,A≃SST ,B

denotes ST ,A≤SST ,B and ST ,B≤SST ,A. The score ordering, denoted ≤, is de-
fined as: for any two unsatisfiable concepts A and B,

A≤B iff ST ,A≤SST ,B .

Intuitively, ST ,A≤SST ,B means that the MUPSs inMUA(T ) are less overlapping
than those in MUB(T ). So A is less incoherent than B with respect to the score
ordering iff the MUPSs in A is less overlapping than those in B.

We illustrate the score ordering by the following example.

Example 1. Given a TBox T = {A⊑B,A⊑C,B⊑D,C⊑¬D,E⊑F,E⊑¬F, F⊑D,
E⊑¬D}, where A,B,C, D,E, F are concept names. Clearly, A and E are two
root unsatisfiable concept in T , andMUA = {T1}, where T1 = {A⊑B,A⊑C,B⊑D,
C⊑¬D} andMUE = {T2, T3}, where T2 = {E⊑F,E⊑¬F} and T3 = {E⊑F, F⊑D,
E⊑¬D}. SoMA = {A⊑B,A⊑C,B⊑D,C⊑¬D} andME = {E⊑F,E⊑¬F, F⊑D,
E⊑¬D}. Let ST ,A and ST ,E be the scoring function for A and E respectively,
then ST ,A(T ′) = 1, for all T ′ ∈ ℘(MA). However, ST ,E({E⊑F}) = 2 and
ST ,E(T ′)≥1 for all other T ′∈℘(ME). So ST ,A<SST ,E and we have A<E.

When defining the score ordering, we need to find a bijection f mapping
every subset of MA to a subset of MB . In the following, we provide a procedure
to find the bijection f . Let |℘(MA)| = |℘(MB)| = n.

Step 1: for each Ti∈℘(MA) and each T ′
j ∈℘(MB), compute ST ,A(Ti) and

ST ,B(T ′
j ),

Step 2: rearrange T1,...,Tn as Ti1 ,...,Tin
(ik∈{1, ..., n}) such that ST ,A(Ti1)≥

ST ,A(Ti2)≥...≥ST ,A(Tin
), and rearrange T ′

1 ,...,T ′
n as T ′

j1
,...,T ′

jn
(jk∈{1, ..., n})

such that ST ,B(T ′
j1

)≥ST ,B(T ′
j2

)≥...≥ST ,B(T ′
jn

),



Measuring incoherence in DLs 7

Step 3: a mapping fS : ℘(MA) → ℘(MB) is defined as follows: for each
Tik

∈℘(MA), fS(Tik
) = T ′

jk
.

It is clear that fS is a bijection. The following proposition shows that fS is
the bijection which is used to define the score ordering.

Proposition 2. Assume that ST ,A and ST ,B are the scoring functions for A
and B respectively. Then ST ,A≤SST ,B iff

∀T ′ ∈ ℘(MA), ST ,A(T ′)≤ST ,B(fS(T ′)).

Proof: “If” part is clear by the definition of score ordering. We show “only if”
part.

Suppose ST ,A≤SST ,B, then there exists a bijection f such that for all T ′∈℘(MA),
ST ,A(T ′)≤ST ,B(f(T ′)). We shown that ST ,A(Tik

)≤ST ,B(T ′
jk

) for all k = 1, ..., n
by induction over the index k.

Suppose k = 1. Then ST ,A(Ti1)≤ST ,B(f(Ti1))≤ ST ,B(T ′
j1

).

Assume that ST ,A(Tik
)≤ST ,B(T ′

jk
) for all k < m. Suppose that ST ,A(Tim

)>
ST ,B(T ′

jm
). Then ST ,B(T ′

jm
) < ST ,B(f(Tim

)). This means that there exists jl <
jm such that f(Tim

) = T ′
jl
. However, since ST ,A(Tim

)>ST ,B(T ′
jm

), we have that
ST ,A(Tik

)>ST ,B(T ′
jm

) for all k < m. Therefore, for any k < m, there exists
k′ < m such that f(Tik

) = T ′
jk′

. Therefore, it is impossible that there exists
jl < jm such that f(Tim

) = T ′
jl

(every such T ′
jl

corresponds to a Tik
with k < m).

This is a contradiction. So ST ,A(Tim
)≤ST ,B(T ′

jm
).

Proposition 3. Let T be an incoherent TBox, and let A and B be two unsat-
isfiable concepts in it. If A⊑B∈T , then B≤SA.

The proof of Proposition 3 is easy to establish. Proposition 3 tells us that if
A is subsumed by B then A is more incoherent than B with respect to the
score ordering. If we consider the example in the beginning of this section, B is
more incoherent than A with respect to the score ordering. Therefore, our score
ordering provides a different view on the extent of incoherence of a concept from
the subsumption relation. Indeed, scoring ordering gives a conflict-centric view
since the axioms involved in the conflict for concept B are a subset of those for
concept A. Proposition 3 also provides us a way to improve the performance of
our approach for generating the score ordering. That is, before comparing the
score functions of two unsatisfiable concepts, we can first check if they have a
subsumption relation in the ontology.

4.2 Measures of incoherence for terminologies

Given a TBox which may be incoherent, we propose three approaches to
measuring its degree of incoherence. The first measure is defined by the ratio of
number of unsatisfiable concepts and that of all the concepts in T .



8 Guilin Qi, Anthony Hunter

Definition 9. Let T be a TBox. Suppose Con(T ) is the set of all concept names
and US(T ) be the set of all unsatisfiable concept names in T respectively, the
unsatisfiability ratio for T , denoted dUR, is defined as follows:

dUR(T ) =
|US(T )|

|Con(T )|
.

The unsatisfiability ratio gives us a simple view on the incoherence of a TBox.
That is, if most of concept names are unsatisfiable in a TBox, the TBox is
problematic. However, the unsatisfiability ration is misleading in some cases.
For example, in an ontology such as Tambis2 where there are large number of
unsatisfiable concept names, many of the unsatisfiable concept names depend
on other unsatisfiable concept names. The root unsatisfiable concept names are
relative few (according to [9], in Tambis, 33 concepts names out of 144 unsatisfi-
able concept names are root unsatisfiable concept names) and by repairing these
concept names we can get a coherent ontology. Therefore, this ontology is not
“strongly” incoherent. To overcome the problem for the unsatisfiability ratio, we
can consider only the root unsatisfiable concept names.

Definition 10. Let T be a TBox. Suppose Con(T ) is the set of all concept
names and RU(T ) be the set of all root unsatisfiable concept names in T respec-
tively, the refined unsatisfiability ratio for T , denoted dRU , is defined as follows:

dRU (T ) =
|RU(T )|

|Con(T )|
.

Let us consider Example 1 again. The set of concept names are {A,B,C,D,E, F}
and root unsatisfiable concept names are A and E, so dRU (T ) = 2

5 .
Both the unsatisfiability ratio and the refined unsatisfiability ratio do not

consider the number of terminology axioms that are in conflict. So we define
another incoherence measure for TBoxes.

Definition 11. Let T be a TBox. Suppose MI(T ) is the set of all MIPSs of T ,
then the incoherence ratio for T , denoted dIR, is defined as follows:

dIR(T ) =
| ∪Ti∈MI(T ) Ti|

|T |
.

The incoherence ratio measures the percentage of axioms in a TBox that are
in conflict. It differentiates the root unsatisfiable concept names and derived
unsatisfiable concept names. This is because any axiom whose left hand is a
derived unsatisfiable concept name is not in an MIPS.

Example 2. Let T = {A⊑B,A⊑¬B,C⊑A} and T ′ = {A⊑B,A⊑¬B,C⊑⊥}.
Then US(T ) = US(T ′) = {A,C} and dUR(T ′) = dUR(T ′) = 2

3 : T and T ′

have the same unsatisfiability ratio. However, MI(T ) = {{A⊑B,A⊑¬B}} and
MI(T ′) = {T ′}. So dIR(T ) = 2

3 and dIR(T ′) = 1.

2 http://protege.cim3.net/file/pub/ontologies/tambis/tambis-full.owl.



Measuring incoherence in DLs 9

The problem for the incoherence ratio is that it says nothing about to which
extent the MIPSs in MI(T ) overlap.

Example 3. Let T = {A⊑B,A⊑¬B,C⊑D,C⊑¬D} and T ′ = {A⊑B,A⊑¬B,
B⊑C,A⊑¬C} be two coherent TBoxes, where A,B,C,D are concept names. By
Definition 6, T has two MIPSs {A⊑B,A⊑¬B} and {C⊑D,C⊑¬D}, and T ′ has
two MIPSs {A⊑B,A⊑¬B} and {A⊑B,B⊑C,A⊑¬C}. According to Definition
11, we have dIR(T ) = dIR(T ′) = 1. However, MIPSs in MI(T ) have no overlap
whilst the MIPSs in MI(T ′) have a common axiom A⊑B. Therefore, we may
conclude that T is less coherent than T ′.

We have defined two measures and argue that they are not fine grained
enough. Next, we define an incoherence measure for TBoxes which is based on
the scoring functions.

Definition 12. Let T be a TBox. The scoring function for T is a function
ST : ℘(T ) 7→ N such that for all T ′∈℘(T )

ST (T ′) = |{Ti∈MI(T ) : Ti∩T
′ 6=∅}|.

The scoring function ST for T returns for each subset T ′ of T the number of
MIPSs of T that have an overlap with T ′.

We have the following proposition for the scoring function.

Proposition 4. Let ST be the scoring function for T . For Ti, Tj∈℘(T ), we have
ST (Ti ∩ Tj)≤min(ST (Ti), ST (Tj)) and max(ST (Ti), ST (Tj))≤ST (Ti ∪ Tj).

The scoring function can be used to define an ordering between two termi-
nology axioms.

Definition 13. Let T be a TBox and ST be its scoring function. A score-based
ordering on terminology axioms in T , denoted ≺ST

, is defined as follows: for
any φ, ψ∈T ,

φ�ST
ψ iff ST ({φ})≤ST ({ψ}).

As usual, φ≺ST
ψ denotes φ�ST

ψ and ψ 6�ST
φ. φ �ST

ψ means that φ is less
incoherent than ψ with respect to the scoring function. That is, φ is contained in
less MIPSs of T than ψ. It is clear that �ST

is a total pre-order, i.e. a pre-order
which is complete.

Example 4. (Example 1 Continued) There are three MIPSs of T : T1 = {A⊑B,
A⊑C,B⊑D,C⊑¬D}, T2 = {E⊑F,E⊑¬F} and T3 = {E⊑F, F⊑D,E⊑¬D}. So
ST ({E⊑F}) = 2 and ST ({φ}) = 1 for all other φ ∈ T . Therefore, φ≺ST

E⊑F
for all φ ∈ T and φ 6=E⊑F .

Let T and T ′ be two TBox. LetMT = ∪Ti∈MI(T )Ti andMT ′ = ∪Tj∈MI(T )′Tj .
Suppose |MT |<|MT ′ |, then we add some dummy axioms to MT such that
|MT | = |MT ′ |. An ordering on TBoxes can be defined by the scoring functions
as follows.



10 Guilin Qi, Anthony Hunter

Definition 14. Assume that ST and ST ′ are the scoring functions for two
TBoxes T and T ′ respectively. ST �ST ′ iff there is a bijection f : ℘(MT ) →
℘(MT ′) such that the following condition is satisfied:

∀T ′ ∈ ℘(M1), ST (T ′)≤ST ′(f(T ′)).

As usual, ST ≺SST ′ denotes ST �SST ′ and ST ′ 6�SST , and ST ≡SST ′ denotes
ST �SST ′ and ST ′�SST . The score ordering, denoted �S, is defined as: for any
two TBoxes T and T ′,

T �ST
′ iff ST �SST ′ .

Intuitively, ST �ST ′ means that the MIPSs of T are less overlapping than those
of T ′. So T is less incoherent than T ′ with respect to the score ordering iff the
MIPSs of T is less overlapping than those of T ′.

Example 5. Given two TBoxes T = {A⊑B⊓C,B⊓C⊑⊥} and T ′ = {A⊑B,A⊑C,
B⊓C⊑⊥}, it is clear that T ≡ T ′. T has only one MIPS which is T and T ′ has
only one MIPS which is T ′. So MT = T and MT ′ = T ′. Since |MT | < |MT ′ |, we
add a dummy axiom to MT such that MT = {A⊑B⊓C,B⊓C⊑⊥,D⊑⊤}, where
D is a new concept name. Let ST and ST ′ be the scoring functions for T and
T ′ respectively, we then have

ST ({A⊑B⊓C}) = 1, ST ({B⊓C⊑⊥}) = 1, ST ({D⊑⊤}) = 0, and
ST ′({A⊑B}) = 1, ST ′({A⊑C}) = 1, ST ′({B⊓C⊑⊥}) = 1.
So ST ≺ST ′ and T ≺ST

′.

According to Example 5, the scoring function defined by Definition 12 is
syntax sensitive in the sense that there may exist two TBoxes T and T ′ where
T ≡ T ′ and ST is the scoring function for T and ST ′ is the scoring function for
T ′, but ST 6≡ST ′ . To give a more precise measure of incoherence, we can simply
split the axioms in a TBox T into “smaller” axioms to obtain an equivalent TBox
Ts using the algorithm in [8]. For instance, in Example 5, the axiom A⊑B⊓C
can be split into A⊑B and A⊑C. Then it is clear that ST ≡SST ′ .

The score ordering �S is related to the incoherence ratio.

Proposition 5. Let T and T ′ be two TBoxes, and |T | = |T ′|. Suppose ST

and ST ′ are scoring function for T and T ′ respectively, then ST �SST ′ implies
dIR(T )≤dIR(T ′). The converse does not hold.

Proposition 5 shows that if two TBoxes have the same cardinality, then a TBox
T is less coherent than another one T ′ implies that T contains fewer conflicting
terminology axioms.

5 Applications of Measures of Incoherence

The ordering relations on unsatisfiable concepts can provide important in-
formation for repairing incoherence in ontologies. When resolving incoherence



Measuring incoherence in DLs 11

in an ontology, we may need to repair unsatisfiable concepts one by one [8]. In
this case, the ordering on unsatisfiable concepts can be used to decide which
unsatisfiable concepts should be dealt with first. Another strategy to resolve in-
coherence is to remove some unsatisfiable concepts in an ontology [8]. Based on
our ordering relation ≤I , those unsatisfiable concepts that are more incoherent
w.r.t ≤I should be removed before those that are less incoherent.

Based on the score ordering on the TBoxes, we can give an ordering on
ontologies. That is, an ontology O is more important or reliable than another
one O′ if it is less coherent than O′. The ordering on ontologies provides us
important information for evaluating different ontologies.

We have applied the scoring function to define an ordering between two
axioms in an ontology. Alternatively, we can compute the Shapley values of
each axiom and then obtain an ordering on axioms. The ordering on axioms are
important context information for dealing with incoherence and inconsistency in
an ontology. It has been widely accepted that priorities play an important role
in dealing with inconsistency in propositional logic. Recently, several priority-
based approaches for reasoning with inconsistent ontologies have been proposed
[13–15]. A challenging problem for these approaches is to obtain an ordering on
axioms. This problem can be solved by considering our score ordering.

6 Evaluation

We have implemented the approaches for measuring incoherence described in
previous sections in JAVA using KAON2. All tests were performed on a laptop
computer with a 1.5 GHz Intel processor, 512M of RAM ((with 512M heap space
allocated to JVM)). The operating system was Windows XP Pro SP2. The data
sets were miniTambis (we do not use Tambis because KAON2 does not support
it) and a revised version of Chemical (we denoted it by Chemical∗) provided
by University of Maryland 3, and proton 100 all4. Some information about the
ontologies is given in Table 1. The second column of the table shows the number
of terminology axioms, MIPSs and the cardinality of union of all MIPSs and the
third column of the table shows the number of concepts/properties/individuals
and unsatisfiable concepts in the ontology. To find all the MUPSs of an unsat-
isfiable concept, we implemented an approach which is based on the algorithm
for finding minimal unsatisfiable subsets in [2]. We then obtained all the MIPSs
of an ontology using the approach given in [17].

6.1 Score ordering on unsatisfiable concepts

We implemented the approach for score ordering on unsatisfiable concepts.
The performance of our approach is analyzed in Table 2. In Table 2, the second
column and third column show the average runtime (in seconds) of calculating

3 http://www.mindswap.org/2005/debugging/ontologies/
4 http://wasp.cs.vu.nl/knowledgeweb/d2163/learning.html



12 Guilin Qi, Anthony Hunter

Table 1. Sample OWL Data

Ontology #axiom/#MIPS/#MIPUnion C/P/I/U

miniTambis 173/3/12 178/35/0/30
Chemical∗ 123/4/8 48/19/0/35

proton 100 all 1788/3/10 266/111/30/3

MUPS of each unsatisfiable concept (prepare time) and average runtime of gen-
erating the score ordering on unsatisfiable concepts (compare time) respectively.
The fourth column is the sum of the prepare time and compare time.

For all test ontologies, the time spent on comparing concepts is less than that
spent on calculating MUPS. For ontology proton 100 all, which has only three
unsatisfiable concepts and the maximal cardinality of their MUPSs is 5, it takes
0.071 seconds to compare concepts. Much time has been spent on calculating
MUPS because there exist 1788 axioms in this ontology. In contrast, for ontolo-
gies miniTambis and Chemical∗ which contains about 30 unsatisfiable concepts,
there is increasing time spent on comparison. Especially, for Chemical∗ in which
the cardinalities of some MUPSs are more than 10, the compare time is almost
the same as the prepare time. Therefore, we can conclude that the efficiency of
computation of score ordering on unsatisfiable concepts depends on the cardinal-
ities of MUPSs. Even for a big ontology like proton 100 all, if the cardinalities
of the MUPSs of its unsatisfiable concepts are small, the score ordering can still
be computed quickly if we ignore the time spent on calculating MUPS.

Table 2. Score ordering on unsatisfiable concepts (time is in seconds)

Ontology Prepare time Compare time Total time

miniTambis 233.230 78.540 311.770
Chemical∗ 873.12 652.75 1525.87

proton 100 all 319.83 0.071 319.901

6.2 Score ordering on terminologies

We also implemented the approaches for score orderings on terminology ax-
ioms and on ontologies. The performance of the approach for score ordering on
terminology axioms is analyzed in Table 3. In Table 3, the second column and
third column show the average runtime (in milliseconds) of calculating MIPS of
the ontology (prepare time) and average runtime of generating the score order-
ing on axioms (compare time) respectively. The prepare time in Table 3 does
not count the time spent on calculating all MUPSs in an ontology, which can
be checked in Table 2. According to the table, it takes less than one second to
calculate all the MIPSs from MUPSs for all test ontologies.



Measuring incoherence in DLs 13

Table 3. Score ordering on terminologies (time is in milliseconds)

Ontology Prepare time Compare time Total time

miniTambis 171 10 181
Chemical∗ 511 30 541

proton 100 all 90 0.1 90.1

According to our experiment, the score of every terminology axiom in mini-
Tambis is 1. This means that the MIPSs in miniTambis are pair-wise disjoint.
For Chemical∗ and proton 100 all, however, axioms may get different scores.
For example, in Chemical∗, the axiom PublishedWork⊑¬Person gets score 2
and the axiom NerveAgentRelatedPublishedWork⊑PublishedWork gets score
4 and so the former is less incoherent than the latter w.r.t. the score ordering.
According to Table 3, the time spent on comparison is much less than that spent
on calculating MIPSs.

Similar to the score ordering on terminology axioms, if we ignore the time
spent on calculating MIPS, it also takes less than 1 second to obtain the score
orderings on ontologies. This is reasonable because both the number of MIPS
in each ontology and the size of the union of MIPS in each ontology are small.
In contrast, the MUPS of an unsatisfiable concept is more likely to contain a
large number of axioms and there are usually many unsatisfiable concepts in a
coherent ontology. So it takes longer to obtain a score ordering on unsatisfiable
concepts. The test ontologies are not comparable w.r.t. the score ordering �S .
That is, there does not exist two ontologies such that one is more incoherent
than the other w.r.t. the score ordering.

7 Conclusions and Future Work

In this paper, we have defined two classes of measures for incoherent ontolo-
gies: measures of incoherence for unsatisfiable concepts and measures of inco-
herence for terminologies. The first class of measures gives us information on
comparing unsatisfiable concept names. The second class of measures gives us
information on comparing terminology axioms and comparing ontologies. These
measures of incoherence can provide important information for dealing with inco-
herence and evaluating ontologies. Finally, we have implemented the approaches
for measuring incoherence and reported on some preliminary but interesting
experimental results.

For future work, we plan to apply the approaches of measuring incoherence
to deal with incoherence and inconsistency in an ontology. The score ordering
defined on unsatisfiable concepts is not applicable for ontologies which contain
a large number of conflicting terminology axioms. We will explore some approx-
imation techniques to solve this problem.



14 Guilin Qi, Anthony Hunter

8 Acknowledgments

This work is partially supported by the EU under the IST project NeOn
(IST-2006-027595, http://www.neon-project.org/).

References

1. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter
Patel-Schneider. The Description Logic Handbook: Theory, implementation and
application. Cambridge University Press, 2003.

2. Maria Garcia de la Banda, Peter J. Stuckey, and Jeremy Wazny. Finding all mini-
mal unsatisfiable subsets. In Proceedings of the 5th ACM SIGPLAN international
conference on Principles and practice of declaritive programming, pages 32–43,
2003.

3. Xi Deng, Volker Haarslev, and Nematollaah Shiri. Measuring inconsistency in
ontologies. In Proc. of ESWC’07, 2007, to appear.

4. Giorgos Flouris, Zhisheng Huang, Jeff Z. Pan, Dimitris Plexousakis, and Holger
Wache. Inconsistencies, negations and changes in ontologies. In Proc. of AAAI’06,
pages 1295–1300, 2006.

5. Anthony Hunter. Measuring inconsistency in knowledge via quasi-classical models.
In Proc. of AAAI’02, pages 68–73, 2002.

6. Anthony Hunter. Logical comparison of inconsistent perspectives using scoring
functions. Knowledge and Information Systems, 6(5):528–543, 2004.

7. Anthony Hunter and Sébastien Konieczny. Shapley inconsistency values. In Proc.
of KR’06, pages 249–259, 2006.

8. Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and Bernardo Cuenca Grau. Repair-
ing unsatisfiable concepts in owl ontologies. In Proc. of ESWC’06, pages 170–184,
2006.

9. Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James Hendler. Debugging un-
satisfiable classes in owl ontologies. Journal of Web Semantics, 3(4):268–293, 2005.

10. Kevin M. Knight. Measuring inconsistency. Journal of Philosophical Logic, 31:77–
98, 2001.

11. Sébastien Konieczny, Jérôme Lang, and Pierre Marquis. Quantifying information
and contradiction in propositional logic through epistemic tests. In Proc. of IJ-
CAI’03, pages 106–111, 2003.

12. Yue Ma, Guilin Qi, Pascal Hitzler, and Zuoquan Lin. Measuring inconsistency for
description logics based on paraconsistent semantics. In Proc. of DL’07, 2007, to
appear.

13. Thomas Meyer, Kevin Lee, and Richard Booth. Knowledge integration for de-
scription logics. In Proc. of 20th National Conference on Artificial Intelligence
(AAAI’05), pages 645–650. AAAI Press, 2005.

14. Guilin Qi, Weiru Liu, and David A. Bell. A revision-based algorithm for handling
inconsistency in description logics. In Proc. of NMR’06, pages 124–132, 2006.

15. Guilin Qi, Jeff Z. Pan, and Qiu Ji. A possibilistic extension of description logics.
In Proc. of DL’07, 2007, to appear.

16. Stefan Schlobach. Diagnosing terminologies. In Proc. of AAAI’05, pages 670–675.
AAAI Press, 2005.

17. Stefan Schlobach and Ronald Cornet. Non-standard reasoning services for the
debugging of description logic terminologies. In Proc. of IJCAI’03, pages 355–362.
2003.


