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Abstract. The W3C standard OWL provides a decidable language for
representing ontologies. While its use is rapidly spreading, efforts are
being made by researchers worldwide to augment OWL with additional
expressive features or by interlacing it with other forms of knowledge
representation, in order to make it applicable for even further purposes.
In this paper, we integrate OWL with one of the most successful and
most widely used forms of knowledge representation, namely Prolog, and
present a hybrid approach which layers Prolog on top of OWL in such a
way that the open-world semantics of OWL becomes directly accessible
within the Prolog system.

1 Introduction

The Web Ontology Language OWL has been recommended by the W3C in 2004
for the representation of ontologies, and its usage is spreading rapidly ever since.
One of the design issues for OWL has been that it is decidable and based on
the open world assumption, and these two properties – which are both inherited
from description logics – have served it well in the last two years.

However, with these design decisions come also some drawbacks as they limit
expressiveness of OWL in ways which make working with it cumbersome at
times. Even more, due to decidability of the language some things cannot be
expressed at all in OWL. Efforts are therefore under way to extend OWL with
more expressive features, and there is a growing body of work with proposals
and studies how to do this best.

The corresponding research can roughly be classified into two different ap-
proaches. The first approach deals with extensions of OWL while adhering as
much as possible to the conceptual frame of mind spanned by description logic
research. The second approach is based on establishing hybrid systems which
combine OWL with other established knowledge representation formalisms in
such a way that either approach is encompassed in full, possibly using two differ-
ent reasoning engines, but allowing for information flow between the subsystems.
The work which we present in this paper is of the hybrid kind.

The particular integration which we report on, is based on the following
rationales.

– OWL has not been designed to be a stand-alone programming language.
OWL ontologies should rather be viewed as declarative knowledge bases,



which require programming in some other language for accessing the knowl-
edge and further processing it. It is a natural choice to use a logic-based
declarative programming language for this purpose.

– One of the most requested-for extensions of OWL is the ability to formulate
rules, in some established rules language.

– It becomes more and more apparent that closed-world features are required
alongside the open-world character of OWL.

Our hybrid system addresses the formulated needs by interlacing OWL with
one of the most prominent and historic approaches to logic-based knowledge
representation, namely with Prolog. Our system layers Prolog on top of OWL by
allowing the querying of OWL ontologies via a standard OWL reasoner. A tight
integration is achieved by interpreting the answers given by the OWL reasoner
in an open-world fashion, and by processing this answer within Prolog in the
same open-world fashion. This is achieved by means of the so-called any-world
semantics due to Loyer and Straccia [1].

Technically speaking, the integration is achieved via a hybrid semantics for
a language which incorporates calls to an OWL reasoner into standard logic
programming. This hybrid semantics is based on the any-world semantics. Algo-
rithmization and an implementation of the approach is provided by means of a
transformation of logic programs under the any-world semantics into standard
Prolog, in this case realised using SWI-Prolog.

Besides the aforementioned rationales for our approach, we thus arrive at a
system with the following additional features.

– Modularity: The user can develop its programs based on Prolog program-
ming and need not deal with the evaluation of OWL-based reasoning and
knowledge. It is possible to offer restricted or controlled access to third party
knowledge-bases without problems.

– Maturity: We incorporate the KAON2 reasoner and thus offer the perfor-
mance of a state-of-the-art DL-reasoner to the logic programming world.
The logic programming environment can be handled with little more than
basic Prolog knowledge.

– Conformity with standards: Available OWL knowledge bases can be used di-
rectly. As we do not need one big formal system comprising both approaches,
these can be used with no or only little maintenance to do.

– Bridge between ontology language paradigms: One of the most prominent
alternatives to OWL for ontology representation is F-Logic [2, 3], which can
be used both as an ontology language and as a programming language. As
F-Logic in its basic form is basically Prolog extended with further syntactic
features, our approach can be used directly for realising a hybrid OWL/F-
Logic system.

The structure of the paper is as follows. In Section 2, we review the basic
facts we need about the any-world semantics and about OWL in order to make
this paper relatively self-contained. In Section 3, we prove a theorem which
gives the formal rationale for our algorithmisation. In Section 4 we discuss the



implemented system which we provide. In Section 5 we give an extended example
which shows the possibilities of our approach. In Section 6 we discuss related
work, and we conclude in Section 7.

Acknowledgements We gratefully acknowledge support by the German Ministry
for Education and Research under the SmartWeb project grant 01 IMD01 B,
by the European Commission under the NeOn project IST-2006-027595, and by
the Deutsche Forschungsgemeinschaft under the ReaSem project. We would also
like to thank the members of the OntoLoRe group at AIFB Karlsruhe, and in
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2 Preliminaries

2.1 The Any-World semantics

We review the any-world semantics due to Loyer and Straccia [1] in some details
as it is crucial for understanding our work.

Bilattices The any-world semantics is based on a truth-space which is a so-
called bilattice [4]. This is a potent mathematical structure which particularly
provides two partial orders, which permit to represent (logical) truth and the
knowledge contained in these truth-values separately.

Formally, a lattice 〈L,≤〉 is a non-empty set L with a partial order ≤, where
each subset of L containing two elements has a supremum and infimum regarding
≤ (also known as meet and join). It is a complete lattice iff every subset has
supremum and infimum regarding ≤. We write x < y for x ≤ y and x 6= y where
x, y ∈ L.

A bilattice 〈B,≤t,≤k〉 is a non-empty set B with two partial orders, the
truth-order ≤t and the knowledge-order ≤k, both of which give B the struc-
ture of a complete lattice. Due to completeness, the greatest and least element
regarding either of the orders always exists and is unique [4]. The greatest ele-
ment regarding ≤t is denoted true, the least element false. Regarding ≤k, the
greatest element is >, the least ⊥. Meet and join under ≤t which are denoted
∧ and ∨, correspond to the well-known two-valued conjunction and disjunction
regarding the values true and false. Under ≤k meet and join are denoted ⊗
and ⊕, where x⊗ y extracts the maximum knowledge that is expressed both in
x and y whereas x ⊕ y unites the knowledge of x and y. Our approach is par-
ticularly based on the smallest non-trivial bilattice known as FOUR [5] which
is depicted in Figure 2.1. Indeed, although bilattice-based semantics is generally
formulated for arbitrary bilattices, FOUR is currently the only such lattice of
practical relevance, and will entirely suffice for our purposes.

An operator • on a lattice is called monotone when x1 ≤ y1 and x2 ≤ y2

implies x1 • x2 ≤ y1 • y2. We suppose for all bilattices here considered that all
of the operators ∧,∨,⊗,⊕ are monotone w.r.t. both the knowledge- and the
truth-order; this is called the infinitary interlacing condition. We furthermore
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Fig. 1. The bilattice FOUR

assume that all bilattices are infinitary distributive i.e. that all distributive laws
connecting the aforementioned lattice operators hold. Finally, we assume that
all lattices have a negation, which is an operator denoted ¬ that inverses the
truth order, does not inflict the knowledge order and satisfies ¬¬x = x. These
assumptions are standard and generally known to be unproblematic in a logic
programming context.

Logic programs We extend logic programs from the common case and include
not only connectives for disjunction, conjunction and negation but for all the
operators of a bilattice: ∧,∨,⊗,⊕ and ¬. So the knowledge order and its opera-
tors are not only a tool of analysis and semantics as used for example in [6] but
can be used explicitly to determine how the program treats information from
the perspective of knowledge. A logic program is based on a set P of predicates,
V of variables, C of constants and F of functions. A term is either an element of
V or C or of the form f(t1, . . . , tn) where f ∈ F and all t1, . . . , tn are terms. The
ground terms forming the Herbrand universe are all the terms that can be built
from elements of C and F . An atom is of the form p(t1, . . . , tm) where p ∈ P
and all t1, . . . , tm are terms. The ground atoms forming the Herbrand base are
all the atoms that can be built from the Herbrand universe. A literal is of the
form A or ¬A where A is an atom. Furthermore we allow the elements of the
bilattice as literals. A formula is either any literal, or of the form ϕ1 • ϕ2 where
ϕ1 and ϕ2 are formulas and • is one of the four lattice operators ∧,∨,⊗,⊕, or
one of the expressions ∀ϕ respectively ∃ϕ where ϕ is a formula. A rule is of the
form p(x1, . . . , xm) ← ϕ(x1, . . . , xm) where p ∈ P, x1, . . . , xm ∈ V and ϕ is a
formula. We call p the head and ϕ the body of the rule. We suppose that the free
variables in ϕ are among {x1, . . . , xm} and are universally quantified. A logic
program P is a finite set of rules. Not allowing terms in the heads of rules is not
a restriction, e.g. the rules (taken from [1]):

p(s(x))← p(x)
p(0)← true



can be rewritten (using a predicate eq defining equality) as:

p(y)← ∃x(eq(y, s(x)) ∧ p(x))
p(x)← eq(x, 0)

With ground(P ) we denote all ground instances of members of P over the Her-
brand universe.

Interpretations of logic programs Let B be a bilattice. An interpretation of
a logic program on B is a mapping I from ground atoms to members of B. It is
extended to formulas as follows: I(b) = b where b ∈ B; I(ϕ1 •ϕ2) = I(ϕ1)•I(ϕ2)
where ϕ1, ϕ2 are formulas and • is one of the operators ∧,∨,⊗,⊕; I(¬ϕ) =
¬I(ϕ); I(∃xϕ(x)) =

∨
{I(ϕ(t))|t is a ground term} and finally I(∀xϕ(x)) =∧

{I(ϕ(t))|t is a ground term}. The partial orders of the bilattice are point-wise
extended to interpretations: I1 ≤t I2 iff I1(A) ≤t I2(A) for all ground atoms
A. The extension for ≤k is analogous. Given two interpretations I1, I2 we define
(I1 • I2)(ϕ) = I1(ϕ) • I2(ϕ) where • is a lattice operator and ϕ a formula. Thus
the space of all possible interpretations on a bilattice constitutes an infinitary
interlaced and distributive bilattice as well. An interpretation I is a model of a
logic program P iff I(A) = I(ϕ) for all rules A← ϕ in P .

Semantics The semantics is defined via the fixed point of a monotone operator
similarly to the well known Kripke-Kleene [7, 8] or well-founded [9] semantics.
In fact the any-world semantics used here is a generalization of the well-founded
semantics. The central idea of the any-world semantics is to overcome the lim-
itations of both the open and the closed world as default assumption. Instead
an arbitrary interpretation H called the hypothesis is used as default assump-
tion, i.e. the value H(A) is the default value for the atom A. From this point
of view, the open world assumption corresponds to the hypothesis H(A) = ⊥
for all atoms A, we call this hypothesis H⊥. The closed world assumption can
be modelled by H(A) = false for all atoms A, this hypothesis is denoted Hf.
Now the information of the program is combined with knowledge extracted from
the hypothesis used. To gather information from the program we use the well
known immediate consequence operator ΦP (I)(A) = I(ϕ) where A ← ϕ is a
rule in P . Now we want to augment the interpretation I with the information
from a hypothesis H. This is done similarly to the use of the unfounded set
in the well-founded semantics. From a knowledge point of view, the unfounded
set is the amount of information contributed to the semantics by the closed
world assumption. This concept now is generalized to arbitrary hypotheses H.
We usually cannot use all the information of H. Instead we want to extract
the maximum knowledge of H, expressed as an interpretation J , so that the
assumed knowledge J is entailed by the program w.r.t. the augmented interpre-
tation I ⊕ J , i.e. we want to make sure that J(A) ≤k ΦP (I ⊕ J)(A). This idea
is modelled using the so called safe interpretations. An interpretation J is safe
w.r.t. a logic program P , an interpretation I and a hypothesis H if J ≤k H and



J ≤k ΦP (I ⊕ J). The support provided by H to P and I is the greatest (on
the knowledge order) safe interpretation w.r.t. P , I and H. It is denoted sH

P (I).
Note that this particularily entails that the support is always smaller than the
hypothesis.

In order to simplify the treatment of logic programs using fixed-point seman-
tics, we introduce the transformed program P ∗. Given a logic program P and a
hypothesis H the program P ∗ contains the following rules:

– A ← ϕ1 ∨ · · · ∨ ϕn if A ← ϕ1, . . . , A ← ϕn are all rules in ground(P ) with
the head A.

– A← H(A) if A is not the head of any rule in P .

The second part enforces that for any atom that is not assigned a truth-value by
a rule in the program, it is given its value according to the default assumption,
i.e. the hypothesis.

Now we define the operator Π̃H
P (I) = ΦP (I) ⊕ sH

P (I) which works on P ∗.
The fixed points of Π̃H

P are called the H-founded models of P . In [1] it is shown
that the support operator sH

P (I) is monotone in I and H w.r.t. the knowledge
order. Furthermore also ΦP is monotone w.r.t. the knowledge order [6]. By the
infinitary interlacing condition, motonicity of Π̃H

P is guaranteed. So by the well
known Knaster-Tarski theorem [10], there is always a (unique) least H-founded
model for any logic program, which can be obtained as the least upper bound
of the transfinite sequence (Π̃H

P ↑ α)α, where α ranges over ordinals, Π̃H
P ↑ 0 is

the least interpretation, Π̃H
P ↑ α + 1 = Π̃H

P (Π̃H
P ↑ α) for all α, and Π̃H

P ↑ α =
sup{Π̃H

P ↑ β : β < α} for limit ordinals α.
The key feature of the any-world semantics is the flexibility of the default

assumption. Particularly using a hypothesis that maps ground atoms to the
set {false,⊥} it is possible to mix closed- and open-world based information,
whereon our hybrid semantics relies. It also includes several well known seman-
tics. Using Hf, the H-founded model is the well-founded model [1]. Let HKK be
the interpretation that maps all atoms that are the head of a rule in a given pro-
gram P to ⊥, all the other atoms to false. Using this hypothesis, the H-founded
model of P is its Kripke-Kleene-model [1]. This reflects that the Kripke-Kleene
semantics uses only the immediate-consequence operator ΦP and consequently
the support part in Π̃H

P is reduced to ⊥ by the assignment of ⊥ to all rule
heads. (Recall that the support is always smaller than the hypothesis on the
knowledge order). However the Kripke-Kleene semantics is based on the closed
world assumption. This is manifested in the hypothesis mapping the other atoms
to false. The fact that the hypothesis affects only those atoms will be used later
for the hybrid semantics of our system.

2.2 Description logics

The description logics part of our hybrid system uses the KAON2 OWL DL
reasoner [11].1 Our approach, however, is independent of the specific reasoner
1 See also http://kaon2.semanticweb.org



used, and can indeed be used with any reasoning system based on the open world
assumption. OWL DL is based on the description logic SHOIN (D) [12], but for
the purpose of our exhibition we will not need to give many details about OWL
DL. It shall suffice to recall that OWL DL allows to specify axioms describing
the subsumption relation between complex concepts C and D, written C v D.
The (complex) concepts themselves are composed by means of primitive (or
atomic) concepts, logical and other connectives, individuals which correspond to
logical constants, and roles which describe relationships between individuals. It
is also possible to specify that some individual a belongs to a class C, written
C(a), or to explicitly state that two individuals a and b are connected by a
role R, written R(a, b). The special concepts > and ⊥, respectively, are defined
as containing all individuals respectively no individual. OWL DL is given an
open-world semantics e.g. by mapping it into first-order logic with equality.

Given a set of OWL DL axioms, called an ontology, it is possible to derive
logical consequences from it by means of well-established algorithms. The most
basic inference tasks are

– checking whether an ontology is satisfiable (i.e. logically consistent),
– checking whether a concept C subsumes a concept D, i.e. whether C v D is

a logical consequence,
– checking whether a concept C is satisfiable, i.e. whether there is a model of

the knowledge base in which the extension of C is non-empty, and
– checking whether an individual a is contained in a concept C, i.e. whether

C(a) is a logical consequence.

3 A program transformation for algorithmising the
any-world semantics

We provide an extension for Prolog which implements an any-world logic based
on FOUR and hypotheses that map into {false,⊥}. The implementation is
based on Theorem 1 below, which acts as a bridge between the any-world se-
mantics and Prolog.

Before we provide the theorem, let us define the specific type of hypotheses
which we need for our purposes. Recall that the hypothesis Hf corresponds to
the closed world assumption, while H⊥ can be interpreted as an open world
semantics. Consequently, the hypotheses of interest are a mix between these
two.

Definition 1. Given a logic program P we define the set of hypotheses KKS to
be the set of all interpretations that map an atom A to ⊥ when A is the head of
a rule in P , and to either ⊥ or false otherwise.

Note that HKK is in KKS for all programs P .

Theorem 1. Given a logic program P and a hypothesis HKKS ∈ KKS, there
exists a program transformation THKKS such that the H-founded model of P
under HKKS is the same as the H-founded model of THKKS(P ) under HKK .



The proof is based on the possibility to add the default assumption chosen
as rules of the form A← H(A) to the program, such that the resulting program
does not have any atoms that are not head of a rule. When evaluated under
HKK , accordingly the default assumption false is not used for any atom. The
assumption ⊥ for atoms that are heads of a rule, i.e. all atoms, is overridden by
the rule A ← false should it exist, as false ⊕⊥ = false. We first prove the
following:

Lemma 1. Let P be a logic program and HKKS a hypothesis from KKS. Then
sHKKS

P (I) = HKKS for any interpretation I.

Proof. For the following proof we write sHKKS

P (A) for sHKKS

P (I)(A) as the choice
of interpretation is without effect. For an atom A that is not the head of any rule
there are two possibilities: (1) If HKKS(A) = ⊥, then the fact that the support is
always smaller than the hypothesis on the knowledge-order requires sHKKS

P (A) =
⊥. (2) If HKKS(A) = false, then the rule A← false is in P ∗. As the support
is a safe interpretation we require sHKKS

P (A) ≤k ΦP (I ⊕ sHKKS

P )(A). This now
becomes sHKKS

P (A) ≤k I(false)⊕sHKKS

P (false) = false. As the support is the
largest safe interpretation on the knowledge-order we have sHKKS

P (A) = false.
Consider now an atom A that is head of a rule in P . Using again that the
support is a safe interpretation and thus smaller (in the knowledge order) than
the hypothesis, we have that sHKKS

P (A) = ⊥ = HKKS . ut

Now we are ready to prove the theorem:

Proof (of Theorem 1). We use the notation of the theorem. Furthermore we let
P ′ = THKKS (P ). We now show that the operators Π̃HKKS

P and Π̃HKK

P ′ have the
same result on every step of their iteration. As the operator Π̃ is defined on P ∗,
for the evaluation of Π̃HKKS

P P ∗ is constructed from P under the hypothesis
HKKS . In this process the same rules are added as when applying THKKS to P
by definition of T . So P ′ and P ∗ constructed under the hypothesis HKKS are
identical. For the evaluation of Π̃HKK

P ′ the program P ′∗ is constructed under the
hypothesis HKK . Since in P ′ all atoms are head of rule, the hypothesis HKK

has no influence on P ′∗. So we have P ∗ = P ′∗, thus Π̃HKKS

P and Π̃HKK

P ′ work on
the same program.

Now consider an arbitrary iteration step α:

(Π̃HKK

P ′ ↑ α + 1)(A) = (Π̃HKK

P ′ ↑ α)(ϕ)⊕ sHKK

P ′ (Π̃HKK

P ′ ↑ α)(A).

We have HKK(A) = ⊥ for all atoms A in P ′ as all atoms are the head of a rule
after the transformation. By Lemma 1 the support is equal to the hypothesis
(note that HKK is in KKS) and so the remaining formula is

(Π̃HKK

P ′ ↑ α + 1)(A) = (Π̃HKK

P ′ ↑ α)(ϕ). (1)

Consider now the operator

(Π̃HKKS

P ↑ α + 1)(A) = (Π̃HKKS

P ↑ α)(ϕ)⊕ sHKKS

P (Π̃HKKS

P ↑ α)(A).



Again by Lemma 1 we have that HHKKS (A) = sHKKS

P (Π̃HKKS

P ↑ α)(A). For
atoms that are head of a rule in P we obtain

(Π̃HKKS

P ↑ α + 1)(A) = (Π̃HKKS

P ↑ α)(ϕ). (2)

As P and P ′ contain the same rules, the operators in (1) and (2) yield the
same results. For atoms that are not the head of a rule we know that either
HKKS(A) = ⊥ or HKKS(A) = false. The following argument is analogous for
both cases, we consider the latter. If HKKS(A) = false, then there is a rule
A ← false in P ∗ and accordingly also in P ′. So we have (Π̃HKKS

P ↑ α)(ϕ) =
sHKKS

P (Π̃HKKS

P ↑ α)(A) = false as well as (Π̃HKK

P ′ ↑ α)(ϕ) = false. So both
operators give the same result. ut

So we have the possibility to deal with hypotheses mixing open- and closed-
world assumption while we only need to compute the Kripke-Kleene semantics.

4 Implementation

In order to arrive at its least fixed point, i.e. at the Kripke-Kleene semantics,
ΦP may need as many as Church-Kleene ω1 steps. Indeed the Kripke-Kleene
semantics is Π1

1 -complete [13] and thus not even semi-decidable. This means that
a sound and complete implementation of the Kripke-Kleene semantics cannot be
provided for theoretical reasons.

However, the Kripke-Kleene semantics was originally conceived as a declar-
ative semantics which captures the essence of the Prolog procedural semantics,
and indeed they are strongly related, as shown e.g. in [14]. For practical pur-
poses, it thus suffices to view Prolog as an approximate implementation of the
Kripke-Kleene semantics.

We therefore provide a library that permits using the logic FOUR with
all corresponding lattice operations ⊕,⊗,∧,∨ and ¬ in Prolog. The user can
write programs in a Prolog-like syntax, which is then compiled to SWI-Prolog2

such that each predicate is augmented with an additional parameter, which
carries the truth-value. A predicate p(t1, . . . , tn,TV) is then deducible in Prolog
if p(t1, . . . , tn) has the truth-value TV.

Within this framework, we offer special atoms, so called DL-atoms, that are
not evaluated according to the logic programming semantics but by querying the
DL-reasoner KAON2. They have the form dlq(pq) where q is a query and pq the
respective vector of parameters. The queries we offer are subsumes, unsatisfiable
and disjoint regarding concepts and has role regarding roles.

Usually queries to a DL-reasoner have two possible answers: the queried
information is either demonstrable or not. However, if the answer is negative,
then two cases are possible: Either the negation of the query is demonstrable,
or the negation of the query is also not demonstrable. In the first case, the
refutation of the query is much stronger than in the second.

2 http://www.swi-prolog.org



In order to give an example, consider the knowledge base specified by the
following axioms.

unicorn v appears in novels

horned animal v animal

When queried whether unicorn v horned animal holds, the reasoner responds
with No, which is entirely appropriate as the knowledge base does not allow to de-
rive any knowledge about the relationship between unicorn and horned animal,
i.e. the relationship unicorn v horned animal can neither be confirmed nor re-
futed.

Consider now the situation that the knowledge base contains the following
additional axioms, where the second describes the assertion that the concepts
unicorn and phantasy animal are extensionally disjoint.

unicorn v phantasy animal

animal u phantasy animal v ⊥

When now queried whether unicorn v horned animal holds, the reasoner again
responds with No, which is entirely appropriate as the knowledge base implies
that unicorn and horned animal are in fact extensionally disjoint. The situa-
tion compared to the first situation, however, is very different: The first knowl-
edge base did not specify anything about the relation between unicorn and
horned animal, while the second knowledge base strongly refutes the subsump-
tion relation.

Our framework provides the means to distinguish between these situations
by means of a different choice of truth values. In the first situation, the result-
ing truth value must be ⊥, while in the second it must be false. Technically,
we realise this in such a way that each query to KAON2 results in two calls
to the reasoner allowing to retrieve more detailed information. For the atom
dlsubsumes(C,D), the first query to the reasoner asks for C v D. Given a posi-
tive answer, we know that this is demonstrable, thus the DL-atom is evaluated
as true. When the answer is negative, there are, however, two cases possible:
C v D might be satisfiable, but not formally implied by the knowledge base.
In this case the DL-atom should have the value ⊥ i.e. unknown. On the other
hand it is possible that the information in the knowledge-base makes C v D
impossible. Then the DL-atom should be assigned false. This is done by the
second query, which asks whether KB ∪ {C v D} is satisfiable, where KB is
the knowledge-base. We summarize the query in the following table.

result of the query: result of the query: value of
C v D Is KB ∪ {C v D} satisfiable? dlsubsumes(C,D)

yes – true
no yes ⊥
no no false

Note that the queries are executed consecutively, i.e. the second query is only
performed if the first returned false.



A useful perspective on this is the following: C v D results in true if it holds
in all models of the knowledge base. It results in false if it holds in none of the
models of the knowledge base. And it results in ⊥ if it holds in some, but not
all, models of the knowledge base.

The question of the satisfiability of a concept is reducible to subsumption:
a concept C is satisfiable iff C v ⊥ does not hold, i.e. if there is some model
in which the extension of C is non-empty. This situation is best understood by
considering unsatisfiabilitiy of a concept instead of satisfiability, as this allows
us to use exactly the argumentation used above: A concept is unsatisfiable if it
is extensionally empty in all models of the knowledge base. Similarly to the case
of subsumption, we arrive at the execution detailed in the following table.

result of the query: result of the query: value of
C v ⊥ Is KB ∪ {C v ⊥} satisfiable? dlunsatisfiable(C)

yes – true
no yes ⊥
no no false

Querying for extensional disjointness of concepts is treated similarly, by reducing
it to subsumption: two concepts C and D are disjoint iff C v ¬D.

The query whether C(a) holds can be resolved as in the following table. Note
that C(a) holds if it is true in all models.

result of the query: result of the query: value of
C(a) ¬C(a) dlmember(C, a)
yes – true
no yes false
no no ⊥

The query dlhas role(I1, R, I2) provides information whether two individuals
I1 and I2 are connected via a role R. When 〈I1, I2〉 ∈ R then the DL-atom is
true. To evaluate the other truth-values, we have to restrict ourselves to the
known individuals, as it is not possible in OWL to ask for negated roles [15].
When querying whether two individuals are connected via a role, it is a sensible
assumption that this might be possible, i.e. that 〈I1, X〉 ∈ R or 〈X, I2〉 ∈ R. So
we assign the value false to queries when there exists either an X 6= I2 with
〈I1, X〉 ∈ R or an Y 6= I2 with 〈Y, I2〉 ∈ R but 〈I1, I2〉 6∈ R. All other pairs of
individuals get the value ⊥.

To integrate these DL-atoms flawlessly with the semantics of our logic pro-
gramming environment which is based on fixed points, we need to guarantee
that the values of the DL-atoms are monotone w.r.t. the knowledge order. For
now, we assume that the knowledge-base is static, i.e. it cannot change during
the program evaluation. Then the evaluation of the DL-atoms always yields the
same result, and thus, trivially, is monotone.

The implemented system, called PrOWLog, is available for download from
http://logic.aifb.uni-karlsruhe.de/wiki/PrOWLog.



5 An Example

We exemplify our approach by extending an example given in [1], formalising a
judge’s decision process, as given by the following rules.

is suspect← has motive ∨ has witness

is cleared← ¬contradict alibi ∧ has alibi

charge← is suspect⊕ ¬is cleared

The judge collects information suggesting that a person is suspect as well as
information that indicates that the person is cleared. To support suspicion he
collects information about the existence of a motive or a witness (first line). To
enforce innocence the judge considers an alibi, but only if this is not contradicted
by the defendant’s testimony (second line). Finally he combines this information
(third line). Assume now that the only information the judge has about some
person is has witness ← false. Only relying on this, the suspect shouldn’t be
charged. Based on the closed-world assumption we get has motive = false and
thus is suspect = false. As has alibi = false, we obtain is cleared = false.
So when evaluating charge the information is contradictory and charge gets the
value >.

Using the open-world assumption, giving all atoms the default value ⊥,
we get is suspect = ⊥ because has motive = ⊥ and false ∨ ⊥ = ⊥. Since
we know nothing about has alibi and contradict alibi, the default assumption
is used again and we get is cleared = ⊥ and finally charge = ⊥. So nei-
ther of the two established assumptions work in a satisfactory way. Consider
now the mixed hypothesis Hm defined as follows: Hm(has witness) = false,
Hm(has motive) = false, Hm(has alibi) = ⊥, Hm(contradict alibi) = ⊥.
Then, like under the closed-world assumption, is suspect is false. The contra-
diction we encountered, however, does not exist any more as is cleared = ⊥
which reflects that the information is not sufficient to make a decision. Conse-
quently charge = false. This illustrates that the first line of the program is
devised according to the closed-world assumption. The second line however is
based on a different idea: For is cleared to become false, has alibi = false
is already sufficient. So the meaning of has alibi = false is that it has been
proven that nobody can provide an alibi for the defendant. Then we need also
the possibility to model the fact, that just no alibi is known, which corresponds
to has alibi = ⊥, and which should be the default case. So the second line is
conceived with an open-world setting in mind. H-founded models enable the use
of such programs despite the different approaches involved.

To complete the example, it could be assumed that the judge draws his
knowledge from an OWL DL knowledge base, by means of the following rules



which query a knowledge base about a person Ted who is under investigation.

has motive← dlmember(dl has motive, Ted)
has witness← dlmember(dl has witness, Ted)

has alibi← dlmember(dl has alibi, T ed)
contradict alibi← dlmember(dl contradict alibi, T ed)

By means of our hybrid semantics, the system will respond with the desired
answer.

6 Related work

Our approach using DL-atoms to link rule-based and ontology-based reasoning
is inspired by the approach of Eiter et. al. presented in [16], where extended logic
programs and the answer set semantics [17] are modified to incorporate DL-
atoms to query external reasoners. This approach permits the flow of informa-
tion in both directions from the DL-enhanced program to the reasoner and vice
versa. Extended logic programs make use of two negation operators, distinguish-
ing explicitly negation as failure and classical negation. The any-world-semantics
permits to manage this naturally, giving the negation operator of the lattice dif-
ferent meanings respective to the default assumption of the negated expression.
In [18] Eiter et. al. generalize their approach to so called HEX-Programs, where
the DL-atoms are replaced by atoms permitting to access a variety of differ-
ent external sources, not only DL-reasoners. To accomplish this, the rule syntax
and the answer set semantics are extended. The evaluation of these programs is
made possible by a splitting algorithm based on the dependency structure in the
program. Also based on DL-atoms, our approach was developed from another
perspective. Given the elegant yet expressive any-world semantics and the ease
of use of the hypotheses in KKS, we provide a logic programming environment
with access to description logics, while remaining close to Prolog programming.
We emphasize the use of the particular kind of information that can be drawn
from DL-reasoners as an open-world based system with an intuitive semantics.

Motik and Rosati present in [19] an approach for a system combining rules
and DL into one formalism. Based on MKNF [20] they join a decidable FOL
fragment with logic programming rules. The modality operators in their so called
hybrid MKNF knowledge bases allow to formulate rules to enforce closed world
reasoning while maintaining the open world assumption for the DL-part. Their
system also subsumes Rosati’s approach in [21]. There and more detailed in [22]
he discusses the relation of open and closed semantics in these hybrid systems.

7 Conclusions and Further Work

We have presented the hybrid reasoning system PrOWLog, which allows to com-
bine OWL DL with Prolog in such a way that the open-world semantics of OWL



DL can be captured within the Prolog system. To the best of our knowledge,
this is the first work which integrates a logic programming language and OWL
in such a way.

We perceive basically two lines of further research to follow up on our results.
On the one hand, studies remain to be done which show that the approach is
useful in practice. We believe that in particular an integration with F-Logic
reasoners is worth investigating, as F-Logic and OWL are two complementary
ontology paradigms, which are both used in practice. On the other hand, it
remains to be investigated whether the integration of Prolog and OWL can be
strengthened by weakening the layering, i.e. by allowing some flow of information
back to the OWL knowledge base, perhaps in a way similar to [18].
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