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Abstract

In this paper a new approach towards temporal reasoning is presented that scales up

from the temporal relations commonly used in Allen's qualitative interval calculus

and in quantitative temporal constraint satisfaction problems to include interval

relations with distances, temporal rules and other non-binary relations into the

reasoning scheme. For this purpose, we generalize well-known methods for constraint

propagation, determination of consistency and computation of the minimal network

from simpler schemes that only allow for binary relations. Thereby, we �nd that

levels of granularity play a major role for applying these techniques in our more

expressive framework. Indeed, the technical preliminaries we provide are especially

apt to investigate the switching between di�erent granularities of representation,

hence illucitating and exploiting the tradeo� between expressiveness and eÆciency

of temporal reasoning schemes on the one side and between expressiveness and

understandability on the other side.

1 INTRODUCTION

Expressive temporal reasoning is much sought after in a multitude of ap-

plications, such as natural language understanding, planning or temporal

databases. Common approaches to qualitative reasoning [2,45] and quanti-

tative reasoning [9] as well as integrations of them [23,27,3] have ful�lled the

requirements for temporal reasoning at di�erent levels of granularity, still ma-

jor problems remain to be tackled when one wants to o�er a toolbox of compre-

hensive, 
exible and tractable temporal reasoning mechanisms for such broad
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ranges of applications. For such purposes, we here investigate a framework

that is more expressive than either of the mechanisms cited above, since it

allows the inclusion of non-binary temporal relations. 1

As principal scheme we propose a network of relations where relations consist

of disjunctions of conjoined constraints and constraints come in the form p =

(a; q; b) with a; b being time points, q being an interval and the constraint

denoting b� a 2 q. In contrast to previous approaches, this scheme allows for

interval relations augmented by distances like \interval A is clearly disjoint

from interval B", for temporal rules like \if point a before point b then point

c before point d", or for non-binary relations such as \interval A is between

intervals B and C " (cf. Section 3 for an informal and Section 4 for a formal

description).

The generalization has a large overlap with existing temporal constraint net-

works. Nevertheless, the common algebraic operators and relators for inter-

section, composition, and subsumption that are needed for determining con-

sistency do not straightforwardly carry over to generalizations. In fact, we

investigate how three major factors underlying our generalization, viz. inter-

val structures, relation topology, and network topology, a�ect implications that

typically hold in simpler schemes and, thus, in
uence the reasoning process. In

particular, we �nd that the notion of path consistency does not carry over to

our model, but a slightly weaker version, which we call weakly generalized path

consistency (WGPC), is reached by constraint propagation and may be used

as a basis for determining consistency. Though we must face the fundamen-

tal trade-o� between expressiveness and eÆciency, our approach achieves a

smooth scale-up from previous mechanisms. The reason is that on those prob-

lems that could be handled by previous models the constraint propagation

mechanism has the same order of computational complexity. If constructs are

added which are only possible in our extension the complexity of the constraint

propagation increases only smoothly (Section 5).

Besides of the determination of consistency the computation of the minimal

network is the second major task one must face in temporal reasoning schemes.

We �nd that \easier" frameworks build on basic assumptions concerning the

de�nition of minimality that do not transfer to non-binary relations. Hence,

we propose a generalized notion for minimal networks that makes the level of

granularity explicit for which minimality is computed (Section 6).

Concerning the 
exibility and eÆciency requirements mentioned above, our

framework exhibits another advantage besides its expressiveness. Our reason-

1 Meiri in [27], p. 377: \Future research should enrich the representation language

to facilitate modeling of more involved reasoning tasks. In particular, non-binary

constraints (for example, `If John leaves home before 7:15 a.m. he arrives at work

before Fred') should be incorporated in my model."
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ing scheme is especially well suited to switch smoothly between di�erent levels

of granularity. We research how this switching a�ects reasoning and represen-

tation. Whereas the principal tradeo� between expressiveness and eÆciency is

well-known, we may add here to its deeper understanding, when we touch on

the expressive side of temporal reasoning (Section 7). Furthermore, we look

at the balance between expressiveness and understandability | hardly ever

considered for temporal reasoning mechanisms so far |, even though this

dimension may become a decisive factor for whether expressive temporal rea-

soning technology �nds its way outside of AI laboratories (cf. McGuiness et

al. [26]; cf. Section 8).

Before we start with a summary of the fundamental reasoning mechanisms

we build on (Section 2), we just want to mention that the proposal we make

here has been part of a larger e�ort toward understanding and reasoning with

natural language degree expressions [40].

2 TCSP NETWORKS & ALLEN'S CALCULUS

To facilitate understanding and to distinguish the features gained through

this proposal, we introduce the basic concepts from which the GTN model is

generalized. In particular, we give a short survey of Simple Temporal Problems

(STPs; cf. Dechter et al. [9]), their generalization in form of TCSPs [9], and

the integration (cf. Meiri [27]) of TCSPs with Allen's Calculus (cf. Allen [2]).

The data structures underlying all of these approaches are graphs the vertices

of which are time point or time interval variables and the edges of which are

annotated with relations. 2 In general, the goal is to determine consistency of

the network and to compute the minimal network equivalent to the given one.

Consistency is usually computed by enforcing path consistency on networks

with convex relations (cf. Montanari [28]), e.g., singleton labellings, which can

be enumerated with backtracking. Path consistency is enforced by repeatedly

intersecting (\\" for intersection) known relations with restrictions computed

from the pairwise composition of relations (\Æ" for composition). Often it turns

out that the computation of the minimal network can be stated in terms of

computing consistency.

An STP network is given by a set of time point variables V and a single

interval constraint qi;j between each pair of these variables [9]. \Æ" and \\" are

given by the addition and intersection of intervals on the real line, respectively.

For instance, one may denote that time point t1 is between 10 and 20 units

2 Throughout this paper we will assume that constraints are simple interval con-

straints between time points, while relations may group several constraints.
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earlier than time point t2, which itself is between 20 and 30 units earlier than

t3. By computing path consistency one can determine consistency, and, in this

example, one may conclude that t1 is between 30 and 50 units earlier than t3.

A TCSP network has a similar structure, but allows for disjunctions of

interval constraints between points [9]. For instance (cf. PP relations in Fig. 1),

if t1 is between 10 to 20 units or between 110 to 120 units earlier than t2, and

t2 is between 20 to 30 units earlier than t3, then one may conclude that either

t1 is between 30 to 50 units earlier than t3 or t1 is between 130 to 150 units

earlier than t3. \Æ" is given by the pairwise application of interval addition

and the union of the results. \\" is the set intersection.

Allen's calculus considers disjunctions of 13 primitive and mutually exclusive

relations between intervals (cf. the II relations in Fig. 1). For instance, from

\interval A before or overlaps interval B" and \B overlaps interval C" follows

\A before or meets or overlaps C". For primitive relations \Æ" is given by a

composition table, for disjunctions the union is taken over all the results of the

pairwise composition of primitive relations. \\" is de�ned by the intersection

of sets of primitive interval relations.

The integration of TCSPs and Allen's calculus (cf. Fig. 1) requires the

full mechanism for TCSP reasoning as well as that for Allen's calculus (cf.

[23,27]). Furthermore, Meiri [27] provides an intermediate layer between these

two subnetworks for point-interval and interval-point relations (PI in Fig. 1)

which communicates between the PP and the II levels. Depending on the

types of relations that are composed (PP { PP, PP { PI, PI { II, II { II) the

corresponding composition and intersection operator is chosen. For instance,

if time point t2 is 20 to 30 units earlier than time point t3 and t3 is before

(\<") or starts (\s") interval A (cf. Fig. 1), then t2 is before A.

{<,m,o}

given constraint inferred constraint

B AC
{o} {<,o}

II relations

{[10,20],
[110,120]} {[20,30]}

{[30,50],[130,150]}

{<,s}{<}

t1 t3t2
PP relations

PI relations

Fig. 1. Integrating TCSPs with Allen's Calculus

4



3 NON{BINARY RELATIONS

Notwithstanding its bene�ts, the integration given by Meiri [27] does not scale

up to more complex temporal problems, e.g., temporal rules like \if a before b

then c before d", non-binary constraints like \interval A between intervals B

and C", or the integration of numbers into interval relations like in \disjoint

by more than n units". An example we want to cover and that cannot be

captured by these mechanisms is:

(1) James is a shuttle driver for a major hotel in New York. His duties in-

clude coaching guests from the airports or the train stations to the hotel.

Today's schedule posts Mr. Roget and Mr. Meyer from Paris, Mrs. Meyer

from Philadelphia, and Mr. George from Sidney for transportation. The ho-

tel's clerk told him that Mr. Roget and Mr. Meyer have tickets for di�erent


ights from Paris to NY. Mr. Roget is scheduled to arrive in NY at 3:00pm

local time, and Mr. Meyer should arrive in NY two hours later. However,

they currently try to arrange for sharing a 
ight which would arrive in NY at

6:00pm local time. When Mr. Meyer arrives in NY he will immediately call his

wife, Mrs. Meyer, who will get the next train to NY. Hence, she will be in NY

less than 4 hours after her husband has arrived. Furthermore, Mr. George's


ight leaves Sidney at 12:00pm NY time, and he has got a very long 
ight.

Problem: In which order must James service the guests?

Let us reconsider the relations exempli�ed in Fig. 1. They are expressed in

the integration model of TCSPs and Allen's calculus, but can also be denoted

in terms of constraints on time points only. PP relations are disjunctions of

single constraints between time points. Assume that (t1; [10; 20]; t2) denotes a

constraint between the time points t1 and t2 such that t2 � t1 2 [10; 20] then

one may write the PP relation between t1 and t2 as follows:
3

(t1; [10; 20]; t2) _ (t1; [110; 120]; t2).

PI relations a�ect three time points. The PI relation given in Fig. 1 can be

denoted by one basic assumption (cf. the illustration in Fig. 2 that \zooms"

into Fig. 1), namely that the beginning time point of the interval is before

the ending one (expressed by (Ab; (0;+1); Ae)), and by a disjunction of two

conjoined underlying constraints (cf. \relation1" in Fig. 2). The disjunction

denotes

((t3; (0;+1); Ab) ^ (t3; (0;+1); Ae)) _ ((t3; [0; 0]; Ab) ^ (t3; (0;+1); Ae))

and can be reduced to

(t3; [0;+1); Ab) ^ (t3; (0;+1); Ae).

Moreover, PI relations only come with ordinal constraints, namely (�1; 0); [0; 0],

or (0;+1). Thus, the di�erence to PP relations is the number of edges be-

3 \[d; e]" denote closed, \[d; e)",\(d; e]" semi-open, and \(d; e)" open intervals.
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A
t3

B PI and II relations

t3 Ab

Ae

Bb

Be

relation2 basic assumption

non-binary relations
corresponding

relation1

Fig. 2. From PI and II to non-binary relations

tween time point variables that must be considered simultaneously and the

type of intervals that are to be allowed.

Finally, II relations a�ect four time points. Two basic assumptions guaran-

tee that the endings of the two intervals are after their beginnings, while

each remaining edge is annotated by an ordinal constraint, analogously to PI

relations (cf. \relation2" in Fig. 2). The non-binary relation corresponding

to \A is before or overlaps B" from Fig. 1 is given by (Ae; (0;+1); Bb) _

((Ab; (0;+1); Bb) ^ (Ae; (�1; 0); Bb) ^ (Ae; (0;+1); Be)).

Figure 3 which has been adapted from Freksa [13] illustrates how Allen's

primitive relations and the proposed non-binary representation interact. It

also shows that conversion from Allen's primitive relations to non-binary re-

lations and vice versa may proceed by a somewhat tedious, but otherwise

straightforward algorithm. A similar proposition can be made for PI relations.

Exchanging the old notation for our new one reveals two dimensions of ex-

pressiveness. The �rst one accounts for the number of constraints that are

conjoined in a relation, and the second relates to the algebraic structure un-

derlying the constraints, their composition and intersection. Loosening up on

the structural requirements implicit in Meiri's integration model and its un-

derlying schemes, one comes up with a rather free choice for disjunctions of

conjoined constraints. The new scheme allows the modeling of problem (1) as

follows:

(2) a. 12:00pm: t0
b. End of Mr. Roget's 
ight: t1
c. End of Mr. Meyer's 
ight: t2
d. Arrival of Mrs. Meyer in NY: t3
e. Beginning of Mr. George's 
ight: t4
f. End of Mr. George's 
ight: t5
g. If Mr. Roget arrives at 3:00pm, then Mr. Meyer arrives two hours

later; otherwise, they arrive together at 6:00pm:

((t0; [3; 3]; t1) ^ (t1; [2; 2]; t2)) _ ((t0; [6; 6]; t1) ^ (t1; [0; 0]; t2))
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h. Mrs. Meyer arrives less than 4 hours after her husband:

(t2; (0; 4); t3)

i. Mr. George has a very long 
ight:

(t4; [\very long";+1); t5)

j. Mr. George's 
ight starts at 12:00pm:

(t0; [0; 0]; t4)

In order to answer questions like the one stated in example (1), one must �nd

solutions to the problems arising from this generalized model:

� How is propagation de�ned on these new relations?

� How can consistency of a network be decided?

� How can a minimal network be computed?

� How can information be dealt with at di�erent levels of granularity (ab-

straction)?

� How can a high level interface be provided (generalization)?

The rest of this paper is dedicated to these questions. We begin with a formal

description of the approach to non-binary relations.

Ae=Be

Ab=Be

Ab<Bb

Ab=Bb

Ab>Bb

Ab>Be

Ae=Bb

<

m

o � di

s = si

d f oi

mi

>

Ae < Be Ae > Be

Ae<Bb

Ae>Bb

Ab < Be

(Ae; (�d; d); Bb)

Fig. 3. Changing between Representations
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4 GENERALIZED TEMPORAL NETWORKS

We now turn towards a formalization of the data structures for models like

(2). As has been illustrated, these data structures, which we refer to as Gener-

alized Temporal Networks (GTNs), build on interval constraints between time

points. The intervals may come from di�erent structures such that they can

be adapted to various needs:

De�nition 1 (Interval Structure) An interval structure I is a quadruple

(I;D; Æ;\). I is a set of (semi-)intervals on a domain D. I is closed under

the composition and intersection operators, Æ and \, respectively.

The two interval structures used in this paper are rational and ordinal ones:

First, the rational interval structure is de�ned by IQ := (IQ ;Q ; Æ;\), where IQ
are the intervals on the line of rational numbers Q , (d1; d2)Æ (d3; d4) is de�ned

as (d1 + d3; d2 + d4), and intersection is de�ned as set intersection. For our

computational purposes here, we use rational numbers to approximate reals.

Second, the ordinal interval structure is given by IO := (IO;Q ; Æ;\), which

restricts IO to the intervals (�1; 0); [0; 0]; (0;+1), and their convex unions. 4

GTN data structures and operators are de�ned such that the representation of

the network as a whole can be described by \(
V
(
W
(
V
p1 : : : pn) : : :) : : :)", with

pi being binary interval constraints between time points:

De�nition 2 (GTN) A generalized temporal network (GTN) N is a triple

(V;R; fI1; : : :g), of vertices V and relations R with constraints from a family

of interval structures fI1; : : :g, where:

� V = fviji = 1 : : : Ng is a set of time point variables on Q .

� R = fRkjRk = fPk;ljl = 1 : : : Lkg; k = 1 : : :Mg is a set of relations con-

sisting of disjunctions of conjoined constraints (cf. below for Pk;l); for each

Rk there exists exactly one Ek, the topology of Rk, such that E = fEkjk =

1 : : :Mg is a covering of f(vi; vj)ji < j ^ vi; vj 2 Vg. E is called the network

topology.

� P = fpi;j;k;lji; j = 1 : : : N; i < j; k = 1 : : :M; l = 1 : : : Lkg is a set of primi-

tive constraints pi;j;k;l := (vi; qi;j;k;l; vj), qi;j;k;l 2 I1[I2[ : : : and Ig is the �rst

component of interval structure Ig. Note that for shorthand we sometimes

write y 2 pi;j;k;l instead of y 2 qi;j;k;l.

� Pk;l = fpi;j;k;lj(vi; vj) 2 Ekg; k = 1 : : :M; l = 1 : : : Lk, are conjunctions of

4 Some propositions we make here, e.g. concerning soundness, also carry over to

qualitative schemes, like ones proposed by Clementini et al. [7]. However, other

statements, like those concerning eÆciency, rely on particular structural properties

and cannot be transfered. Their treatment would weaken the statements we want

to make here and, hence, are mostly neglected in the rest of this paper (cf. [40]).
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primitive constraints. When all vertices are connected, they form an STP

network.

� V : R 7! V;V(Rk) := fvij9vj : (vi; vj) 2 Ek _ (vj; vi) 2 Ekg.

For instance, the example model (2) comes with 5 time point variables, i.e.

V = ft1; : : : ; t5g. Four relations of the network, given in (2g) to (2j), partially

determine the network topology. In particular, the relation in (2g) exhibits the

topology E1 = f(t0; t1); (t1; t2)g, with P1;1 = f(t0; [3; 3]; t1); (t1; [2; 2]; t2)g and

P1;2 = f(t0; [6; 6]; t1); (t1; [0; 0]; t2)g being the elements of R1. V (R1) results in

ft1; t2; t3g.

An interesting special case is an unambiguous GTN:

De�nition 3 (UGTN) An unambiguous generalized temporal network

(UGTN) N is a GTN, where all relations consist only of a single clause, i.e.,

8k : Rk = fPk;1g.

Starting from the GTN model, we de�ne projection and interval mappings in

order to approach the de�nition of composition.

De�nition 4 (Projection) The projection � : 2R � E 7! R is a binary

function (�x(y) := �(y; x)). �Eg
(fR1; : : : ; Rng) selects all the constraints in

fR1; : : : ; Rng which constrain the edges in Eg. It is de�ned on the three levels

of simple conjoined constraints, of disjunctions of conjoined constraints and of

conjoined relations. Its input is described referring to sets (of tuples) K1; K2,

and K3, respectively:

� �Eg
(
V
(i;j;k;l)2K1

pi;j;k;l) :=
V
(i;j;k;l)2K1;(vi;vj)2Eg

pi;j;k;l,

� �Eg
(
W
(k;l)2K2

Pk;l) :=
W
(k;l)2K2

�Eg
(Pk;l), and

� �Eg
(
V
k2K3

Rk) := �Eg
(
V
k2K3

(
W
l2[1:::Lk]

Pk;l)) =

�Eg
(
W
(x1;:::;xjK3j);xi2[1:::Li]

(
V
k2K3;q=xk

Pk;q)):

An example for � is given in (3) which incorporates the information given in

(2g):

(3) �f(t1;t2)g( ((t0; [3; 3]; t1) ^ (t1; [2; 2]; t2)) _ ((t0; [6; 6]; t1) ^ (t1; [0; 0]; t2)) ) =

(t1; [2; 2]; t2) _ (t1; [0; 0]; t2)

As is illustrated in this example, the application of projection only eliminates

restrictions:

Lemma 5 For all E 2 E and fR1; : : : ; Rmg 2 2R: the constraints given by

fR1; : : : ; Rmg entail the constraints given by �E(fR1; : : : ; Rmg).

PROOF. Consider the three levels at which projection is de�ned:
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� For conjunctions of simple propositions, projection is equivalent to conjunc-

tion elimination. Hence, Lemma 5 holds at level 1.

� For disjunctions (of Ai) of conjoined propositions ai;j holds by de�nition:

�E(
W
iAi) = �E(

W
i(
V
j ai;j)) =

W
i �E(

V
j ai;j) =

W
i �E(Ai). At level 1 for all

i: Bi := �E(Ai) is entailed by Ai. Hence, by induction over the length of the

disjunction,
W
iBi =

W
i �E(Ai) is also entailed by

W
iAi, and Lemma 5 holds

at level 2.

� The de�nition of projection at level 3 reduces level 3 to level 2 by applying

distributivity of ^ over _. Hence, Lemma 5 also holds at level 3.

In order to compose constraints from di�erent interval structures, interval

mappings are established that communicate restrictions.

De�nition 6 (Interval Mapping) Interval mappings are functions �Ir;Is :

Ir 7! Is from one interval structure, Ir = (Ir; Dr; Ær;\r), to another one,

Is = (Is; Ds; Æs;\s), such that the following properties are ful�lled:

8i; j; k; l : (vi; qi;j;k;l; vj) ) (vi; �Ir;Is(�Is;Ir(qi;j;k;l)); vj). If Dr = Ds, it is also

required that 8i; j; k; l : (vi; qi;j;k;l; vj)) (vi; �Ir;Is(qi;j;k;l); vj).

For instance, the resulting quantitative constraints in example (3) are mapped

onto a common ordinal one by �IQ;IO :

(4) (t1; �IQ;IO([2; 2]); t2) _ (t1; �IQ;IO([0; 0]); t2) =

(t1; (0;+1); t2) _ (t1; [0; 0]; t2) =

(t1; [0;+1); t2)

De�nition 7 (Composition) The composition of two relations R3 := R1 Æ

R2 is de�ned by R3 :=
V
Ek2E

�Ek
(PC(R1 \R2)).

Thereby, R1\R2 :=
W
P1;l2R1;P2;l02R2

(P1;l^P2;l0), and PC(Pk;l) computes all the

consequences entailed by the STP network corresponding to Pk;l and returns

this network. PC(Rk) is de�ned by
W
Pk;l2Rk

PC(Pk;l).

PC(Pk;l) amounts to the path-consistent version of Pk;l. In De�nition 7, it is

implicitly assumed that interval mappings, e.g., �IQ;IO , establish a common

ground for conjoining constraints from di�erent interval structures. It is always

assumed here that such a common ground exists.

5 DETERMINING CONSISTENCY

Given a particular problem (e.g., (1)), a solution is found by computing conse-

quences and, in particular, by determining consistency. One way to approach

consistency is by propagating relations. Though, in general, propagation is

10



insuÆcient to determine consistency, at least it solves simple constraint prob-

lems and achieves path consistency as an approximation of consistency in more

diÆcult reasoning problems (cf. [28,27]).

5.1 Weakly Generalized Path Consistency

In contrast to simpler approaches, repeated applications of composition need

not lead to a path consistent version of GTNs. Figure 4 shows an example

that indicates why this is the case. All relations in this example only cover

one edge except for the three relations R; S, and T which cover two edges.

The problem is that instantiating the \loose ends" a and f with any pair of

numbers does not allow for a path consistent assignment of values to b; c; d,

and e, since the path (R; S; T ) by itself is inconsistent. Due to the network

topology 5 repeated composition cannot detect this inconsistency and, thus,

repeated composition does not enforce path consistency. The reader may note

that this problem is not incurred by the particular way that composition is

de�ned for GTNs, but it always prevails when the result of composing two

relations is only propagated to restrict relations that already exist.

a

b

c

d

e

f

R
S

T

R := ((a; [1; 1]; b) ^ (a; [2; 2]; c))_

((a; [2; 2]; b) ^ (a; [1; 1]; c))

S := (b; [0; 0]; d) ^ (c; [0; 0]; e)

T := ((d; [1; 1]; f) ^ (e; [1; 1]; f))_

((d; [2; 2]; f) ^ (e; [2; 2]; f))

Fig. 4. PC not computable by repeated composition

A slightly weaker, but very valuable, criterion than path consistency is weakly

generalized path consistency, which can be enforced independently from net-

work topology by repeated composition.

De�nition 8 (WGPC) A relation Rk is weakly generalized path consistent

(WGPC) with regard to a vertex path (v0 : : : vn) and a relation path (R1 : : : Rn)

i� (v0; vn) 2 Ek^8i 2 [0 : : : n�1] : (vi; vi+1) 2 Ei+1^8x0; xn 2 Q : (xn�x0) 2

�f(v0;vn)g(Rk) implies 9x1; : : : ; xn�1 2 Q 8i 2 [0 : : : n � 1] : (xi+1 � xi) 2

�f(vi;vi+1)g(Ri+1). A GTN is WGPC i� all its relations are WGPC with regard

to all vertex paths and relation paths.

5 If there was a relation Rh with Eh = f(a; d); (a; e)g, then this inconsistency could

be detected.
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The intuition behind WGPC is that when one projects all non-binary rela-

tions onto binary ones between time points, the resulting network of binary

relations is path consistent. For instance, propagating relations in the exam-

ple GTN N given in Figure 4 yields a GTN N0 by adding some constraints on

relations other than R; S and T . The corresponding \projection network" N00

with only binary relations R1 := (a; [1; 1]; b)_ (a; [2; 2]; b); R2 := (a; [2; 2]; c)_

(a; [1; 1]; c); S1 := (b; [0; 0]; d); S2 := (c; [0; 0]; e); T1 := (d; [1; 1]; f)_(d; [2; 2]; f);

T2 := (e; [1; 1]; f)_ (e; [2; 2]; f) and further binary relations projected from N0,

e.g. between a and f , is path consistent. Therefore N0 is WGPC.

Lemma 9 A GTN is WGPC i� all relations Rk are WGPC with regard to

all relation paths of length 2.

PROOF. \)": Trivial.

\(": Induction over the length of relation paths.

Induction start is given by the premise of the theorem.

Assumption: All relations Rk are WGPC with regard to all relation paths of

length n.

Induction step: Consider a relation Rk, a vertex path (v0 : : : vn+1) and a re-

lation path (R1 : : : Rn+1) such that the premise of the implication in Def. 8

holds. According to the structure of GTNs and the induction assumption there

is a relation R0
k that is WGPC with regard to (v0 : : : vn) and (R1 : : : Rn). Also

by the induction assumption Rk is WGPC with regard to (v0; vn; vn+1) and

(R0
k; Rn+1). Therefore, for all values x0 and xn+1 allowed by Rk for v0 and

vn+1, respectively, we �nd a value xn for vn such that xn � x0 2 �f(v0;vn)g(R
0
k)

and xn+1 � xn 2 �f(vn;vn+1)g(Rk+1). Due to the induction assumption we also

�nd values x1 : : : xn�1 for v1 : : : vn�1.

In order to apply this lemma, one must abstract from the models underly-

ing a relation by a syntactic criterion. For Allen's or for TCSP relations, this

abstraction, i.e. subsumption, can be easily computed by comparing the con-

straint sets, e.g. f<;m; og subsumes f<;mg. For GTNs subsumption may be

hard to compute, however a syntactic criterion that only implies semantic

subsumption, but that itself need not be implied by semantic subsumption

may be given by by assigning models in Euclidean space to all relations and

comparing these models, viz. �-subsumption:

12



De�nition 10 (�-Subsumption) A relation R1 = fP1;ljl = 1 : : : L1g

�-subsumes a relation R2 = fP2;ljl = 1 : : : L2g (R1
.R2; R2

/R1)

if
S
l=1:::L2 P

0
2;l n

S
l=1:::L1 P

0
1;l = ;, where

P
0
k;l =�i;j=1:::N;i<j

0
B@
qi;j;k;l; i� (vi; vj) 2 Rk

D; otherwise

1
CA.

I.e., P 0
k;l are given interpretations as hyper-quadrics in D

jVj(jVj�1)=2 partially

in-/excluding their boundaries and \n" denotes set di�erence. The following

lemma associates the notion of �-subsumption with the models possible for a

relation.

Lemma 11 If R1
.R2 then every model for the relation R2 that assigns values

to time point variables in V is also a model for the relation R1.

PROOF. Assume an interpretation which assigns values �x = fxiji = 1 : : :Ng

to all time point variables in V and which is a model for R2. I.e., 9P2;l 2

R2 8(vi; vj) 2 E2 : xj � xi 2 pi;j;2;l. By construction this implies that �x 2S
l=1:::L2 P

0
2;l. By the de�nition of �-subsumption also �x 2

S
l=1:::L1 P

0
1;l. Hence,

9l
0 : �x 2 P

0
1;l0. Thus, �x ful�lls all restrictions of R1.

For instance, the result in (3) �-subsumes the input given to �f(t1 ;t2)g, the

result in (4) �-subsumes the result of (3), and due to the transitivity of �-

subsumption the relation in (4) �-subsumes the one in (2g).

Now, we can give a syntactic check for WGPC.

Theorem 12 A GTN is WGPC if 8Rg; Rh; Rk 2 R : �Ek
(Rg ÆRh) .Rk.

PROOF. Due to Lemma 9 we only have to show that if the premise of

Theorem 12 holds all relation paths of length 2 are WGPC. This is true by

De�nition 7 (composition) and by Lemma 11.

5.2 Constraint Propagation

With Theorem 12, composition, and �-subsumption, all the necessary means

for computing WGPC are supplied. However, the way composition is de�ned

still prevents eÆcient computations in all but the most benign cases. Given

any pair of relations R1; R2 with L1 and L2-many disjunctions, R1 ÆR2 yields

L1 � L2-many disjunctions. After n iterations the representation of relations

13



would most often involve a number of disjunctions exponential in n. In gen-

eral, this explosion cannot be avoided, since even simple TCSP problems may

incur such fragmentation which renders the number of disjunctions in one

relation exponential to the numbers of relations in the network 6 (cf. [37]).

However, very often relations overlap, contain each other or there are only a

�nite number of them | such as in networks based on IO. Thus, having com-

puted composition, we optimize the resulting representation before we proceed

with further iteration.

Optimization may be done in a naive way, e.g. by simply enumerating dis-

junctions at the �nest granularity and removing \atoms" that are redundant

(henceforth called naive optimization). However, this simplistic method is not

really an optimization, since it usually involves an unnecessary abundance of

disjunctions, e.g. assuming a granularity of one units, 150 disjunctions for the

simple relation (t1; [0; 10]; t2) ^ (t2; [0; 15]; t3) are needed. Hence, we conceived

optimizations that minimize the number of disjunctions.

Lemma 13 A locally optimal representation Opt(Rk) for disjunctions Rk =

Pk;1 _ : : : _ Pk;Lk, where pi;j;k;l 2 IQ, can be found in O(2jEkjL
3jEkj+2
k ).

Proof Sketch 7 : An optimizing hyper-quadric �-subsumes two or more dis-

junctions while it is �-subsumed by the set of all disjuncts. Thus, proceed as

follows: For a candidate �-subsuming hyper-quadric there are Lk possibilities

to choose the upper and lower boundary in each of the jEkj dimensions. Test-

ing whether it actually �-subsumes more than one disjunct can be done in

O(Lk). Testing whether it is itself �-subsumed by the complete disjunction

Pk;1_ : : :_Pk;Lk takes O(2
jEkjL

jEkj+1
k ) primitive algebraic operations (cf. [40]).

Since at most Lk � 1 optimizations may be executed, the whole optimization

process needs time O(L
2jEkj
k ) � O(2jEkjL

jEkj+1
k +Lk) � O(Lk) = O(2jEkjL

3jEkj+2
k ).

The result is locally optimal, because, by way of construction, no further pair

of Pk;l; Pk;l0 can be substituted by a single conjunction of constraints, but it is

not clear whether repeated shrinking and growing of quadrics could produce

a globally better result (i.e., fewer disjunctions).

EÆcient parallel implementations can readily build upon this optimization

procedure. In our current implementation we use a less powerful, but more

eÆcient optimization which discards one Pk;l when it is already �-subsumed

6 E.g., consider ((a1; [1; 1]; a2) _ (a1; [2; 2]; a2)) ^ : : : ^ ((an�1; [2
2n�4

; 22n�4]; an) _
(an�1; [2

2n�3
; 22n�3]; an)) then there are 2n�1 disjunctions for the relation on

(a1; an).
7 Cf. [40] for an elaborate exposition.
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Algorithm 1. Computing WGPC

Input: (V;R; fI1; : : :g)

begin

Q := ffRg; RhgjV (Rg) \ V (Rh) 6= ;g;

while Q 6= ; do

select and delete a set fRg; Rhg from Q;

R
0 := Rg ÆRh with E 0 := Eg [ Eh;

forall Rk such that

Ek \ (V (Rg) [ V (Rh))� (V (Rg) [ V (Rh)) 6= ;

do R0
k := Rk ( �Ek

(R0);

if R0
k = ; then exit(inconsistent); �;

if Improved(R0
k; Rk) then do

Rk := R
0
k;

Q := Q [ ffRk; RfgjV (Rk) \ V (Rf ) 6= ;g;

od �;

od;

od;

by the rest. As mentioned above, this test can be performed for one Pk;l of

one Rk in O(2
jEkjL

jEkj+1
k ) algebraic operations.

Using Theorem 12, WGPC is now computed as follows in Algorithm 1: One

composes all relations that have at least one node in common and intersects

the result with all relations that may be tightened by this composed relation.

Thus, one computes consistency for each triplet of time point variables and

achieves a scale-up from TCSPs. For now, we assume that the intersection

operator \(" is de�ned as R1 ( R2 := Opt(PC(R1 \ R2)), and the Boolean

function Improved(R0
k; Rk) returns true i� :(R

0
k
.Rk).

One can prove that:

Theorem 14 Algorithm 1 is sound, yet incomplete. If the GTN is based solely

on fIQg or only on fIOg, upon termination of the algorithm the resulting

network is WGPC.

PROOF. Soundness: The only actual operation on the network is Rk :=

Opt(PC(Rk \ �Ek
(Rg Æ Rh))). \Y := Opt(X)" optimizes the representation

X in a way such that X . Y and Y .X and therefore, according to Lemma 11

all models for X are models for Y and vice versa. \PC" computes conse-

quences which are sound. \\" conjoins the restrictions from Rk with those

from �Ek
(Rg Æ Rh), hence this operation is sound when the restrictions in

�Ek
(Rg Æ Rh) are sound. Projection is sound by Lemma 5. Rg Æ Rh is de�ned

by
V
Ek2E

�Ek
(PC(Rg \Rh)), which is sound by similar considerations as have

just been outlined for projection, \PC", and \\". Since, the only actual op-
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eration is composed by sound operations, it is sound too.

WGPC: The WGPC condition for networks based on complete substructures

of IQ is that for all triples Rg; Rh; Rk 2 R : Rk
/ �Ek

(RgÆRh) (cf. Theorem 12).

The initialization of the queue Q with all pairs fRg; Rhg ensures that this

criterion is checked for all triples. If this criterion has just been established for

a triple Rg; Rh; Rk, its validity is checked for all triples that may be a�ected

by the revision of Rk. Only when the �-subsumption condition is ful�lled for

all triples the queue Q becomes empty and the algorithm stops.

Note that networks with constraints from IQ and IO freely interspersed may

fail to enforce the condition 8Rg; Rh; Rk 2 R : �Ek
(RgÆRh) .Rk if the operator

�IQ;IO is used to map the results of composition back onto coarser constraints.

Thus, such mixed networks may not become WGPC.

Incompleteness: Networks which can represent Allen's interval relations can

model the network for which Allen's path propagation is incomplete (cf. [2]).

That network is inconsistent, but path consistent. Since path consistency in

Allen's model entails WGPC in the corresponding GTN model and since the

achievement of WGPC terminates Algorithm 1, the inconsistency cannot be

detected. Hence, it is incomplete for networks that model Allen's relations.

With constraint propagation one may approximate the determination of con-

sistency. But for UGTNs one fares better:

Lemma 15 A weakly generalized path consistent UGTN that has admissible

values for all relations is consistent.

PROOF. A weakly generalized path consistent UGTN is equivalent to a

path consistent STP. For STPs path consistency with admissible values for all

relations is equivalent to consistency (cf. [9]).

5.3 EÆciency

Applying Algorithm 1, which enforces WGPC, one may now search with back-

tracking in the space of UGTNs underlying a GTN to determine consistency.

As an alternative, one may directly use Algorithm 1 as an approximation al-

gorithm. Either way the performance crucially depends on its computational

complexity.
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Theorem 16 If E is a partitioning, Algorithm 1 terminates in O(N3
T

3u+u2),

where N = jVj, T = maxpi;j;k;l2P(maxx2qi;j;k;l x�minx2qi;j;k;l x) is the maximal

range of single constraints 8 , and u = maxEk2E jEkj is the maximum number

of edges one relation has. If E is a partitioning and only naive optimization is

performed, Algorithm 1 terminates in O(N3
T

3u).

PROOF. Rg Æ Rh involves Lg � Lh times determining path consistency (for

Pg;l ^ Ph;l0). A single relation has less than T
u disjunctions which means

that path consistency must be computed at most T 2u times. Enforcing path

consistency for STPs takes O(n3) with n being the number of vertices in

the network (cf. [9]). Hence, each enforcement of path consistency in the

Pg;l ^ Ph;l0 STP network takes time O(jV (Rg) [ V (Rh)j
3) = O((2t)3), where

t = maxRk2R(jV (Rk)j). Thus, a single composition needs O(8t3T 2u).

Computing ( is done at most t(t � 1)=2 times and each time it may result

in at most T 2u many disjunctions, which need to be considered. Enforcing

path consistency on each requires O(t3) steps. Naive optimization may be

seamlessly integrated into the computation of the T 2u many disjunctions and

results in at most T u disjunctions. When we apply our current opimization

strategy we invest another O(T u2u(T u)u+1) = O(2uT u2+2u) steps into the

computation. Hence, computing the operations associated with ( takes time

O(t2(T 2u+t3T u+2uT u2+2u)), which amounts toO(T 2u) andO(T 2u+u2) without

and with our optimization strategy, respectively, when we neglect t and u as

rather small constants. Thus, the worst case e�ort for each relation set in the

queue is bound by O(T 2u) + O(T 2u+u2) = O(T 2u+u2) with our optimization

scheme and O(T 2u) with only naive optimization.

At most M relations may be updated at most T u times and, thereby, at

most tN new relation sets may be put into the queue. Hence, Algorithm 1

terminates with our and with naive optimization only in O(MNT
3u+u2) and

O(MNT
3u), respectively. There are N2 many edges. When E is a partitioning

there are between N2 and N2
=u many relations with u and t �xed. Hence, M

is of O(N2) and Algorithm 1 terminates in O(N3
T

3u+u2) | O(N3
T

3u) with

naive optimization only.

Though, at �rst sight, the result that good optimizations of representations

incur higher costs than their naive counterpart is somewhat counterintuitive,

the reason for this result is quite straightforward. Whereas our optimization

process does not produce any bene�ts in the worst case, it always requires an

expensive computation process (cf. footnote 6). Nevertheless, in preliminary

8 We assume integer ranges here. Rational constraints can be transformed into

equivalent integer constraints.
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practical experiences our optimization scheme seemed to considerably improve

performance.

Algorithm 1 shows a reasonable computational behavior, because its perfor-

mance decreases only smoothly in comparison to constraint propagation algo-

rithms for less expressive mechanisms. In particular, one may recognize that

the larger part of its computational complexity stems from numeric fragmenta-

tion as it already occurs in TCSPs. The generalization to non-binary relations

does not incur an increase of computational complexity for qualitative rela-

tions, because in such a generalization T and u are small constants and the

overall complexity is in the order of O(N3) | the same as for Allen's prop-

agation of interval relations. Concerning quantitative interval structures the

di�erence between the TCSP scheme (O(N3
T

3) steps) and our approach stems

from the parameter u which mirrors the increased expressiveness in terms of

more complicated relations. Assuming u = 1 and disregarding optimization,

which is trivial for u = 1, our constraint propagation algorithm shows the

same behavior as the one for TCSPs.

Still, the range factor in the computational complexity of the propagation

algorithm may prove too hard to live with for very many applications. Since

we will delve more deeply into issues of trading o� between expressiveness and

eÆciency in Section 7, let us also postpone the discussion of strategies that

confront this matter to that section.

6 COMPUTING THE MINIMAL NETWORK

The two major propositions commonly sought from a temporal constraint

network concern its consistency and its minimal equivalent network. Moving

between various temporal reasoning mechanisms, the meaning of consistency

remained by and large una�ected, though we had to rethink its preliminar-

ies, viz. (WG)PC and constraint propagation. For the problem of computing

minimality, switches between levels of granularity turn out to be even more

pervasive. To illuminate the diÆculties, let us consider the common de�nition

of \minimal network" �rst:

De�nition 17 The minimal network of a given network N is the tightest

equivalent network N 0. A network N 0 is at least as tight as another one N if

all constraints in N 0 are subsumed by the corresponding constraints in N .

There are two underlying assumptions in this common de�nition that appear

diÆcult for non-binary temporal relations. First, it is assumed that the com-

parison of tightness of relations may be easily computed. Second, it is assumed

that there exists a tightest relation for a set of equivalent relations.
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Figure 5 shows a simple example network which illustrates some part of the

problem implied by these assumptions. There is a single relation R in this

network which covers the three available edges. Though we have a single-

ton labelling and WGPC is established, the relation may be considered non-

minimal, e.g., R0 := ((b; [1; 1]; c) ^ (a; [0; 0]; b) ^ (a; [1; 1]; c)) _ ((b; [1; 1]; c) ^

(a; (�1; 0); b) ^ (a; (�1; 1); c)) _ ((b; [1; 1]; c) ^ (a; (0;1); b) ^ (a; (1;1); c))

has tighter constraints, because it is �-subsumed by R and it does itself not

�-subsume R, but it has the same models as the depicted relation. Indeed,

since (b; [1; 1]; c) creates a linear dependency between the restrictions on (a; b)

and (b; c), namely b � a = c� a � 1, there is no GTN relation that does not

�-subsume a semantically equivalent GTN relation.

a

b

c

R := (a; (�1;+1); b)^

(a; (�1;+1); c)^

(b; [1; 1]; c)

Fig. 5. A Non-Minimal, WGPC, and Singleton Labelling

At a �rst glimpse, one might be tempted to trace this diÆculty only to the

de�nition of �-subsumption given here. However, one may recognize that in

general the comparison of tightness of non-binary relations, which may be

composed by many constraints in an intricate way, may be a computationally

hard task. Therefore, true subsumption between non-binary relations may very

often be hard to decide and, hence, �-subsumption | or a similar syntax-based

operator | may be the only decision criterion available.

Furthermore, for practical purposes there is a frequent need for explicitly

specifying the atomic level of relations. Minimal networks are often, e.g. for

Allen's calculus, computed in the following way: The network is split into

disjunctions, which depend on the atomic level of relations, such that for all

disjuncts the enforcement of path consistency entails their minimality. The

unions of these single results then form the minimal relations. Therefore, the

eÆciency and the actual result of computing the minimal network depends on

the granularity of relations considered atomic.

For instance, for a relation in a given network, e.g. a GTN corresponding to

Meiri's integration model, one may decide that Allen's f\precedes"g is atomic.

f\precedes"g may then be a perfect minimal labelling for the relation even

when other constraints could in princple enforce a tighter relation. Alterna-

tively, an explicit speci�cation of the atomic level could allow for the break

down of \precedes" into \precedes by more than 10 units" and \precedes by at

most 10 units". Then the labelling f\precedes"gmight turn out not to be min-

imal, because f\precedes"g = f\precedes by more than 10 units",\precedes by

at most 10 units"g and \fprecedes by more than 10 unitsg" may be a tighter
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labelling enforced by the network.

In order to make underlying assumptions about the granularity of atomic rela-

tions transparent in our generalized framework, we here introduce the notion

of minimality at a certain level of granularity. For this purpose, however, we

must �rst formalize the notion of granularity level.

De�nition 18 (Granularity Level for a Topology) A set of GTN rela-

tions S := fRkijk = 1 : : :M; i = 1 : : : Jkg describes a granularity level G for

a corresponding topology E := fEkjk = 1 : : :Mg i�, (i), 8Rki 2 S : Rki has

a valid instantiation and Lki = 1 ^ 8Rkj:(Rki
.Rkj ) ^ Rki = �Ek

(PC(Rki))

and, (ii), 8Ek :
W
i=1:::Jk

Rki
.R

0
k, where R

0
k :=

V
(vi;vj)2Ek

(vi; Di;j; vj) are the

non-constraining relations for topology E and Di;j are the domains relevant

for qi;j;k;l.

Condition (i) in De�nition 18 describes a criterion for atomicity of a set of

instantiable relations and is, thus, appropriate for describing a level of gran-

ularity. Atomicity of a relation is dependent on one's view on the system.

Allen's relations (e.g., \before") may be considered atomic from one point of

view, but divisible from another one (e.g., \before" may be split into \be-

fore, but at most 1 unit" and \more then 1 unit before"). The subcondition

Rki = �Ek
(PC(Rki)), which enforces Rk;i to be path-consistent, in combina-

tion with Lki = 1 ensures that the \ . "-operator allows the comparison of all

the relations in S according to their instantiations | hence it allows to reverse

the proposition of Lemma 11 given its additional premises:

Lemma 19 Given two relations Rk := fPk;1g; Rk0 := fPk0;1g. If (a) Rk =

�Ek
(PC(Rk)) and if (b) all proper instantiations of Rk are also proper instan-

tiations of Rk0, then (c) Rk0 .Rk.

PROOF. (a) ensures that fPk;1g is (a subset of) a minimal STP network.

fPk0;1g is (a subset of) an arbitrary STP network. Due to (b) every instan-

tiation of fPk;1g is also a proper instantiation of fPk0;1g, hence all the con-

straints in fPk;1g are tighter than in fPk0;1g, i.e. 8qi;j;k;1 2 Pk;1 : qi;j;k;1 �

qi;j;k0;1 _ (vi; vj) 62 Ek0. Therefore the Euclidean model of Rk is contained in

the one of Rk0, i.e. Rk0 .Rk.

Condition (ii) in De�nition 18 guarantees that S is complete, i.e., it allows for

all instantiations of all time points that are possible a priori.

De�nition 20 (Minimality at Granularity Level) A networkR0 with to-

pology E is minimal at granularity level G, de�ned by S with the corresponding

topology E, if for all relations R0
k and for each split of R0

k into R
0
k =

W
Rks,
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where Rks 2 S, there is a value for all Rks such that a consistent instantiation

can be chosen for the rest of the network.

We may then claim:

Corollary 21 If all relations Rk of a UGTN with topology E are from S and

the UGTN is WGPC, then the UGTN is minimal with regard to the chosen

granularity G (described by S and E).

PROOF. Follows directly from Lemmata 15 and 19.

Thus, minimality can be computed by splitting GTNs into UGTNs, by split-

ting UTGNs into relations from granularity G, by computing consistency for

each resulting UGTN of granularity G, and by taking the union over the single

results.

In particular, this is an interesting result for GTNs building on IO. The classi-

�cation of the �nite number of ordinal relations 9 (for a bounded maxEk2E jfvij

9vj : (vi; vj) 2 Ek _ (vj; vi) 2 Ekgj) allows the establishment of minimality

at this level of granularity | which is equivalent to the original notion of

minimality for ordinal (non-)binary relations, like Allen's networks.

7 ABSTRACTION AT THE REASONING LEVEL | EXPRES-

SIVENESS VS. EFFICIENCY

Venturing from binary to non-binary temporal relations was what we described

so far. However, for purposes of 
exibility, eÆciency and understandability we

also need to consider switching back from complex, expressive temporal the-

ories into sparser ones that are more accessible for computations | and pos-

sibly for humans (described in Section 8). The GTN model has been devised

in order to provide an apt foundation for switching between di�erent levels

of reasoning. GTNs based on intervals from the rationals, IQ , bring about a

very �ne-grained level of temporal reasoning as a general frame of reference.

Switching to coarser models is possible relative to at least two dimensions:

First, the dimension of interval structures of di�erent granularities permits

such changes, e.g., abstractions from quantitative constraints to qualitative,

e.g., ordinal ones, like IO, or granularity changes between days, weeks and

months, as described, e.g., by Bettini et al. [5] or by Chandra et al. [6]. Sec-

ond, one may consider disjunctions of conjoined constraints as already too

9 For instance, there exist 13 primitive qualitative relations on three time points

and 59 ones on four time points.
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sophisticated a level of representation. From such a level, it is, nevertheless,

possible to move into a sparser theory, by using abstraction on the proposi-

tional level (cf. Giunchiglia & Walsh [15]).

Figure 6 is an excerpt of a network heterarchy of temporal reasoning schemes

(with arrows pointing from less towards more expressive formalisms).GTN(IQ)

and GTN(IO) denote GTNs based only on the interval structures IQ and IO,

respectively. STP and TCSP stand for non-disjunctive and disjunctive quan-

titative constraint systems, respectively, as described by Dechter et al. [9]. 10

The term integration stands for the integration of TCSPs with Allen's model

[27]. TCSP-LPC (cf. Schwalb & Dechter [37]) is not really a representation

schema on its own. Viewed from a representational perspective, it is equiva-

lent to TCSPs, but it propagates only a limited number of disjunctions in each

step such that propagation, as a whole, remains polynomial in the number of

relations.

Constraint propagation:

Constraint propagation:

in number of relations
Computational complexity

Determination of consistency:

exponential

polynomial

polynomial

GTN(I   )

Allen’s Calculus

Integration

I

TCSP-LPC

STPPoint Algebra

TCSPO

QGTN(I   )

Fig. 6. Expressiveness of Reasoning Schemes

This heterarchy mirrors the well-known trade-o� between expressiveness and

eÆciency. Determining consistency is NP-hard in all formalisms, except for

the point algebra and for STP networks (cf. [45,9,14,22]). However, even ap-

proximating constraint propagation algorithms can be very expensive when

large ranges are embodied in the network.

We attempt to deal with this complexity bottleneck by providing smooth

shifts among di�erent levels of expressiveness. Following Hobbs's strategy that

\idealization allows simpli�cations into tractable local theories", our proposal

approximates given information by \simpler" one. These shifts are performed

by two families of operators already introduced before: The �rst one, �Eg
, takes

interdependent constraints as input and disregards their relationships, e.g., as

with the disjunction in (3). The second one, �Ir;Is, allows switching between

di�erent interval granularities, as, e.g., illustrated by collapsing information

in (4).

10 In the formal framework of GTNs, for TCSPs we require 8k : jEkj = 1, and for

STPs we assume 8k : jEkj = 1 ^ Lk = 1.
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As can be read o� from the diagram, both idealizations abstract from net-

works composed of detailed representations, with expensive constraint pro-

cessing, to coarser representations, which allow for more eÆcient reasoning.

Hence, expressiveness is traded o� against eÆciency. Disregarding structural

interdependencies, e.g., allows the projection of GTN(IO) information into

an eÆciently solvable point algebra. A coarser level of quantities, and thus

a small overall range, is directly re
ected by a tighter worst-case bound for

constraint propagation (cf. Theorem 16).

Thus, one may control the extent to which constraints are propagated in GTNs

in order to approximate, e.g. determination of consistency. Instead of having

only some crude heuristics for control, GTNs as an encompassing framework

allow explicit control along the heterarchy shown above. Hence, one may decide

to do only reasoning as for a point algebra within a full-
edged GTN and,

thereby, exploit the bene�cial computational properties of PA | of course

incurring incompleteness.

Thereby, the soundness of both abstraction operators is ensured by De�nition 6

for operators � and by Lemma 5 for operators �.

Let us now illustrate the use of these abstraction mechanisms by considering

the temporal reasoning problem given in (2). In order to retrieve qualitative

ordering information, such as determining arrival orderings, it is often desirable

to move down the heterarchy from GTN(IQ) to a point algebra. This is done

for two relevant pieces of knowledge. For (2g) this happens by the composition

of operations in (3) and (4),

(2g) If Mr. Roget arrives at 3:00pm, then Mr. Meyer arrives two hours later;

otherwise, they arrive together at 6:00pm:

((t0; [3; 3]; t1) ^ (t1; [2; 2]; t2)) _ ((t0; [6; 6]; t1) ^ (t1; [0; 0]; t2))

(3) �f(t1;t2)g( ((t0; [3; 3]; t1) ^ (t1; [2; 2]; t2)) _ ((t0; [6; 6]; t1) ^ (t1; [0; 0]; t2)) ) =

(t1; [2; 2]; t2) _ (t1; [0; 0]; t2)

(4) (t1; �IQ;IO([2; 2]); t2) _ (t1; �IQ;IO([0; 0]); t2) =

(t1; (0;+1); t2) _ (t1; [0; 0]; t2) =

(t1; [0;+1); t2)

And for (2h) this move is drawn in (5):

(2h) Mrs. Meyer arrives less than 4 hours after her husband: (t2; (0; 4); t3)

(5) �IQ;IO((t2; (0; 4); t3)) = (t2; (0;+1); t3), t2 < t3

From (4) and (5) we may easily read o� that Mr. Roget, Mr. Meyer and
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Mrs. Meyer arrive just in this order, the men may even arrive simultaneously.

Given that we have neglected knowledge about durations, we do not know

how Mr. George's arrival is ordered with respect to the other ones. What is

needed is reasoning at the level of TCSPs | on the one hand:

(6) �f(t0;t1)g( ((t0; [3; 3]; t1) ^ (t1; [2; 2]; t2)) _ ((t0; [6; 6]; t1) ^ (t1; [0; 0]; t2)) ) =

(t0; [3; 3]; t1) _ (t0; [6; 6]; t1)

From (3) and (6) we derive:

(7) (t0; [5; 5]; t2) _ (t0; [3; 3]; t2) _ (t0; [8; 8]; t2) _ (t0; [6; 6]; t2)

From (7) and (2h) we conclude:

(8) (t0; (5; 9); t3)_(t0; (3; 7); t3)_(t0; (8; 12); t3)_(t0; (6; 10); t3)=(t0; (3; 12); t3)

On the other hand, one needs to account for background knowledge about the

duration of 
ights. Assuming an interval structure (like the ones proposed by

Clementini et al. [7]) referring to 
ights of \short", \medium", \long", and

\very long" time extension, a common grounding between \very long" and

hour units may be that \very long 
ights" take at least 15 hours (the link

between \very long" and its context \
ight durations" may be computed as

proposed by Staab & Hahn [41]). With this information and with (8), one may

conclude, �nally, that Mr. George will arrive last.

Though for most temporal reasoning mechanisms the two families of abstrac-

tion operators, � and �, play the major role, one may think of alternative

operators, too. For instance, Schwalb & Dechter [37] encountered the TCSP

fragmentation problem, which is also re
ected in the highly range-dependent

worst case bound of Theorem 16, by restricting propagation to (almost) convex

constraints. An operator � that abstracts from general non-convex relations

into a limited number of convex disjunctions may render constraint propa-

gation similarly eÆcient in our account. However, the disadvantage remains

that the resulting network does not have a similarly relevant status as, say,

an interval algebra, for which path consistency has been determined.

A second strategy for tackling the fragmentation problem is derived from the


exibility of our account that allows for switching back and forth between

coarse and �ne-grained levels of temporal reasoning. Adapting from a coarse

level of reasoning to a �ner grain size is very often given by the identity opera-

tion 11 , while the operators � and � mostly lift reasoning onto a coarser level.

11One notable exception arises when granularity levels are not directly comparable,
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The combination of both renders a powerful computational strategy. Given

a problem that requires representations and computations at an expressive

level, one may perform computations at a coarse and cheap level of reasoning

�rst (e.g., consistency in point algebra), and hence �nd all the easy results

early and easily. Taking full advantage of the easy computations, one may

map the results back to the �ne-grained level, proceeding with reasoning at

the expressive level in order to determine the hard results, too. Thus, trading

in this way between expressiveness and eÆciency allows to solve the easy tasks

easily, while rendering the hard tasks not impossible.

8 ABSTRACTION AT THE INTERFACE LEVEL | EXPRES-

SIVENESS VS. UNDERSTANDABILITY

Increased expressiveness and the application of powerful abstraction mecha-

nisms that mediate between di�erent precision levels of reasoning may actu-

ally aggravate the application of a temporal reasoning system. While thirteen

primitive interval relations in Allen's calculus or disjunctions of interval con-

straints in TCSPs may already pose non-trivial problems for a human to deal

with, GTN relations have an even more complicated structure. Thus, GTN

relations are often too unwieldy to be used in a temporal query language or

by a module of a larger system, though an application may actually require

their use. For instance, a text understanding and generation system dealing

with the scheduling problem as given in (1) may need to account for complex

propositions such as (2g). This means that high-level conceptual represen-

tation structures, e.g., \a very long 
ight" or \X arrives after Y", that are

typically employed by such a system must be translated to low-level GTN

expressions when in-depth temporal reasoning is required.

To bridge the conceptual distance, we here introduce an interface level that

abstracts from unnecessary details and, hence, generalizes to the relevant dis-

tinctions that need to be made. In doing so, we provide de�nitions of ab-

stracting relations that are used to move from the interface level down to the

reasoning level { and in the reverse direction. Switching from the interface to

the reasoning level, e.g., when posing a query to a temporal reasoning system,

one simply has to expand the de�nition of the abstracting relation. Table 1

shows some examples of such \macro" de�nitions.

Switching back, i.e., outputting an abstracted relation to the interface level,

e.g., as an answer to a query posed by a \naive" user, requires reasonable

criteria for the selection of those interface relations that are best suited to

abstract from a given low-level relation. We here de�ne two notions of \best

e.g., month vs. week (cf. [5]).
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Table 1

A Sample of Abstracting Relations

A 12 Interval A meets interval B with tolerance d

(Ae; (�d; d); Bb) ^ (Ab; (0;1); Bb) ^ (Ae; (0;1); Be)

B Interval A is between interval B and interval C

((Ab; (�1; 0); Be) ^ (Ae; (0;+1); Cb))_

((Ab; (�1; 0); Ce) ^ (Ae; (0;+1); Bb))

C Interval A is at least n units disjoint from B

(Ae; [n;+1); Bb) _ (Ab; (�1;�n]; Be)

D If time point a before time point b then time point c before time point d

((a; (0;+1); b) ^ (c; (0;+1); d)) _ (a; (�1; 0]; b)

E Time points a; b; c appear in this order.

(a; (0;+1); b) ^ (b; (0;+1); c)

F Time point a is between time point b and time point c

((a; (�1; 0); b) ^ (a; (0;+1); c)) _ ((a; (0;+1); b) ^ (a; (�1; 0); c))

G Time point a being at least d after time point b

correlates with time point a being at least d after c

(b; [d;+1); a) ^ (c; [d;+1); a)

approximations":

De�nition 22 Let a set of abstracting relations be given by Ra
1; : : : ; R

a
n.

A relation R
a
i is a smallest upper approximation of a relation R with regard

to Ra
1; : : : ; R

a
n, i� R

a
i
.R and there is no Ra

j ; i 6= j such that Ra
i
.R

a
j
.R.

A relation R
a
i is a greatest lower approximation of a relation R with regard to

R
a
1; : : : ; R

a
n, i� R

a
i
/R and there is no Ra

j ; i 6= j such that Ra
i
/R

a
j
/R.

This de�nition may yield several smallest upper and greatest lower approxi-

mations. A unique upper approximation is given by the conjunction of the best

upper bounds, while a unique lower approximation is given by the disjunction

of the best lower bounds.

We do not present an algorithm here for computing the approximating rela-

12 For illustration of some of the scope of these de�nitions, macro A is also

graphically indicated by the intersection of its three primitive constraints,

(Ae; (�d; d); Bb); (Ab; (0;1); Bb); (Ae; (0;1); Be), in Fig. 3.
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tions, since its appropriateness depends heavily on the abstracting relations

being given and the temporal reasoning system being used. Three obvious

problems may illustrate these interdependencies: First, for abstracting rela-

tions with quantitative parameters the proper instantiation of free parameters

with actual values in the corresponding relation allows for redundant varia-

tion. Symmetric relations like \time point t1 is at most 1 unit away from t2"

require particular care, since the equivalent \time point t2 is at most 1 unit

away from t1" does not yield any new information. Second, additional con-

straints are needed to control proper instantiation of an abstracting relation.

For instance, the de�nition A in Table 1 should be supplemented by the onto-

logical restriction that Ab and Ae really form an interval. Though, in principle,

all pairs of time points may determine an interval that one could talk about,

in practice, this generality should be avoided. Third, another additional con-

straint considered plausible for all abstracting relations is the unique name

assumption which prevents, e.g., the uni�cation of the three variables a; b; c in

the abstracting relation G from Table 1.

Let us now illustrate our notion of generalization with two examples. Assume

we want to mine the GTN resulting from (2) for interesting complex rules. For

our �rst example, we are interested in temporal rules on how the arrival time

of Mr. Roget in
uences the schedule of Mrs. Meyer appearing after him. Then,

we add an unconstrained relation Rz to the GTN with Ez := f(t0; t1); (t1; t3)g.

Composing the relation given in (2g) with the one from (2h) and projecting

the result onto Rz yields:

(9) ((t0; [3; 3]; t1) ^ (t1; (2; 6); t3)) _ ((t0; [6; 6]; t1) ^ (t1; (0; 4); t3))

Generalizing this relation, obviously, only the abstracting relations E, F and

G may apply (cf. Table 1), since the other ones require intervals instead of

time points (e.g., A, B and C) or a di�erent number of time points (viz. four

as in D). Approximating \from above", abstracting relation G does not gen-

eralize (9) at all, while \Time points t0; t1; t3 appear in this order" is the best

generalization, since it is more speci�c than the corresponding instantiation

of F. An approximation \from below" fails, because none of the abstracting

relations is more speci�c than the relation in example (9).

Correspondingly, we may ask how Mr. George's arrival correlates with those

of Mr. Roget and Mr. Meyer. Given that we have only qualitative information

about the length of Mr. George's 
ight, it seems most appropriate to reason

entirely on a qualitative interval structure. For the sake of brevity, we may here

ignore many of the intricating presuppositions involved in algebraic operations

on qualitative durations (cf. [7]) and simply present the result derived from

the corresponding inference process:

(10) ((t1; [\medium";+1); t5) ^ (t2; [\medium";+1); t5))
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This result is generalized (\from above and below") by \Time point t5 being

at least a medium time after t1 correlates with t5 being at least a medium

time after time point t2".

Conceptualizations at the interface level are of particular value for combin-

ing single evidence and generalizing it. In our text understanding application,

e.g., we represent graded information like \hard disk A is faster than hard

disk B" by GTN relations (cf. Hahn et al. [16,41]). Most of these relations can

be handled by a comparatively inexpensive representation formalism. How-

ever, we also have to deal with much more complex utterances like \up from

a block size of 32 KB the data throughput decreases from 800 KB/s to less

than 600 KB/s", which require more expressive representations, and, hence,

costly reasoning. By 
exibly assigning reasoning tasks to the least expensive

representation level the entire understanding process might still be executed

within feasible bounds. When just few of the represented GTN relations are

complex, which is the case most of the time, reasoning at the �ner levels re-

mains feasible. Only if complicated GTN relations abound, one must resort

to reasoning at coarser levels as an approximation | and eventually to an

abstracting interface level that makes generalizations accessible to the user

instead of a myriad of tiny bits of detail.

9 RELATED WORK

Levels of granularity of temporal reasoning, as static notions, pervade the het-

erarchy of calculi discussed in Section 7. This derives from the fact that these

constraint systems stand for di�erent levels of expressiveness. As the arrows

in Fig. 6 indicate there are rather limited calculi (e.g., point algebra [45]),

ones with increased expressiveness (e.g., Allen's calculus [2] or TCSPs [9])

and fairly general ones (such as integration models for Allen's calculus with

metrical reasoning [23,27,3]). As a framework for our research, we have intro-

duced a very general model, viz. Generalized Temporal Networks (GTNs). Its

expressiveness exceeds that of all previously mentioned calculi, since it allows

for the description of non-binary relations. It scales up smoothly from binary

relations, including the propagation of their quantitative and qualitative con-

straints in the network as well as the computation of the minimal network

according to di�erent granularities. Thus, our temporal reasoning scheme lays

down the foundations for formalizing temporal constraints at di�erent levels

of granularity. Weaker constraint systems may be an appropriate choice for

applications which require less speci�c constraints and o�er on their bonus

side the tractability for certain reasoning algorithms.

Using this trade-o� between expressiveness and computational complexity in

a strategic manner leads to the idea to navigate this graph of di�erent lev-
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els of expressiveness on demand | depending on the needs of the particular

application. The idea to o�er a new expressive temporal reasoning scheme,

viz. GTNs, that allows for dynamic shifts between less expressive and com-

putationally cheaper systems and more expressive though computationally

more expensive ones during run-time is the starting point of our work, and

has been on the research agenda for quite a long time (cf. Hobbs [17], Sathi

et al. [36], Nakhimovsky [30], Meiri [27]). This 
exible manouvering between

granularities as a principle method rather than as an impeding side condition

constitutes the main di�erence between our approach and common reasoning

systems that implement several metric systems.

For instance, Bettini et al. [5] have extended STP networks in order to rep-

resent interval structures from a large range of granularity levels. Thereby,

they have even included non-contiguous structures (e.g., business days). As

an approximating reasoning algorithm they propagate constraints in parallel

networks of single granularities. Operators that map constraints between gran-

ularities communicate between the di�erent networks. However, propositional

abstraction, such as de�ned by our operator � is neglected in their approach

as well as in other temporal reasoning systems (along similar lines also cf.

earlier work by Chandra et al. [6] and Dean [8]).

This negligence may even be a drawback with regard to performance issues.

Approaches for eÆcient temporal reasoning use, e.g., approximating propaga-

tion mechanisms (cf. Schwalb & Dechter [37]) or heuristics that optimize the

search process (cf. Stergiou & Koubarakis [43]). Though our proposal still lacks

comparable empirical evidence, we can guarantee the determination of criteria

important for the inferencing task (e.g., consistency for point algebra, path

consistency for qualitative relations) in polynomial time, when granularities

are switched to compute coarser results �rst, and re�nements at more precise

levels are postponed to subsequent rounds. Optimized schemes like those in

[37,43] may still not terminate and, if they are terminated from outside due

to exhausted time budgets (as set up by anytime devices, cf. Russell & Zil-

berstein [34]), the network cannot be asserted to be in a similarly well-de�ned

state as a cascade of GTNs at di�erent granularities.

A complementary proposal has been made by Euzenat [11], who permits to

represent seemingly contradictory information at di�erent levels of granularity,

e.g., at some given level one may perceive that two intervals meet, while at a

�ner level one may recognize that the �rst is just a tiny bit before the second.

His abstraction operators re
ect how perception may change by switching

between di�erent levels.

Several other temporal reasoning proposals do not consider granularity is-

sues at all, but are interesting due to their expressive reasoning facilities.

For instance, Navarrete & Marin [31], Wetprasit & Sattar [46] and Pujari
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et al. [33,32] extend the time point algebra (cf. [45]) by comparisons on dis-

tances, which our approach does not allow for. However, they are complemen-

tary to GTNs, because they cannot express non-binary relations. Jonsson &

B�ackstr�om [20,21] and Koubarakis [24] use networks where each relation is

Horn, meaning that at most one positive literal must exist per conjunction.

This way, a scale-up is achieved from subclasses of Allen's calculus to inter-

val relations with quantities where consistency can be determined in polyno-

mial time. Its disadvantage is that disjunctions of two-sided restrictions, e.g.,

(a1 � b^ b � c1)_ (a2 � b^ b � c2), cannot be formulated. One may speculate

whether these classes could be used to backtrack eÆciently in GTNs.

As for more general frameworks, there has been a surge of interest in non-

binary constraint problems, recently. For instance, general constraint problems

are handled by Faltings & Gelle [12] and Bessiere & Regin [4]. They compute

arc consistency for non-convex higher-arity constraint networks. However,

global consistency is hard to tackle at this point and not achieved for these

general problems. Sam-Haroud & Faltings [35] treat ternary constraint prob-

lems (noting that relations of general arity can be transformed into ternary

ones) and de�ne (3,2)-relational consistency as a generalization of binary path

consistency. For temporal reasoning applications its main drawback is its re-

striction to (almost) convex relations which prohibits expressions like \disjoint

by more than n units" or \if a before b then c before d". Naturally, this line

of research neglects the actual algebraic operations on higher-arity temporal

relations, like composition and intersection, and their implications which are

given in our proposal (along the same lines cf. [10]).

To sum up, none of these approaches [31,33,20,21,24,12,4,35,10] uses abstrac-

tion { neither for eÆciency nor for understandability purposes | such as we

do. There exist few approaches to temporal abstraction, e.g., cf. Shahar &

Cheng [38]. However, their abstraction does not move along the heterarchy of

temporal reasoning mechanisms, such as our proposal does. Rather they con-

ceive of summaries that mostly depend on ontological knowledge other than

temporal data, e.g., two occurrences of anemia may be summarized into one

medical description. Thus, our proposal nicely complements their approach.

10 CONCLUSION

This work has been motivated by two goals: On the one hand, there has been

the urgent need to integrate non-binary relations into temporal reasoning in

order to extend its range to common reasoning problems. On the other hand,

we wanted to make some progress toward a \Great Uni�ed Theory of Temporal

Reasoning". Several popular versions of temporal reasoning turned out to be

derivable from just a few parameter settings in our more general framework.
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We identi�ed three dimensions which are crucial with regard to the trade-o�s

between expressiveness and eÆciency as well as between expressiveness and

understandability, namely interval structures for constraints, relation topology,

and network topology. We investigated how major tasks in temporal networks,

viz. constraint propagation, determination of consistency, and computation

of the minimal equivalent network, are a�ected by these parameters. Opera-

tors, viz. �; �; . , provided for switching smoothly along the three dimensions

between di�erent granularities as far as the reasoning proper and commu-

nication via interfaces are concerned. Abstraction at the interface level has

been achieved by approximating temporal relations with macro de�nitions, a

research issue that to the best of our knowledge has not been dealt with so

far.

Obviously, complementary dimensions exist which give rise to further possi-

bilities and diÆculties, e.g., non-binary constraints not representable in our

scheme (e.g., a� b = c�d+1; cf. [20,24]), comparisons between distances (cf.

Navarrete & Marin [31]) or in�nitly repeated structures (cf. Morris et al. [29]).

Beginning with the simplest model, which we assume to be a point algebra,

and pursuing an extension into further dimensions, one reaches regions of NP-

hardness for determining consistency of a network very fast. Thus, a unifying

theory should not subscribe to a \one method �ts all needs" policy, but it

should rather provide a family of methods the interdependencies of which are

well understood and accessible for switching between them, such that their

advantages may be combined | similarly as in our approach.

The major open issue is then when to bring what level of abstraction into play.

In our opinion, there is no general solution to this problem. In the research

environment we work in, a natural language text understanding system, the

appropriate choice of adequate abstraction levels often comes with the author's

choice of speci�c linguistic expressions occurring in the text, their correspond-

ing semantic interpretation and the progression of the text (cf. Matsushita et

al. [25]). Having �xed such a starting point, we proceed from the cheapest

level possible and turn to more expressive and expensive levels only when this

is needed for proper text understanding.
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