
An Application Server for the Semantic Web

Daniel Oberle, Steffen Staab, Raphael Volz
University of Karlsruhe

Institute for Applied Informatics and Formal Description Methods
76128 Karlsruhe

lastname@aifb.uni-karlsruhe.de

ABSTRACT
The Semantic Web relies on the complex interaction of several
technologies involving ontologies. Therefore, sophisticated Se-
mantic Web applications typically comprise more than one soft-
ware module. Instead of coming up with proprietary solutions, de-
velopers should be able to rely on a generic infrastructure for appli-
cation development in this context. We call such an infrastructure
Application Server for the Semantic Web whose design and devel-
opment are based on existing Application Servers. However, we
apply and augment their underlying concepts for use in the Seman-
tic Web and integrate semantic technology within the server itself.
We provide a short overview of requirements and design issues of
such a server and present our implementation and ongoing work
KAON SERVER.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Extensibility; D.2.11 [Software Engineering]: Soft-
ware Architectures; H.3.5 [Information Storage and Retrieval]:
Online Information Services—Web-based Services

Keywords
Application Server, Extensibility, Interoperation, KAON SERVER,
Ontology, Reuse, Semantic Middleware, Semantic Web

1. INTRODUCTION
Ontologies serve various needs in the Semantic Web, like stor-

age or exchange of data corresponding to an ontology, ontology-
based reasoning or ontology-based navigation. Building a complex
Semantic Web application, one may not rely on a single software
module to deliver all these different services. The developer of such
a system would rather want to easily combine different — prefer-
ably existing — software modules.

So far, however, such integration of ontology-based modules had
to be done ad-hoc, generating a one-off endeavour, with little pos-
sibilities for re-use and future extensibility of individual modules
or the overall system.

We present an infrastructure that facilitates plug’n’play engi-
neering of ontology-based modules and, thus, the development and
maintenance of comprehensive Semantic Web applications, an in-
frastructure which we callApplication Server for the Semantic Web
(ASSW). Existing Application Servers typically comprise function-
ality like connectivity and security, flexible handling of software

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, NY USA.
ACM xxx.xxx.

modules, monitoring, transaction processing etc. They are the mid-
dleware between browser-based front-ends and back-end databases
and legacy systems. The Application Server for the Semantic Web
will help to put the Semantic Web into practice because it adopts
and augments this idea for easier development of Semantic Web
applications. In addition, semantic technology is used within the
server itself what allows us to achieve an even greater functionality
than existing Application Servers.

The following sections talk about requirements and design de-
cisions leading to the conceptual architecture of an Application
Server for the Semantic Web (for a detailled discussion cf. [4]).
Finally, we describe our implementation effort, called KAON SER-
VER, which is currently work in progess.

2. REQUIREMENTS
The requirements on an Application Server for the Semantic Web

can be divided in four groups. First, such a server should meet re-
quirements that are common to existing Application Servers (con-
nectivity, ease of use, offering functionality via different communi-
cation protocols, security). Second, another group of requirements
comprises flexible handling of modules (extensibility, integrating
existing functionality via different communication protocols, ex-
pressing and managing dependencies). Third there are require-
ments that are specific to the Semantic Web like language sup-
port, semantic interoperation, ontology mapping and modularisa-
tion, finding, accessing, modifying and storing of ontologies, trans-
actions and rollbacks, evolution and versioning, monitoring, infer-
encing and verification. The last group comprises requirements for
semantic enhancement of the Application Server allowing discov-
ery of software modules and APIs, classification of software mod-
ules and facilitating implementation tasks.

While the common requirements are met by most of the existing
Application Servers, Semantic Web specific requirements and the
ones that call for the semantic enhancement of the server itself are
clearly beyond state-of-the-art.

3. DESIGN
In order to meet the requirement “flexible handling of modules”,

the Microkernel design pattern is our basic design choice. The
pattern applies to software systems that must be able to adapt to
changing system requirements. It separates a minimal functional
core from extended functionality and application-specific parts. In
our setting, the Microkernel’s minimal functionality must take the
form of simple management operations, i.e. starting, initializing,
monitoring, combining and stopping of software modules as well
as dispatching of messages between them.

This approach requires software modules to be uniform so that
they can be treated equally by the Microkernel. Hence, existing



software modules have to be made deployable, i.e. they have to
be wrapped for plugging them into the Microkernel. Thus, in our
terminology, a software module becomes acomponent.

All components are equal as seen from the Microkernel’s per-
spective. Hence, in order to allow a client discovering the com-
ponents it is in need of, we have to distinguish between them. A
registry is necessary to store descriptions of all deployed compo-
nents. We came up with a management ontology [3] that responds
to the requirements for semantic enhancement of the server. It con-
ceptually distinguishes components into functional (ones that are
of interest to the client, e.g. an RDF store), proxy (a special type of
functional component) and system components (ones that provide
functionality for the server itself, e.g. the registry).

The resulting design elements of the architecture are divided into
Connectors, Management Core, Interceptors and Functional Com-
ponents, like depicted in Figure 1.

Interceptor

System Component

Functional Component

Proxy Component

External Module

Figure 1: Conceptual Architecture

Surrogates
Surrogates (not shown in Figure 1) are objects embedded in the
client application that relieve the developer of the communication
details similar to stubs in CORBA (cf. requirement “Ease of use”).
They offer the same API as a particular component and relay com-
munication to any connector which in turn passes the request to the
respective functional component through the Microkernel.

Connectors
Connectors are system components. They send and receive re-
quests and responses over the network. Connectors could also al-
low to publish components’ methods as separate web services with

automatically generated DAML-S descriptions out of the registry.
Offering the functionality with peer or agent protocols is also pos-
sible (cf. requirement “Offering functionality via different commu-
nication protocols”).

Management Core
The Management Core comprises the Microkernel as well as sev-
eral system components. It is required to deal with the discov-
ery, allocation and loading of components. The registry, an ontol-
ogy store, manages descriptions of the components and facilitates
the discovery of a functional component for a client. The com-
ponent loader facilitates the deployment process for a client. It
takes a component description as argument, handles the deploy-
ment, enters the description in the registry and applies the associ-
ation management if necessary. The latter is another system com-
ponent that puts ontological associations between components into
action. E.g., event listeners can be put in charge so that a compo-
nent A is notified when B issues an event.

Interceptors
Interceptors are software entities that monitor a request and modify
it before the request is sent to the component. A component can be
deployed with a stack of arbitrary interceptors. Security aspects or
semantic interoperation are met by interceptors.

Functional Components
RDF stores, ontology stores etc., are finally deployed to the man-
agement kernel as functional components. In combination with the
component loader, the registry can start functional components dy-
namically on client requests. Proxy components can be developed
for external modules that cannot be made deployable. Most Seman-
tic Web specific requirements are met by functional components.

4. IMPLEMENTATION
We are currently implementing the aforementioned architecture

in a system called KAON SERVER which is part of the KArlsruhe
Ontology and Semantic Web Toolsuite (KAON) [1]. The KAON
SERVER is developed in the context of WonderWeb [2], an EU IST
funded project, whose aims are, among others, a tight integration
of existing tools like ontology editors, stores and inference engines.

In the case of the KAON SERVER, we use the Java Manage-
ment Extensions (JMX) — an open technology and currently the
state-of-the-art for component management. Basically, JMX de-
fines interfaces of managed beans, orMBeans for short, which
are JavaBeans that represent JMX manageable resources. MBeans
are hosted by anMBeanServer which allows their manipulation.
All management operations performed on the MBeans are done
through interfaces on the MBeanServer. In our setting, the MBean-
Server realizes the kernel and MBeans realize components.

5. REFERENCES
[1] KAON - the KArlsruhe Ontology and Semantic Web

Toolsuite.http://kaon.semanticweb.org.
[2] WonderWeb - Ontology Infrastructure for the Semantic Web.

http://wonderweb.semanticweb.org.
[3] D. Oberle, M. Sabou, D. Richards, and R. Volz. An ontology

for semantic middleware: extending daml-s beyond
web-services. InOTM 2003 Workshops, volume 2889 of
LNCS, 2003.

[4] D. Oberle, S. Staab, R. Studer, and R. Volz. Supporting
application development in the semantic web.ACM
Transactions on Internet Technology (TOIT), 2005. to appear.


