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Abstract— Petri nets are a suitable language for modeling
business processes with complex flow structures. Processes with
a number of alternative, concurrent or sequential flow structures
on the same process abstraction level may result in complex pro-
cesses. Such complex and poorly unstructured processes are par-
ticularly difficult for users to understand. Process decomposition
can significantly improve the comprehensibility and consistency
of process models and enables faster reuse of process models.
To maintain homogenous process decomposition demands a
significant amount of modeling experience. In this paper, we
will present our approach for (semi-)automatic detection of non-
uniformly specified process element names on the same process
decomposition level. Our detection system validates process
element names regarding reasonable hierarchical specifications.
The aim of our approach is to (semi-)automatically highlight non-
uniformly specified process elements in order to improve process
model consistency. The approach is based upon an OWL-based
description of Petri nets.

I. INTRODUCTION

Business process models serve as a modeling
communication foundation for all persons involved in
the process modeling, execution, and implementation. Process
models make it possible to analyze alternative process
designs in order to ameliorate implemented functionalities
of information systems. Non-uniformly modeled process
models (e.g., process element names have heterogeneous
abstraction on the same abstraction level) return falsified
analysis results, may lead to costly erroneous judgements or
disregarding of relevant information. Furthermore, different
modeling purposes and processes with alternative, concurrent
or sequential flow structures on the same process level make
processes complex. Such complex and poorly structured
process models are particularly hard for users to understand.
Consistent process decomposition can significantly improve
the comprehensibility and model consistency of processes [1].
It may help to avoid misjudgements and disregarding relevant
information. Decomposable processes (process/subprocess
models) allow systems to be compact. They enable the
modularization of large business process models and faster
reuse of process models. They make processes more easy to
read and to understand.
However, the level of process decomposition depends on
the modeler and on the purpose and scope of the process
modeling. Each decomposition level describes process

elements from a different abstraction level. Top level process
models formulate an overview of process activities and
bottom models provide more detailed descriptions. However,
users have to maintain particular modeling requirements such
as homogenous abstraction of process element names on
the same decomposition level in order to improve model
consistency. But, model consistency demands to identify an
appropriate point to stop the decomposition and to avoid
overly granularity for process element names (e.g., datatypes
for process element names). Consequently, to maintain
this particular modeling requirement demands a significant
amount of experience in the field of process engineering and
may result in extra analyzing efforts.
Within this context we will present an approach that
highlights non-uniformly specified process element names
on the same process model decomposition level. Our
analysis system validates process element names regarding
their hierarchical specification. In case of heterogeneous
specifications the system (semi-)automatically detects the
non-uniformly specified process elements. Our approach
has been applied for business processes modeled with Petri
nets [2]. In order to support a (semi-)automatic detection
requires an unambiguous description of Petri nets, which
enables automatic manipulations. We describe traditional
Petri nets using the Web Ontology Language OWL [3].
These so-called semantic business process models [4] are
represented in same syntax as numerous (background)
ontologies. Additional mapping efforts between background
ontologies and our ontology-based Petri net description are
not required. Furthermore, semantic business process models
promise to solve ambiguity issues caused by the use of
different terms for element names [5].
Figure 1a shows “inconsistently” modeled business processes
with one process decomposition where the element names
in Process Level 2 have a non-uniform abstraction for
element names. The preparation of products is modeled in
detail (elements from order product to products prepared) in
contrast to the preparation of documents, which is described
in a more abstract way (element prepare documents). In
order to maintain the same level of abstraction for process
element names it is recommended first to model an abstract
view of how to send an order (Process Level 0 in Figure



1b). The sending procedure is modeled in detail by refining
the transition send order to a subprocess (Process Level 1).
Product preparation is described in detail with a subprocess
modeled in Process Level 2.

Fig. 1. “Inconsistent”(1a) and “consistent”(1b) process modeling

This paper is structured as follows. In Section II we will
recall the main notions of Petri nets and semantic busi-
ness process models. Section III introduces process modeling
methodologies which enable process decompositions. Seman-
tic business process model analysis requires to measure lin-
guistic specificities for element names, which we will explain
in Section IV. Section V presents three refinement patterns
and algorithms that promise to discover non-uniform process
decomposition. Another application area of our approach is to
support (unfamiliar) users in process modeling by providing
an autocompletion mechanism that we will sketch in Section
VI. Some practical experiences and implementation work will
be illustrated in Section VII. Section VIII surveys related work
and Section IX concludes the paper with a summary of our
approach.

II. FOUNDATION

The following section gives an overview of Petri nets and
an OWL-based description of Petri nets.

A. Petri net

Petri nets have been established as a language for modeling
business processes [6] and in context of workflow management
to verify the correctness of workflow procedures [7]. The
mathematical foundation of Petri nets provides simulation
and analysis techniques, which can be used to verify the
correctness of system behaviors. Formally, a Petri net is a
directed bipartite graph with two disjoint sets of nodes (places

and transitions) and a set of arcs (flow relations). Places are
passive components and are drawn as circles. Transitions are
active components that change the state of the system and are
drawn as rectangles. Places and transitions are connected by
directed arcs. Petri net examples are given in Figure 1. We
will always consider a net with P being the set of places, T
being the set of transitions, Fr being the set of arcs connecting
P with T and Fw as arcs connecting T and P .

Numerous Petri net variants have been proposed, which
can be subsumed in elementary or high-level Petri nets. In
elementary Petri nets (place/transition nets), the flow of tokens
representing anonymous objects (tokens drawn as black dots)
defines the process flow. To make tokens distinguishable,
variants of high-level Petri nets have been proposed such as
Predicate/Transitions nets [8]. In this paper, we focus on Pred-
icate/Transitions nets (Pr/T nets) where places are interpreted
as predicates representing relation schemes. Transitions occur
according to a logical expression which may be attached to
them.

B. Semantic Business Process Models

By describing Petri net elements in OWL we combine pro-
cess modeling methods with semantic technologies to achieve
automatic processing of process models instead of manual pro-
cessing. Each Petri net element has a corresponding element
in the semantic business process model (SBPM). The set of
places corresponds to the concept Place, the set of transitions
to the concept Transition, the set of arcs connecting places
with transitions to FromPlace and arcs connecting transitions
with places correspond to ToPlace. Places following transi-
tions are described via the property transRef and transitions
following places are expressed through the placeRef property.
The concepts and properties of SBPMs are shown in an UML-
based description in Figure 21. Instances or identifiers of the
concept Place may be documents prepared, product ordered
or products prepared. Instances of Transitions can be prepare
documents or order product.
A SBPM corresponds to the instantiation of the Petri net on-
tology (as described in Figure 2), which can be represented in
OWL syntax. The extraction of identifiers of business process
element names and the mapping to the Petri net ontology is
being carried out automatically and is not directly visible to the
modeler. The result of mapping efforts are OWL files, which
can afterwards be (semi-)automatically manipulated.

The next section surveys top-down and bottom-up modeling
methodologies. Formal net transformations for SBPMs are
introduced as well.

III. METHODOLOGIES FOR PROCESS MODELING

When modeling different abstraction levels of business pro-
cess models, processes can be modeled top-down or bottom-
up. In top-down modeling, the top level process formulates an
overview of process elements, without providing more detailed
descriptions of process elements. Consequently, the top view

1Concepts such as IndividualDataItem, Attribute, Value, Delete, Insert and
LogicalConcept correspond to specific high-level petri net notation



Fig. 2. Petri net Ontology

of the process is structured in a more fine-grained way by
refining transitions to subprocesses.

By using the bottom-up approach, in contrast to the top-
down approach, modelers start modeling more specific process
elements, which are subsequently linked together to coarse-
grained processes. The linking or coarsening is done until a
complete abstract view of the process model is determined.
The main advantage of the bottom-up approach are a-priori
simulation and analysis capabilities of process fragments be-
fore they have been integrated to a complete process model.
The middle-out approach can be seen as an amalgamation of
the bottom-up– and the top-down approach.

The applicability of either both approaches depends on the
quantity of process information and modeling purposes. A
higher amount of information favors the bottom-up approach.
The top-down approach should be used if the modeler has
initially only approximate information of processes to be
modeled.

For (high-level) Petri nets several formal net transformations
such as refinement and coarsening were proposed to realize
a top-down and a bottom-up modeling [9]. Using refinement
in SBPMs a transition2 will be refined to a subprocess. The
preset (set of all input places) and the postset (set of all output
places) of the transition to be refined will be inherited to the
subprocess. In our Petri net ontology we have denoted the
preset with the property antPlaceRef and the postset with the
property placeRef of the concept Refinement. Coarsening is
reversal to refinement where a subprocess is replaced by a
transition.

IV. MEASURING LINGUISTIC SPECIFICITY

This Section illustrates how to evaluate a linguistic speci-
ficity between instance names of SBPMs using a background
ontology. First a classification scheme of instance names is

2In the following, we will only consider transitions and not places that are
refined to subprocesses.

described in order to analyze abstraction homogeneity and
heterogeneity on different decomposition levels.

A. Classification scheme

Instance names – depending on their process decomposition
level – have different specificities. Linguistic structures of
instance names can be classified based on WordNet [10],
which is an English online lexical reference system. The base
of WordNet consists of nouns, verbs, adjectives or adverbs
linked by relationships such as hyperonymy/hyponymy and
meronymy/holonymy as listed below:

• synonymy: two terms have an identical meaning (e.g.,
“merchandise” and “product” are synonym),

• hyperonymy/hyponymy: two terms have an is-a relation-
ship (e.g., “product” is a “commodity”).

The given structure of WordNet can be extended by
homonyms (two terms have same pronunciation but different
meaning) in order to classify different identifiers of semantic
business process model concepts. For similarity calculation
of synonyms and homonyms we refer to [5]. For our work
we have to measure the similarity of identifiers with different
abstraction levels (hyperonyms/hyponyms). Our measurement
is based upon the hypothesis that in fine-grained processes
instance names are more specific than in coarse-grained. Speci-
ficity of instance names indicates their process decomposition
level and thus their abstraction level.

B. Ontology exploitation

First, we have to find a possibility to evaluate (semi-) auto-
matically the specificity of each identifier. To exploit linguistic
structure of names we decided to use the (freely available)
WordNet ontology, which is widely used in automatic natural
language processing especially for linguistic measures [11].
To determine specificities, we will consider research works on
semantic measures, which aim at exploiting ontologies.

To describe proximity relationships between domain con-
cepts by a hierarchy, or more generally a graph, remains a



common principle of current knowledge representation sys-
tems, namely ontologies, associated with new languages of
the Semantic Web – in particular OWL. When considering
ontologies, the concepts are not necessarily described by their
extension; the internal organization of a domain ontology is
often the result of a consensus of domain experts [12]. Hence,
defining a semantic similarity σ(ci, cj) between a pair ci, cj

of concepts poses specific problems depending on the quality
of the information at our disposal. Some measures depend
only on concept structuring – often taxonomic – ; others
additionally require textual corpus of the domain.

Formally, an ontology can be modeled by a graph where
nodes represent concepts and arcs represent labeled relation-
ships. In the following we restrict concept relationships by
hyperonymy (generalization) and hyponymy (specialization)
relationships3 associated to the subsumption relationship (is-
a). Regarding relationships between concepts in this way is
common to every ontology, and several research works have
confirmed that this is a reasonable way (e.g., [13]). In fact,
we consider a subsumption hierarchy in which for instance
“product” is a “commodity” noted product v commodity
(“product” is the hyponym of “commodity” and “commodity”
is the hyperonym of “product”). Let O be this hierarchy
defined on a set C = {c1, c2, . . . , cn} of concepts. Moreover,
to maintain the connectivity, it is common to add a virtual
concept c0 (e.g., “thing”). To simplify this presentation, we
assume that each concept ci has no more than one hyperonym.
Consequently, O can be represented by a rooted tree TO(C,A)
with the root c0 and thus each arc (ci, cj) ∈ A corresponds to
cj v ci (see Figure 3).

Fig. 3. Hyponym/Hyperonym relationships extracted from WordNet

C. Specificity definition

The definition of subsumption link induces that the deeper a
concept is in TO(C,A), the more specific it is. Intuitively, the
specificity of a concept is an increasing function of the depth
in the hierarchy. A dissimilarity, proposed by Rada et al. [13],

3such often in the literature [13] [14] [15].

is δr(ci, cj) = len(ci, cj) the length (in number of arcs) of the
path between the two concepts ci and cj . Despite its simplicity,
experiments in information retrieval have shown that, when the
paths are restricted to is-a links as in our consideration, this
measure returns satisfying results.

The Wu and Palmer’s similarity [14] σwp(ci, cj) =
2∗len(c0,mscs(ci,cj))
len(c0,ci)+len(c0,cj)

considers the depth of the concepts ci

and cj to the root concept (len(c0, ci) and len(c0, cj)). This
measure also takes into account the depth of the most specific
common subsumer of ci and cj (mscs(ci, cj)). For instance,
on Figure 3, “product” and “import” have six common sub-
sumer (“commodity”, “artifact”, “whole”, “object”, “entity”
and the virtual root) and the most specific one is “commodity”.

Finally, we can conclude that the depth of a concept is a
possible estimator of its specificity and the similarity between
two concepts could be computed with the Wu and Palmer’s
similarity:

specificity(ci) = len(c0, ci) (1)

similarity(ci, cj) =
2 ∗ specificity(mscs(ci, cj))

specificity(ci) + specificity(cj)
(2)

It is possible to normalize the specificity considering the
most specific concept of the hierarchy:

specificity(ci) =
len(c0, ci)

maxcx∈Clen(c0, cx)
(3)

Now, we investigate the existence of further information,
which could be extracted from the structure of the hierarchy.
Another approach has been proposed to exploit an ontology
that uses an additional textual corpus. This approach intro-
duces a measure of the “information content” of a concept
which is the amount of information associated to a concept.
The required additional notion is the probability P (ci) ∈
[0, 1] of encountering an occurrence of ci. In practice, this
probability is estimated from a textual corpus S by the occur-
rence frequency of ci in S num(ci)/num(c0). To compute
num(ci), Resnik [16] proposes to count not only the number
of occurrences of ci, but also the number of occurrences of
the concepts which are subsumed by ci. The main result of
this approach is the calculation of the “information content”
of a concept by − log P (ci).

Our recent study [17] on these semantic measures proposes
a new measure called the proportion of shared specificity. We
suggest a definition of the specificity of a concept: − log P (ci)
where P (ci) is the probability of a generic instance to be a
member of the instance class defined by the concept ci. As we
do not have the instances, we can estimate the probabilities
thanks to the following hypothesis: the instance number in
the sons (specialized concepts) of each concept is distributed
uniformly. The interests of this new information content cal-
culation is that we do not need any corpus and the semantic
of the obtained measure is easier to understand.

To calculate the probability of an instance to be a member
of the class defined by a concept, we divide the probability
of an instance to be a member of the class defined by



the root (P (c0) = 1) by the number of sons of the root.
We obtain an estimation of the probability for each child
element of the root. We make the same for each son and
so on. Finally, we obtain the estimated probabilities for all
the concepts of the hierarchy O. For instance, to calculate the
specificity of the term “product” of Figure 3 first, the term
“root ” has been added to obtain a single root. Any generic
instance is a member of the class defined by the root concept.
Consequently, the probability of the root is P (root) = 1. The
root concept is specialized in 9 concepts and “entity” is one
of them. Following the uniform distribution, the probability
of “entity” is P (entity) = 1

9 . With the same reasoning,
P (product) = 1

9·10·36·3·42·12 . The negative logarithm of
the probability returns as concept specificity for “product”:
− log(P (product)) = 15.4. Finally, the similarity definition
is the same as the previous definition and we redefine the
specificity as follows:

specificity(ci) = − log P (ci) (4)

where,

P (ci) =

{
1 if ci = c0

P (cj)
|{cx,cxvcj}| if ci v cj

(5)

We can do the same previous normalization considering the
most specific concept of the hierarchy:

specificity(ci) =
− log P (ci)

maxcx∈C{−logP (cx)}
(6)

This specificity helps to detect heterogeneously specified
identifiers Place and Transition concepts.

V. ANALYZING HIERARCHICAL PROCESS
DECOMPOSITIONS

To reach our objective we identified three different so-called
refinement patterns “Identical Nouns”, “Heterogenous Nouns”,
and “Specialization of Nouns”. We called them refinement
patterns as our detection system isolates instance name se-
quences of one process regarding abstraction homogeneity
and heterogeneity and proposes refinement in case of non-
uniformly specified instances. Interrelated instance names with
heterogenic abstraction as its pre– and postsets will be sug-
gested as refinement candidates as well.

Generally, process element names are designated using
a “verb and noun” expression, which should illustrate an
unambiguous functionality of the process activity. Depending
of the modeling scope users name elements differently. They
may name elements in subprocesses with an identical noun
as of the transition to be refined. Additionally, they may
label elements with different verbs in order to describe in
detail the flow semantics. Figure 4 shows the first refinement
pattern where the term “product” occurs in all subprocess ele-
ment names in connection with additional verbs4. Sometimes
modelers utilize only verbs or only nouns mutually exclusive

4The textuell syntax of OWL is used for exchange between tools and is
not directly readable for humans. Therefore, we will illustrate all patterns in
Petri net notation as well.

to describe elements. In this case we suppose that the last
utilized noun/verb is applicable for all subsequent elements
until another noun/verb is used.

Fig. 4. Refinement Pattern 1 “Identical Nouns”

As a second pattern we have identified that subprocess
elements are named with heterogenous nouns as shown in
Figure 5.

Fig. 5. Refinement Pattern 2 “Heterogenous Nouns”

These two explained patterns can be combined where sub-
process elements are named with heterogenous and identical
nouns.

In the third refinement pattern the subprocess nouns can
be regarded as a specialization of the specific transition to
be refined. In Figure 6 contract application and contract
certificate represent a specialization of the noun contract.

In a lexical taxonomy such as WordNet verbs and nouns
with same radical (e.g. find, finding) use to have different
depth from the root element. A suitable possibility to make
calculation results of such verbs and nouns comparable is
the substantiation of verbs5, e.g. the verb find has been
substantiated by the noun finding, assign by assignment, obtain
by obtainment and so on.

The three defined patterns and the linguistic specificity for
each concept instance name promise to detect non-uniformly
specified process elements. But, such (semi-)automatic de-
tection requires that the system autonomously subsumes el-
ements to one of the patterns. The subsumption of elements
can be particularly performed by first integrating all pro-
cesses/subprocesses into one process as shown in Figure 7

5Elements named additionally with adverbs are initially not considered.



Fig. 6. Refinement Pattern 3 “Specialization of Nouns”

and then analyzing the linguistic specificity of each name. The
integration approach is adopted from [18]. For the integration
procedure we assume that processes are modeled top-down.
If a transition to be refined has a cycle, then the cycle is
broken into two subprocesses. For the Petri net in Figure 1
we have assumed that the pre– and postset of transition send
order will be inherited to the subprocess. Depending on the
tool implementation pre– and postsets may differ. In order
to enable efficient analysis of processes modeled with Petri
nets we allow only identical pre– and postset inheritances. To
find a solution in case of different inheritance of pre– and
postsets, [18] proposes to find relationships between element
names that are expressible through aggregation, association or
generalization. For instance, contract application and contract
certificate can be aggregated to contract.

Fig. 7. One composed process for Process Levels of Figure 1

Besides linguistical aspects of names (by measuring the
linguistic specificity) we have to consider process flow struc-
tures of SBPM in our analysis in order to isolate appropriate
sequences. Figure 8 shows the flow structures choice, con-
currency and sequence. The flow structure choice allows to
model alternative branching (place or a transition has at least
two postsets). By the use of concurrency tokens are distributed
to two places. The two parallel branches are again integrated
by a synchronization (place or transition has at least two
presets).

After integration all processes from the top-down to one
process, the algorithm traverses the process regarding choice or

Fig. 8. Process Flow Structures

concurrency branches. The algorithm regards process branch-
ing as a breakpoint and tries to find one of the three refinement
patterns in a branch. In our consideration only a branch
B(∈ B1, .., Bn) having more than two transitions or at least
four elements e1, .., en from EB is a reasonable analyzing
sequence.
First of all, the algorithm traverses as long as a branch-
ing occurs. This (branching) sequence B will be analyzed
considering refinement patterns. Subsequently, the algorithm
traverses to the next sequence and so on. If more than half of
the elements of a branch are interrelated elements with higher
specificity (as the remaining elements), then these elements
might be subsumed to one of the three refinement patterns.

(Semi-)automatically discovering refinement pattern 1
(Identical Nouns) works more easily as for pattern 2 (Het-
erogenous Nouns). The algorithm looks first for an interrela-
tion of nouns with identical linguistic specificity. A pseudo-
algorithm for pattern 1 can be implemented as follows (see
Algorithm 1). For each sequence B the algorithm subsumes
a set of elements e1, .., en from EB to Pattern 1 if the
linguistic noun specificity for the isolated sequence with a
set of interrelated elements is identical. If the first noun of
the interrelation is the first element of the branch, then the
algorithm tracks back as long nouns differ.

Algorithm 1 Refinement Pattern 1
Input: B1, ..., Bn shall be a set of sequences with individual
sets of elements EB

i
; i ∈ 1...n.

σ(e1), .., σ(en) shall be the linguistic specificities for all
elements in EBi where the first element of the sequence has
a preset e1p in a set of elements EB .
Output: Elements belonging to refinement pattern 1
Method: Perform the following steps:

for all E ∈ EB1 , .., EBn
do

if |E| ≥ 4 ∧ σ(e1) = ... = σ(en), e1, .., en ∈ E then
track back as long σ(e1) 6= σ(e1p

) and highlight
inconsistent names

else
continue

end if
end for

The process in Figure 7 has a parallel branching, which is
again integrated by transition pack documents and products.
The first breakpoint for the algorithm is the branching at



transition forward order data. As the sequence has only two
elements, the algorithm traverses to the next branching. The
algorithm regards elements from order received till order sent
(the upper branch included) as one sequence and order re-
ceived till order sent (the bottom branch included) as a second
one. In the upper branch the algorithm finds no refinement
possibility6. A consistent hierarchical decomposition would
return none refinement possibilities in the bottom branch
as well. But, in the bottom branch the algorithm finds an
identical specificity for interrelated elements (order product,
product ordered, pick product to stock7, products prepared
with similarity of 0.362) and detects this elements as non-
uniformely specified (in case this processes are modeled as in
Figure 1a). Specificity results for processes in Figure 1a are
depicted in Table I.

TABLE I
LINGUISTIC SPECIFICITY RESULTS FOR PROCESS IN FIGURE 1A

name noun composed nouns verb
order received 0,352 – 0,392
forward order data – 0,352; 0,235 0,407
collected order data – 0,352; 0,235 0,204
prepare documents 0,406 – 0,260
documents prepared 0,406 – 0,260
pack documents and products 0,406; – 0,482

0,362
order sent 0,352 – 0,381
order received 0,352 – 0,392
forward order data – 0,352; 0,235 0,407
product requirements agreed – 0,362; 0,347 0,444
order product 0,362 – 0,352
product ordered 0,362 – 0,352
pick product to stock 0,362; – 0,203

0,423
products prepared 0,362 – 0,359
pack documents and products 0,406; – 0,482

0,362
order sent 0,352 – 0,381

To discover refinement pattern 2 requires more calculation
efforts as for pattern 1. In Figure 9 we integrated the subpro-
cess from Figure 5 with its subsuming processes. If the algo-
rithm can not find refinement pattern 1, then it looks for pattern
2 and 3. The process in Figure 9 has only one branching at the
place order activated. In our consideration the algorithm does
not regard this as a branching (each branch consists only of
one element - coordinate small assignment and coordinate
big assignment), but each branching represents a breakpoint
for the algorithm. The algorithm compares first the linguistic
specificity of all elements between production order and order
activated and then continues till components tested.

In Section 2 we have already mentioned that transitions
are active components that change the state of the system.
A “suitable” transition name expresses tasks of its pre– and
postsets. In the following we assume suitable transition names
and will only consider linguistic specificities of transitions
instead of places. For (semi-)automatic discovery of refine-

6even no pattern 2 or 3 as explained below
7nouns linked with nouns via prepositions are regarded as two mutual

exclusive nouns

Fig. 9. One composed Process for Process Levels in Figure 5

ment pattern 2 we have identified two influences. First, the
average of transitions’ linguistic specificities µ, and second,
higher specificities for interrelated elements as the transitions’
pre– and postsets. A pseudo-algorithm for pattern 2 can be
implemented as follows (see Algorithm 2). For each sequence
B the algorithm detects inconsistent hierachical specification
for a set of elements e1, .., en from EB if the specificity of
interrelated transitions is higher as the transition average σ or
as the transitions’ pre– and postsets.

Algorithm 2 Refinement Pattern 2
Input: B1, ..., Bn shall be a set of sequences with individual
sets of elements EB

i
; i ∈ 1...n.

σ(e1), .., σ(en) shall be the linguistic specificities for all
elements in EBi

; e1p
and enpo

shall be the pre– and postset
of the first and last element in a set of elements in EB .
µ(σ(eti)) shall be the average linguistic specificity of all
transitions in ETi

∈ EBi
; i ∈ 1...n.

Output: Elements belonging to refinement pattern 2
Method: Perform the following steps:

for all E ∈ EB1 , .., EBn
do

if |E| ≥ 4 and (σ(eti
) > µ(σ(eti

))∨ σ(eti
) > (σ(e1p

)∨
σ(enpo))) then

highlight non-uniformed names
else

continue
end if

end for

The average σ(eti
) of transitions specificities of the process

depicted in Figure 9 is 0.434. The linguistic specificity of
check assignment, find delivery demand, obtain subscrip-
tion, and order documents are higher than the average (0.455;
0.488; 0.445; 0.508). In the second sequence the system
finds no instance name with a higher linguistic specificity as
the average and thus no refinement candidate. If a modeler
would model a process in that way as illustrated in Figure
9, then the system would detect an inconsistently hierarchical
decomposition for these four elements. Calculation results are
depicted in Table II.

Ideally, element names in subprocesses can be regarded as
a specialization of the refined transition name (pattern 3). As
depicted in Figure 6 the transition to be refined is named edit
order and the elements in the subprocess are named contract
application and contract certificate. Then, these two objects



TABLE II
LINGUISTIC SPECIFICITY RESULTS FOR PROCESS OF FIGURE 9

name noun composed nouns verb
production order – 0,515; 0,360 –
check assignment 0,560 – 0,350
correct assignment 0,560 – 0,430
find delivery demand – 0,307; 0,225 0,444
scheduled delivery demand – 0,307; 0,225 0,444
obtain subscription 0,498 – 0,392
confirmation 0,432 – 0,392
order documents 0,501 – 0.515
order activated 0.515 – 0.515
coordinate small assignment 0,560 – 0,337
coordinate big assignment 0,560 – 0,337
delivery 0,307 – 0,337
check receipt 0,415 – 0,350
receipt checked 0,415 – 0,350
test components 0,261 – 0,342
components tested 0,342 – 0,261

can be aggregated to the term contract, which has a lower
specificity as the nouns to be aggregated. Coarsening pattern 3
will be discovered via a higher specificity than the transitions’
pre– and postsets.

VI. APPLICATION: USER SUPPORT FOR PROCESS
MODELING

Consistent process modeling requires a couple of modeling
experiences. The measuring of process element abstraction can
support users during business processes modeling (the initial
idea of this support functionality is presented in [19]). The
idea of an autocompletion mechanism is illustrated in Figure
10.

Fig. 10. Overview of the autocompletion process

Manual modeling of business processes is a time consuming
task. Typos and structural modeling errors make it particularly
error prone to model business processes manually. Therefore,
it would be useful to assist the user in modeling business
processes by providing an autocompletion mechanism during
process modeling. Before proposing appropriate process ele-
ments, a recommendation mechanism has to suggest appro-
priate completions to initial process fragments which may be
based on business rules and structural constraints. Thus, the
mechanism has to compare process templates with process
elements, which are currently modeled, by computing their
abstraction homogeneity. In this scenario the name of the

initial process element will be compared with all process
elements (stored in a process repository) and the similarity
between this names is computed as introduced in Section IV.
Instance names with different linguistic specificity as the initial
process element will not be proposed as fitting elements.

VII. IMPLEMENTATION AND EVALUATION

The computation of linguistic specificities have been per-
formed with the Perl modules of Pedersen et al. [20]. Several
seconds are needed to load WordNet and after that the speci-
ficity calculations for any concept are barely immediate. The
result list of linguistic specificities returns for each element
name several linguistic specificities as depicted in Table III.
The semantic correspondence (description) of a term is chosen
manually.

The presented algorithms have been implemented as an
integrated tool suite based on the Eclipse workbench frame-
work8. Processes used in our evaluation are real use cases
collected in several practical modeling projects. After several
manual evaluations we are aiming to implement the presented
algorithms in a way to enable (semi-)automatical detection
of inconsistencies of process element names on the same
decomposition level.

VIII. RELATED WORK

The decompositon of subsystems through hierarchic classi-
fication of process models has been proposed for modeling
languages such as Petri nets [2], Event Driven Process Chains
[21] or more novel orchestration and choreography languages
such as BPEL [22]. Several tools for process modeling make
it possible to insert process hierachies via refinement concepts
[23], [24].

In Section IV we introduced several related works for
specificity calculation. Furthermore, we mentioned arguments
in favor of our calculation approach.

To the best of our knowledge there is no other approach
that has described high-level Petri nets with OWL.

Top-down and bottom-up theories have been proposed for
programming languages in order to understand the complexity
of software systems [25]. [26] has developed a software from
the bottom-up that extends industrial machinery with Seman-
tic Web technology to enable automated service discovery,
customization, and semantic translation. [27] describes how
patterns from other areas of computer science can be used as
“templates” for creating ontology design patterns for automatic
construction of enterprise ontologies.

To the best of our knowledge our work is the first theoretical
approach to support the feature of (semi-)automatic detection
of non-uniformely specified process elements on the same
abstraction level.

IX. CONCLUSION AND FUTURE WORK

Subprocesses enable to modularize large business processes
and to faster reuse process models. In general process decom-
positions appear to be more intuitive and easier to understand.

8http://www.eclipse.org/



TABLE III
RESULTS OF LINGUISTIC SPECIFICITY

name type
− log P (ci)

maxcx∈C{−logP (cx)} description

decision n 0.3372927 (psychological feature, cognition, content,
belief, opinion, judgment, decision)

decision n 0.2488159 (act, action, choice, decision)
decision n 0.2919773 (event, happening, ending, result,

decision)
decision n 0.289124 (abstraction, attribute, trait, resoluteness,

decision)
final decision n 0.3165337 (act, group action, due process, judgment,

final decision)
provide v 0.3098497 (transfer, give, support, provide)

Maintaining same level of abstraction guarantees business
process consistency and comprehensibility. To maintain same
abstraction for each hierarchy level and to check process
consistency require significant modeling experience. The aim
of our approach is to automate the procedure of process
decomposition analysis to a significant extent. In this paper
we presented an approach that supports the detection of non-
uniformely specified process elements. In order to enable the
analysis of abstraction homogeneity and heterogeneity we
described how linguistic specificities for element names can be
computed. Three so-called refinement patterns were illustrated
to help subsuming elements to one of the patterns and then
detecting modeling inconsistencies due to the height of its
linguistic specificity. Processes with consistent hierarchical
specifications guarantee correct process analysis and workflow
views. We are planning to use the implementation of our
approach to analyze further real-world business processes.
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