
Preprint submitted to Int. J. Service Sciences 1

Semi-Automated Management of Web Service
Contracts

Steffen Lamparter

Institute AIFB
Universitaet Karlsruhe (TH), Germany
E-mail: sla@aifb.uni-karlsruhe.de

Stefan Luckner
Institute of Information Systems and Management (IISM)
Universitaet Karlsruhe (TH), Germany
E-mail: luckner@iism.uni-karlsruhe.de

Sibylle Mutschler

Institute of Information Law
Universitaet Karlsruhe (TH), Germany
E-mail: mutschler@ira.uni-karlsruhe.de

Abstract: Service-oriented computing as a concept for providing interoper-
ability and flexibility within heterogeneous environmentshas gained much at-
tention within the last few years. Dynamically integratingexternal Web services
into enterprise applications requires automatic contracting between service re-
questors and providers and automatic contract monitoring.This paper suggests
a semi-automatic approach since in the current legal environment full automa-
tion is not feasible. We elaborate on the content of Web service contracts from
a legal perspective and derive a set of legal requirements. Based on these re-
quirements we propose an ontology-based representation ofcontract clauses as
well as monitoring information. We can thus automatically evaluate whether a
service execution meets the requirements expressed in a contract.

Keywords: contract representation, ontology, compliance checking.

1 INTRODUCTION

Information systems of the future will be combinations of loosely-coupled services.
In service-oriented architectures (SOA), application systems are assembled as required by
pulling together various services. The implementation of services is encapsulated and nu-
merous service providers may provide the same functionality. Hence, a customer may
choose from a variety of implementations depending on his preferences. The concept of

Copyright c© 200x Inderscience Enterprises Ltd.Copyright c© 200x Inderscience Enterprises Ltd.



2 Semi-Automated Management of Web Service Contracts

service customization enables the same service to be offered at different service levels for
different prices. Usually a specification of the service levels agreed upon is called aser-
vice level agreement(SLA) (Ludwig et al., 2003). We call a legally binding specification
of such service level agreements together with additional obligations that result from the
contracting process (such as paying a certain price as compensation) a Web service con-
tract (Hoffner and Field, 2005). This corresponds to the definition given by Reinecke et al.
(1989), where “a contract is a legally enforceable agreement, in which two or more parties
commit to certain obligations in return for certain rights.”

Due to the cross-organizational and collaborative nature of business processes, which
are supported by today’s service-oriented architectures,contracts have become a key gov-
ernance mechanism regulating business interactions. In spite of their importance, today’s
enterprizes still treat contracts merely as paper documents regulating the case where some-
thing goes wrong and without linking them to the cross-organizational interactions that
they govern. Thus, a more holistic approach to contract handling is required that supports
the following features (Milosevic and Governatori, 2005):

• formal contract languages that provide open, transparent and up-to-date information
about contract data and the status of a contract;

• mechanisms that use information from contracts as a basis for monitoring of contract
compliance and subsequent notifications and enforcement measures;

• mechanisms and tools that support management of the entire contract life cycle,
including contract formation, contract execution and contract monitoring;

• tools that support personnel in meeting their obligations that arise from the contract.

That means, in a service-oriented architecture a formalized Web service contract can
be directly used to govern the business interactions executed via Web service invocations.
Web service contracts have to be found automatically and have to be legally reliable. This
requires on the one hand a formal machine-interpretable language that enables automated
contract formation, execution and compliance checking; and on the other hand the expres-
sivity to specify all legally required clauses. This ensures that any violation of pre-agreed
service levels results in a penalty for the party that is responsible for the violation.

Over the last decades a lot of work has been devoted to the formalization of contracts
and legal norms in general – mainly in the areas Artificial Intelligence, Computer Science
and Philosophical Logic (Daskalopulu and Sergot, 1997). However, up to now formal-
ization of legal contracts has been restricted either to relatively simple contractual clauses
expressed via a standard syntax (e.g. Milosevic, 1995; Griffel et al., 1998; Cole and Milo-
sevic, 2001; Grosof and Poon, 2003; Angelov and Grefen, 2003; Global Grid Forum, 2006;
Governatori, 2005) or relies on very complex logical formalisms (e.g. Hage, 1996; Tan and
Thoen, 1998; Sergot, 2001) which are not computationally tractable or lack any support for
inter-organizational interactions. Since the trade-off between expressivity and tractability
cannot be easily resolved, we focus on a semi-automated approach where a natural lan-
guage umbrella contract is manually closed with different service providers and only some
of the terms are fully formalized. In fact, only obligationsthat have to be dynamically
configured during the contracting process or that should be monitored automatically after
contract execution have to be formalized. This eases the formalization task and allows the
usage of a simpler, computationally tractable logical formalism.



S. Lamparter, S. Luckner, S. Mutschler 3

In this paper, we propose the use of ontology languages for formally representing Web
service contracts. Ontologies come with a logical calculusthat enables representing in-
formation in a formal and standardized way. Thereby, ontologies provide interoperabil-
ity, flexibility and tool support. These advantages also carry over to the contract speci-
fication. By providing an open, transparent and interoperable view on contractual data,
ontology-based contract representation enables a tight integration of up-to-date contrac-
tual information with the collaborative business interactions they govern. This means, the
machine-interpretable contractual information can be easily accessed by contracting and
contract monitoring tools, and it can be easily shared with business partners. In addition,
standard tools supporting the logical formalisms of the ontology can be used to perform
sophisticated contract monitoring that involves logical inferencing.

Our paper is structured as follows. In section 2 we introducea scenario which provides
a use case for the subsequent sections. In Section 3 we discuss related work. In Section 4
the idea of a semi-automated approach to contracting and contract monitoring is presented.
In this context, a informal umbrella contract is closed, which constitutes the environment
that enables automated contracting of formal individual contracts on a per-invocation-basis.
General design considerations of our ontology framework are described in section 5. The
formalization of individual contracts as specializationsof DnS:SituationDescriptionsis
then presented in Section 6. In order to support the settlement phase, Web service moni-
toring information has to be formally represented. How thiscan be realized by means of a
DnS:Situationis outlined in Section 7. Finally, in Section 8 modeling primitives for eval-
uating contracts are presented. This requires knowledge how specific contractual clauses
have to be interpreted. Since this knowledge is usually available only as tacit knowledge
of legally educated persons, it also has to be externalized into a machine readable and
executable form. Finally, we conclude the paper in Section 9.

2 SCENARIO

In order to reduce credit risk and to select profitable customers, companies rely upon
credit information. The latest legal developments around risk management such as Sar-
banes Oxley have forced companies to have a closer look at themanagement of financial
risk. Financial information relating to the creditworthiness of companies, the profitability
of their business or the quality of their senior management helps companies to assess the
risk of doing business with each other and respond to increased or decreased risk. Such
financial information is sold by companies like Dun & Bradstreet or Creditreform. Based
on credit information, companies will decide whether to start business with another com-
pany or determine and adapt lines of credit. In the past, suchlines of credit have often been
considered too late as the buying of credit information was done manually and not always
on a continuous basis. By providing this critical credit information via Web services the
credit information can be integrated into existing enterprise applications facilitating risk
decisions based on externally provided and permanently updated data. Often the integra-
tion of the services has to be done dynamically based on transaction-specific information,
such as the origin of the business partner, type of transaction, etc.

From a technical point of view, such financial services are functions that typically take
the name of a company as input and return certain financial information that can be classi-
fied according to the taxonomy shown in Figure 1.

In addition, service levels guaranteed by the Web service providers are an essential



4 Semi-Automated Management of Web Service Contracts

Credit Information

-type DDIO:InformationObject

Business Background Information

-Ownership

-Company History

-Company Principles

-Operations

-Locations

Credit Score Information

-Risk of Insolvency

Quality of Company Information

-In Depth Information

-Situation of Company in Market

-Senior Management

Credit Limit Calculation

-Individual Credit Limit Information

Warning Information

-Deterioration of Creditworthiness

Figure 1 Credit Information Taxonomy.

decision criteria for the provider selection. Wrong financial information could lead to a
wrong decision and thus to huge financial loss. In the case of financial information services
typical quality of service attributes are update time of thedelivered information, delivery
time (response time), warranties about the accuracy of the information, etc. In addition,
other relevant attributes have to be considered during service selection such as the payment
terms. A customer’s IT management infrastructure has to include execution monitoring of
the service usage and checking for conformance with the contract (Casati et al., 2003).

In order to allow for dynamic selection of a credit information service as well
as automated compliance monitoring, the contract has to be expressed usingmachine-
interpretable syntax. Contracts can then be stored and parsed by computers without any
involvement of humans and they can be connected to inter-organizational business process
they govern. Due to the need for logical inferencing in case of contract monitoring the con-
tract language also has to supportformal semanticsthat enable legal reasoning. In an open
environment where a service requestor is invoking a web service provided by a different
department or company,interoperabilitybecomes a major issue. It is required in order to
support cross-organizational service invocations, wherecontracts have to be exchanged be-
tween the participants in a transaction. To be able to exchange contracts and to dynamically
add new contracts to a local knowledge base, a fullydeclarative contract specificationis
essential. This is particularly important in open environments where we have to be able to
dynamically add new contractual clauses or service properties to the contract. Moreover,
the language has to besufficiently expressiveto specify all of the required contract clauses,
while beingdecidable. Decidability makes sure that no contracts can be formulated which
cannot be evaluated in finite time by our algorithms.

3 RELATED WORK

In this section, we discuss whether the existing literatureon contract languages meets
the requirements derived in the previous section. Table 1 summarizes the results by show-
ing which requirements are fulfilled by different categories of contract languages. In this
context, a solid circle indicates that a requirement is met,an empty circle that a require-
ment is not addressed, and a half-empty circle refers to categories of languages in which
the requirement is only fulfilled partially or not by all approaches in the category. In the
following, we discuss the results in more detail.

XML-based languages introduce machine-readable contract models (e.g. ebXML



S. Lamparter, S. Luckner, S. Mutschler 5

d
ec

la
ra

tiv
e

la
n

g
u

ag
e

m
ac

h
in

e-
in

te
rp

re
ta

b
le

sy
n

ta
x

fo
rm

al
se

m
an

tic

in
te

ro
p

er
ab

ili
ty

su
ffi

ci
en

t
ex

p
re

ss
iv

ity

d
ec

id
ab

ili
ty

XML-based approaches   G# G# #  

Rule-based approaches G#   G# # G#

DL-based approaches    G# #  

Template-based approaches  # # #   

Our Approach       

Table 1 Analysis of related work with respect to requirements.

(OASIS ebXML Joint Committee, 2004)) that can be consideredas a structured contract
document. Some of them are designed for a Web service scenario. The Web Service
Level Agreement (WSLA) project focuses on the quality of service aspect within a contract
(IBM Corporation, 2003). It also addresses the monitoring of an agreement. However, the
project covers only some specific, quality of service related elements of a contract. While
WS-Policy (W3C, 2006), WS-Agreement (Global Grid Forum, 2006), or WSPL (Moses
et al., 2003) take a similar approach, they are more general and not restricted to quality
aspects. While these XML-based languages feature a declarative, machine-interpretable
syntax, they require specialized interpretation engines that obstruct interoperability and
flexibility (e.g. individual users cannot add proprietary terms to the vocabulary). In addi-
tion, most approaches are restricted to certain aspects (such as WSLA) and thus lack the
expressivity required for fully expressing Web service contracts. Evaluation algorithms
for XML-based contract languages are typically designed tobe decidable which is rather
straightforward given the limited expressiveness of the approaches.

Severalrule-based contract languages have been proposed in recent years. Most of
them are based on deontic logic (e.g. the ODP Enterprise Language presented in Milosevic
(1995)) which extends first order logic by modal operators like ’may’ and ’must’. The
starting point for most work in this area is the seminal work of Hohfeld (1913), which
introduces the legal relationsduty, right, powerandliability . A formal, more fine-grained
analysis has been performed by Kangar (1972) and Lindahl (1977) yielding additional
normative positions. For a good overview of normative positions the interested reader is
referred to Sergot (2001). In contrast to the previous XML-based languages, these ap-
proaches rely on a clear, formal semantics and feature sophisticated legal reasoning. How-
ever, since there is no standardized serialization of theselogical formalisms, they are not
directly applicable to Web service contracting. RuleMLa is a first attempt to establish a
standardized syntax for exchanging logical rules. Under the umbrella of RuleML different
kinds of logics can be used to express contracts such as courteous logic programs or defea-
sible logic. Such approaches are SweetDeal (Grosof and Poon, 2003), DR-NEGOTIATE
(Skylogiannis et al., 2005; Governatori, 2005) and RBSLA (Paschke, 2006). All three are
rule-based approaches use defeasible reasoning (i.e. Courteous Logic Programs or defeasi-
ble logic) to specify contracts. However, there are some issues regarding the use of a (pure)
logic programming paradigm. Often such languages do not provide full-fledged declarative
semantics and thus combining rules from different sources becomes highly problematic. In

awww.ruleml.org



6 Semi-Automated Management of Web Service Contracts

fact, manual integration of the different logic programs might be required, which obstructs
interoperability in a cross-organizational environment.Since in our setting contracts have
to be integrated from different sources, this is a major drawback. Another problem with
respect to interoperability in the Web is the fact that RuleML provides only a standard
syntax for exchanging rules, but no standardized semanticsfor the syntax elements. From
an expressivity point of view logic programming languages do not support equality rea-
soning required for expressing integrity constraints as well as number restrictions and lack
existential quantification. The decidability of the approach depends on the concrete rule
language used. In particular, modal logics that provide expressive deontic operators easily
become undecidable and are therefore not applicable in our context.

Another stream of logic-based contract languages relies onthe family of description
logics (Baader et al., 2003). SuchDL-based approaches have increasingly gained atten-
tion with the standardization of the Web Ontology Language (OWL) (W3C, 2004). OWL
defines the decidable fragment OWL-DL which is based on the description logicSHOIN.
Although the DL-based approaches lack some expressivity with respect to rule languages
(e.g. only tree models can be expressed), they provide several major advantages: they
are declarative, which enables to combine and enforce/analysis contracts from different
sources in the Web; they support integrity constraints and existential quantification; and
OWL comes with a standardized, Web compliant serializationwhich is crucial to ensure
interoperability in the heterogeneous and open Web environment. Prominent examples
that make use of OWL are the following policy ontologies thatcan be used to express con-
straints in contracts: An approach which expresses WS-Policy (W3C, 2006) using OWL
is presented in (Kolovski et al., 2005). Similarly, in KAoS (Uszok et al., 2004) OWL con-
cepts are use to express and reason over policies. The policyspecification language REI
also relies on OWL for communicating policies, however, to express constraints the extend
the approach with logic-like variables and rules. Finally,there are approaches that translate
WS-Agreement to an OWL ontology (Jin and Wu, 2005; Oldham et al., 2006). In Oldham
et al. (2006) ontologies are also extended with rules to increase the expressivity. Since
some of these approaches use proprietary extensions to OWL,interoperability and decid-
ability becomes a problem. Furthermore, all the DL-based approaches are clearly not ca-
pable of expressing a complete Web service contract. For example, they lack mechanisms
to interpret fuzzy, context-dependent clauses which typically can be found in natural lan-
guage contracts. Since all logic-based approaches are based on a clear formal semantics,
automated contract verification, validation and consistency checking is supported. Con-
crete approaches are, for example, presented in Paschke et al. (2005); Governatori et al.
(2006).

The approaches discussed above all enable closing machine-interpretable contracts in
an automated fashion. However, they are all not capable of fully expressing a real-world
contract and thus fail in providing legally reliable contracts. An alternative is to transform
formal agreements to natural language contracts by means ofa template-based approach
as presented in Hoffner and Field (2005). The problem here is that we loose the formality
of the contract specification and thus cannot automate contract execution and monitoring.

Recapitulating, existing approaches either lack formality, such as the template-based
approaches, and thus do not enable a high degree of automation and interoperability, or they
make use of complex logics to formalize contractual information. The latter approaches
lack expressiveness and typically make use of proprietary formalisms which obstruct in-
teroperability and are not proven to be decidable. Inour approach, we also employ a
logic-based approach, where contracts are expressed by instantiating an OWL-DL ontol-



S. Lamparter, S. Luckner, S. Mutschler 7

ogy. In order to be able to express obligations and permissions, we use DL-safe rules
(Motik et al., 2005) which is a decidable fragment of the Semantic Web Rule Language
(SWRL) with a clear syntax and semantic. Thereby, we derive afully declarative language
with a Web-compliant, machine-interpretable syntax and formal semantics. Since we rely
on standardized formalisms, a high degree of interoperability can be realized. In terms
of expressivity, our approach is different in that we do not strive for full automation, but
augment an automatically closed contract with an umbrella contract that provides the legal
basis for the automation.

4 SEMI-AUTOMATED CONTRACTING

Full automation of the contracting lifecycle has so far beeninvestigated only for very
simple contracts. Semi-automated contracting can be seen as an approach, where a contract
is composed of two separate parts: anumbrella agreementwhich is directly negotiated by
human beings and anindividual contractautomatically negotiated and closed by software
agents.

4.1 Umbrella Contract

The umbrella agreement is presently necessary to define the legal conditions under
which software agents can enter into binding agreements as not all jurisdictions acknowl-
edge negotiating and contracting by software agents. The service requestors agree on an
umbrella agreement with several Web service providers. Theumbrella agreement will
therefore define the framework for several software agents to negotiate the individual con-
tracts. The umbrella agreement regulates the following issues:

• the beginning of the contractual relations between all parties, how long the umbrella
agreement is valid and how and when it can be terminated;

• the types of Web services to be negotiated;

• the timeframe for negotiations (preferably 24/7);

• auxiliary duties of the parties such as maintenance or the obligation to treat customer
information confidentially;

These clauses form the continuous contractual relations between the parties and span
more than one Web service invocation. In particular, they are not customizable and not
negotiable. Often each umbrella contract closed by a requester with different providers
contains the same clauses. Differentiation between the providers is realized in the individ-
ual contract, which captures content such as price, licensetype, payment terms, response
time guarantees, etc.

4.2 Individual contract

In an individual contract most aspects are customizable. Web service requests and of-
fers can be seen as contract templates, where several valuesare possible for each attribute.
In the matching and allocation phase one value has to be chosen for each attribute before



8 Semi-Automated Management of Web Service Contracts

a contract can be concluded. This configuration is then used in the contract formation
process that generates the appropriate provider and customer obligations of the contract.

In the following, we illustrate the general content of an individual contract for a typical
information service such as a credit information service. In this context, we discuss for
different content categories whether certain clauses should bein the individual contract.

Scope of Agreement (§1). Although the general trading objects which can be exchanged
automatically might be defined in the umbrella agreement, itis important that the agents
have some flexibility to find agreements. For example, let an umbrella agreement define the
scope of the agreement as Web service providing ‘Credit Information’ or ‘Route Informa-
tion’. Then in the individual contract the exact type of information (e.g. ‘Business Back-
ground Information’ or ‘German Route Information’) can be automatically determined in
the matching process.

Provider Obligation (§2). In this category obligations of the provider are defined thatcan
be customized for each invocation of the service. This is thus the main category where
service level agreements are contained. For example, it is usually price relevant how old
the credit or route information is. The software agents might therefore negotiate the update
periods of the provided information. Of course, also other quality of service guarantees,
such as maximal response time or the period in which errors have to be corrected, can be
specified here.

Use of Information (§3). The individual contract will specify how the customer may
use the information. This category may also involve obligations that restrict the use of
information. For example, a contract clause may grant a transferable license to use the
information or a non-transferable license and define further to what extent the customer
may use the credit information within its company or towardsthird parties.

Warranties and Liabilities (§4). Since warranties and liabilities directly influence the
costs of a provider, they are highly price relevant. We let the software agents negotiate
about the warranty level but not about the legal obligationsresulting from a breach of
warranty. The legal complexity, including the restrictions by law to contract out certain
statutory warranties and liabilities, does not allow for full automation at present. For ex-
ample when customizing warranty levels the following scheme can be applied: (1) The
service provider does not give any warranty as to the accuracy of the information. (2) The
service provider does not warrant the accuracy of the information, but warrants that it has
put the information together with utmost care and state-of-the-art-methods. (3) The service
provider guarantees that the information is 100% correct.

Delivery Time (§5). The delivery of the information can be automatically customized
in a way that the service as to be provided immediately after the individual contract is
concluded or at a later, negotiated time. The legal consequences of non- or late delivery
however are set forth in the umbrella agreement.

Prices and Payment Terms (§6). Finally, the prices and payment terms have to be spec-
ified, which can be seen as customer obligations. While the parties defined the details of
invoicing in the umbrella agreement, some parameters such as price for the individual Web
service or the due date of the payment can be fixed dynamically.

After closing a contract in the settlement phase the participants monitor whether the
contractual duties are fulfilled. However, full automationof the monitoring step is impos-
sible since assessing the quality of a Web service can only bedone by taking external and
not quantifiable factors into account. Nevertheless, some aspects can be monitored by the



S. Lamparter, S. Luckner, S. Mutschler 9

system automatically. For instance, it can be assured that an individually contracted ser-
vice is provided at all and in the negotiated timeframe. For this purpose, all clauses that are
relevant to evaluate whether the contract is met also have tobe represented in our formal
representation language (even if they are not customizable).

5 ONTOLOGY FRAMEWORK

In order to be able to pass down the contract negotiation and execution to the system
level, knowledge about the contracts and their interpretation has to be expressed in a ma-
chine interpretable way. Thus, a well-defined, formal representation is required that allows
heterogeneous systems to understand, close, and enforce the contracts. In recent years,
ontologies emerged as state of the art for knowledge sharingin distributed, heterogeneous
environments. An ontology is a set of logical axioms that formally define a shared vocabu-
lary (Gruber, 1993). By committing to a common ontology agents can make assertions or
ask queries that are understood by the other agents. By featuring logic-based representation
languages ontologies provide executable calculi that allow querying and reasoning during
run-time, which is required comparing attribute values in the contracting and compliance
monitoring phase.

5.1 Ontology Formalism

In order to guarantee that the formal definitions are understood by other parties in the
web, the underlying logic has to be standardized. The Web Ontology Language (OWL)
(W3C, 2004) standardized by the World Wide Web Consortium (W3C) is a first effort
in this direction. OWL-DL is a decidable fragment of OWL and is based on a fam-
ily of frame-based knowledge representation formalisms called Description Logics (DL)
(Baader et al., 2003). The main elements of OWL areindividuals, propertiesthat relate
individuals to each other andclassesthat group together individuals which share some
common characteristics. Classes as well as properties can be put into subsumption hi-
erarchies. Furthermore, OWL allows for describing classesin terms of complexclass
constructorsthat pose restrictions on the properties of a class. For example, the statement
BigCity ⊑ City ⊓ ∃connectedTo.Highwaydescribes the class of big cities, which are cities
connected to some highway.b The inclusion axiom ‘⊑’ means that any big city is con-
nected to some highway, but not any city connected to a highway is also necessarily big,
which would be achieved by using the equality-axiom ‘≡’ instead. Similarly, an explicit
subclass relationship can be expressed by a statement likeBigCity ⊑ InterestingCity, say-
ing that any big city is also interesting. Individuals can berelated to classes and assigned
values by a statements likeBigCity(Munich, locatedIn(Munich,Germany), andpopula-
tion(Munich,1314551). Besides introducing Munich as a big German city, this statement
also includes a data value for the city’s population, which is supported by OWL for various
datatypes such as integer or string. An OWL ontology consists of statements like the ones
above, considered logical axioms from which an agent can draw logical consequences. For
example, given an ontologyO consisting of the above statements, it follows that Munich
is an interesting city, which is denoted byO |= InterestingCity(Munich). For a full list
of concept and role constructors the interested reader is refereed to (Baader et al., 2003;

bConcepts, relations and rules contained in the ontology arehighlighted using theslanted style.



10 Semi-Automated Management of Web Service Contracts

Top-Level Ontology

(domain-independent)

inherits 

from

Ontology of Plans 

(DDOP)

Ontology of Information 

Objects (DDIO)

Ontology of Descriptions 

and Situations (DnS)

Dolce

Domain/Application

Ontology

(domain dependent)

Financial Service Ontology

Core Ontology

(specific domain independent)

Core Contract Ontology

Core Policy Ontology
Core Web Service 

Ontology

OWL-S

WSMO

COS

SAWSDL

Figure 2 Ontology framework for Web service markets.

Horrocks et al., 2003; W3C, 2004).
In order to define the contract ontology, we require additional modeling primitives not

provided by OWL (e.g. triangle relations between concepts). The Semantic Web Rule
Language (SWRL) (Horrocks and Patel-Schneider, 2004) allows us to combine rule ap-
proaches with OWL and thus model such knowledge. Since reasoning with knowledge
bases that contain arbitrary SWRL expressions usually become undecidable (Horrocks
and Patel-Schneider, 2004), we restrict ourselves to DL-safe rules (Motik et al., 2005). To
query and reason over a knowledge base containing OWL-DL as well as DL-safe SWRL
axioms we use the KAON2 inference engine.c We define DL axioms either in DL abstract
syntax (Baader et al., 2003) (denoted by (A1) to (An)). Moreover, for the reader’s con-
venience we illustrate the modeling approach informally via UML class diagrams (Brock-
mans et al., 2004). For representing rules we rely on the standard rule syntax as done in
(Horrocks and Patel-Schneider, 2004) (denoted by (R1) to (Rn)).

5.2 Overview

Ontologies can be categorized into four major classes: top-level ontologies, core on-
tologies, domain/task ontologies and application ontologies. The ontology framework is
structured according to these categories by providing a stack of ontology modules. This
structure is illustrated in Figure 2 and comprises the following three layers:

Top-level Ontology. The framework is based on a philosophically sound formalization
of domain-independent concepts and relations that are captured by the top-level ontol-
ogy DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering) (Masolo
et al., 2002). By capturing typicalontology design patterns(e.g. location in space and
time), foundational ontologies provide basic vocabulary for structuring and formalization

cAvailable athttp://kaon2.semanticweb.org.



S. Lamparter, S. Luckner, S. Mutschler 11

of application ontologies. Reusing these building blocks considerably reduces modeling
effort. Furthermore, they provide precise concept definitionsthrough a high axiomati-
zation. Thereby, foundational ontologies facilitate the conceptual integration of different
languages and thus ensure interoperability in heterogenous environments. By providing
additional modules DOLCE supports important ontology design patterns such as the On-
tology of Descriptions & Situations (DnS), Ontology of Plans (OoP), Ontology of In-
formation Objects (OIO) (Gangemi et al., 2004). Descriptions & Situations provides a
theory of contextualization by introducing the distinction between descriptive and ground
entities. Descriptive entities are aggregated by aDnS:SituationDescriptiond and represent
non-physical objects like product descriptions or legal norms. Ground entities derived from
DOLCE constitute aDnS:Situationthat represents information about a concrete state of af-
faire in the world such as a concrete web service invocation or a legal case. Furthermore,
theDnS:satisfies-relation between aDnS:Situationand aDnS:SituationDescriptionspec-
ifies if the descriptive entities ”describe” theDnS:Situationaccording to specified rules.
Moreover, we rely on the ontology module Ontology of Plans (DDOP) to describe social
and cognitive plans such as goals or tasks and the module Ontology of Information Objects
(DDIO) which introduces primitives for describing information items.

Core Ontologies. By means of the DOLCE vocabulary additional ontology modules can
be defined that capture general information not specific to a certain domain and application.
For expressing the formal Web service model, three core ontology modules are required:
(i) The Core Policy Ontology(CPO) introduced in (Oberle et al., 2006; Lamparter
et al., 2006) formalizes the notion of policies and thus enables the representation of
obligations. The structure of the Core Policy Ontology is inline with the ontol-
ogy design pattern Descriptions & Situations. In general, the ontology distinguishes
between aCPO:PolicyDescriptionspecializing aDnS:SituationDescriptionand a con-
crete CPO:Configurationmodeled asDnS:Situation. A CPO:Configurationcan be
evaluated according to theCPO:PolicyDescription. A CPO:PolicyDescriptioncontains
CPO:PolicyObjectsandCPO:PolicyObjectswhich are modeled asDnS:Functional Roles
played by concrete entities in the world. Using the concept of DnS:Functional Rolesal-
lows specifying policies on an abstract level without referring to concrete entities. This
is also essential for modeling contracts, since they are usually applicable in many differ-
ent settings. Further, theCPO:PolicyDescriptiondetermines theOoP:Taskthat is reg-
ulated as well asCPO:Attributesdefining the constraints that have to be met to fulfill
a certainCPO:PolicyDescription. By refining theDnS:attitudeTowards-relation we can
model different deontic relations betweenCPO:PolicyObjectandOoP:Task, e.g. we can
say that aCPO:PolicyObjecteither has theDnS:rightToor is DnS:obligedToexecute a
certainOoP:Task. In order to find out whether a certainDnS:Situationconforms to a
CPO:PolicyDescriptiona specialization of theDnS:satisfies-relation is used.
(ii ) The Core Software Ontology(CSO) (Oberle, 2005; Oberle et al., 2006) introduces
means for describing software systems. It provides a clear distinction between information
(e.g. software or data) and the digital realization of information in information systems by
introducingCSO:ComputationalObjectsandCSO:ComputationalTasks. By augmenting
the Core Software Ontology with service ontologies such as OWL-S (Sycara et al., 2003),
WSMO (Dumitru et al., 2005) or COS (Oberle, 2005) further Webservice specific aspects
can be modeled, including service functionality and quality of service criteria.
(iii ) Based on these two modules this paper contributes theCore Contract Ontology(CCO)

dFor concepts and relations that are introduced directly in the contract ontology, namespaces are omitted. For
those that are derived from other ontologies, the corresponding namespace is mentioned explicitly.



12 Semi-Automated Management of Web Service Contracts

Customer Obligation

Provider Obligation

DnS:

obligedTo

Customer CompensationTask CompensationObject
DnS:

obligedTo

DnS:anakastic

DutyTowards

DnS:anakastic

DutyTowards

ContractDescription

DOLCE:part

DOLCE:part

WarrentyLevel UpdatePeriode

DnS:

requisiteFor

DnS:

requisiteFor

MonetaryUnits Amount

DnS:

requisiteFor

DnS:

requisiteFor

Currency

InformationGood

DnS:

requisiteFor

ResponseTime

MonetaryCompensation

OoP:

successor

DnS:

requisiteFor

PaymentTerm

Provider ServiceTask

Figure 3 Contract ontology. Note that plotting UML classes within anObligation-class illus-
trates aDnS:defines-relation between theObligationand the contained classes.

which can be used to describe Web service contracts and to represent information Web
service executions.

Domain and Application Ontologies. While the first two layers contain domain-
independent off-the-shelf ontologies, the third layer comprises ontologies for customiz-
ing the framework to specific domains (e.g. an ontology for modeling credit information).
While the core ontologies provide us with basic primitives to implement the Web service
contract model, domain ontologies are particularly required for expressing attribute values.

In the following section we present the Core Contract Ontology. Section 6 introduces
the modeling primitives for representing Web service contracts. Subsequently, in Section 7
we discuss how Web service executions can be modeled. Finally, Section 8 discusses how
such executions can be checked for compliance with respect to a specific contract and thus
shows how contract evaluation can be implemented based on the ontology.

6 CONTRACT REPRESENTATION

In this section, we show how contract information can be represented by reusing the
Core Policy Ontology. In doing so, goal policies are used to represent obligations and
permissions in a contract. After introducing this general contract ontology, we exemplify
its usage by modeling the content of the individual contractidentified in Section 4.

6.1 General contract ontology

A contract can be seen as a set of obligations and rights that are binding on all con-
tractors. In the case of Web services we restrict ourselves to contracts between exactly two
parties, namely Provider and Customer. We model this by introducing aContractDescrip-
tion as aDnS:SituationDescriptioncontaining onlyObligationsandPermission(Axiom
(A1)). ObligationsandPermissionsareCPO:PolicyDescriptionsthat represent obligations



S. Lamparter, S. Luckner, S. Mutschler 13

and permissions forContractParties. An Obligationis aCPO:PolicyDescriptionwhere the
DnS:attitudeTowards-relation is refined toDnS:obligedTo(Rule (R1)) and aPermissiona
CPO:PolicyDescriptionwhere it is refined toDnS:rightTo(Rule (R2)). AContractPartyis
an activeCPO:PolicyObjectthat is played byDnS:Agents. This can be formalized using
the following axioms and rules:

ContractDescription≡DnS:SituationDescription⊓ (A1)

∀DOLCE:part.(Obligation⊔ Permission)

ContractParty⊑CPO:PolicyObject⊓ ∀DnS:playedBy.DnS:Agent (A2)

Obligation(x) ←CPO:PolicyDescription(x),DnS:defines(x, y),ContractParty(y), (R1)

DnS:defines(x, z),CPO:PolicyTask(z),DnS:obligedTo(y, z)

Permission(x) ←CPO:PolicyDescription(x),DnS:defines(x, y),ContractParty(y), (R2)

DnS:defines(x, z),CPO:PolicyTask(z),DnS:rightTo(y, z)

A ContractDescriptiondefines a set ofObligations(Axiom (A1)), where eachObli-
gationspecifies aContractPartyand aCPO:PolicyDescription. Consequently, as depicted
in Figure 3 the most elementary contract about purchasing Web services in exchange for
money results in two simple Obligations:

Provider Obligation. A ProviderObligationspecifies that the provider is obliged to
make certain functionality accessible to the customer (Axiom (A3)). This functionality
is represented by aCPO:PolicyTask ServiceTask, which is played by aCOS:WebService
in a DnS:Situation(Axiom (A5)). In addition, aCPO:PolicyObject Provideris intro-
duced that isDnS:obligedToprovide theServiceTask(Axiom (A4)). A CPO:PolicyObject
InformationGoodis used to represent the information that has to be returned by the
COS:WebServiceplaying theServiceTask. Note that the distinction betweenServiceTasks
andInformationGoodallows modeling the functionality of a service using eitherexplicit
or implicit capability representation (Sycara et al., 2003). This enables our contract ontol-
ogy to support major efforts striving for semantic web service descriptions such asWSMO
(Dumitru et al., 2005), OWL-S (Sycara et al., 2003) and WSDL-S (Patil et al., 2004).

ProviderObligation⊑Obligation⊓ ∃DnS:defines.Provider (A3)

Provider⊑ContractParty⊓ ∃DnS:obligedTo.ServiceTask (A4)

ServiceTask⊑CPO:PolicyTask⊓ ∀DnS:sequences.Service (A5)

InformationGood⊑CPO:PolicyObject⊓ (A6)

∀DnS:playedBy.OIO:InformationObject (A7)

Customer Obligation. A CustomerObligationwhich specifies that the customer is
obliged to compensate the provider for using the Web service(Axiom (A8)). This ac-
tivity is called CompensationTaskand mostly involves the transfer of a certain amount
of money. To define aCompensationTaskthe CPO:PolicyTaskis specialized to aCom-
pensationTask(Axiom A10). A Customeris a ContractPartythat is obliged to carry
out a CompensationTask(Axiom A9). Moreover, aCompensationTaskmay involve a
CPO:PolicyObject CompensationObject, which refers to a passive physical or social en-
tity (DOLCE:NonAgentiveSocialObjector DOLCE:NonAgentivePhysicalObject) such as
money or a patent (Axiom (A11)).



14 Semi-Automated Management of Web Service Contracts

CustomerObligation⊑Obligation⊓ ∃DnS:defines.Customer⊓ (A8)

DnS:defines.CompensationTask

Customer⊑ContractParty⊓ (A9)

∃DnS:obligedTo.CompensationTask

CompensationTask⊑CPO:PolicyTask⊓ (A10)

∀DnS:anakasticDutyTowards−.CompensationObject

CompensationObject⊑ CPO:PolicyTask⊓ (A11)

∃.DnS:anakasticDutyTowards.CompensationTask⊓

∀DnS:playedBy.(DOLCE:NonAgentiveSocialObject⊔

DOLCE:NonAgentivePhysicalObject)

Usually contracts also specify in which sequence obligations have to be fulfilled and
rights are obtained. In the basic contract outlined above theServiceTaskhas to be executed
before theCompensationTask. Hence, means for representing sequences ofOoP:Tasks
are required. We reuse the Ontology of Plans which provides primitives for modeling
complex processes, e.g.Sequential Tasks, Parallel Tasks, Loop Tasks, etc. In this context,
the primary ordering relation forOoP:Tasksare OoP:directSuccessorand its transitive
versionOoP:successor.

As illustrated in Figure 3, concrete obligations are expressed via policies specifying
CPO:Attributefor ServiceTaskand InformationGoodor CompensationTaskandMone-
taryUnit, respectively. How this can be realized for the individual contract clauses identi-
fied in Section 4 is shown in the next section.

6.2 Individual Contract Clauses

As discussed above, a contract imposes further obligationsand permissions that have
to be fulfilled by the contractors. These obligations and permissions are modeled within a
CPO:PolicyDescriptionby introducing specializedCPO:Attributeconcepts and specifying
the allowedCPO:AttributeValuefor this CPO:Attribute. In the following, we briefly dis-
cuss some examples how the obligations that have to be definedin an individual contract
can be formalized. Methodologically this is realized by transforming a natural language
contractual clause into a formalized goal policy. However,note that this is no exhaus-
tive enumeration. Depending on the service types and scenarios a wide range of different
CPO:Attributesare possible.

Scope of Agreement (§1) The scope of an agreement defines the type ofInformationGoods
or CompensationObjectsthat are valid according to the contract. This specificationcan
be done by specializing the conceptsInformationGoodor CompensationObjectusing a
domain ontology as presented in Figure 1 for credit information.

Provider Obligation (§2) As specified above, in this category service levels a provider has
to meet can be specified. We exemplify this by considering theCPO:Attribute UpdatePe-
riod which is warranted by the provider. A legal text negotiated by human beings could
read as follows:

“The Provider warrants that it reviews and, if necessary, updates Credit
Information every month.”



S. Lamparter, S. Luckner, S. Mutschler 15

Since the timeliness is a property of the providedInformationGood, we introduceUp-
datePeriodas a subclass ofCPO:Attribute. UpdatePeriodconstraints the set of allowed
CPO:AttributeValues UpdatePeriodValue. This is captured by the following axiom:

UpdatePeriod⊑CPO:Attribute⊓ (A12)

∃DnS:requisiteFor.InformationGood⊓

∀DnS:requisiteFor.InformationGood⊓

∃DnS:valuedBy.UpdatePeriodValue

TheCPO:Attribute UpdatePeriodis illustrated in Figure 3.

Use of information (§3) This category specifies how the customer may use the informa-
tion. For example, consider licenses that typically regulate how certain information can be
used. A agreed legal text could read as follows:

“The Provider grants the customer a non-transferable license to use the
Credit Information delivered under the terms of this contract. The Customer
may freely copy or forward Credit Information within its company. The Cus-
tomer may not disclose or make the Credit Information otherwise available to
third parties without prior consent of the Provider.”

The license specifies if the right to use a certainInformationGoodis transferable, if
the customer may disclose theInformationGoodwithin the company (‘Disclose within
Company’) or to external third parties (‘Disclose to 3rd Party’). In order to facilitate con-
tract monitoring, we model the right as anObligationthat specifies which alternatives are
not allowed. This is realized by introducing an additionalCustomerObligation Disclo-
sureObligation(Axiom (A13)) with theCompensationTask TransferInformation(Axiom
(A14)) and theCPO:Attribute AdmissibleParty. AdmissiblePartymay take the values ‘Not
Transferable’, ‘Disclose within Company’ and ‘Disclose to3rd Party’ (Axiom (A15)). The
following axioms capture this information. Note that the correspondingObligationis omit-
ted in Figure 3.

DisclosureObligation⊑CustomerObligation⊓ (A13)

∃DnS:defines.TransferInformation⊓

∃DnS:defines.AdmissibleParty

TransferInformation⊑CompensationTask⊓ (A14)

DnS:requisites.AdmissibleParty

AdmissibleParty⊑CPO:Attribute⊓ (A15)

∃DnS:requisiteFor.TransferInformation⊓

∀DnS:requisiteFor.TransferInformation⊓

=1 DnS:valuedBy.{‘Not Transferable’,

‘Disclose within Company’,

‘Disclose to 3rd Party’}

Warranties and Liabilities (§4) In this category warranty and liability levels can be de-
fined. In legal practice a wide range of different warranty and liability regulations are used.
In this example, we consider a very simple approach, where automatically one level from a
predefined set of warranty levels can be chosen. The predefined warranty levels are defined
in the umbrella contract. In a natural language contract a level can be defined as follows:



16 Semi-Automated Management of Web Service Contracts

“The Provider warrants that the credit information is 100% accurate.”

As shown in Figure 3, this can be realized by adding aCPO:Attribute WarrantyLevel
to theProviderObligationwhich is valued by aDOLCE:Regionreflecting the three dif-
ferent warranty levels: ‘No Warrenty’, ‘Uttermost Care’, and ‘Full Warranty’. Since the
warranty can be considered as a fundamental property of aInformationGood, we model
WarrantyLevelas aCPO:Attributeof InformationGood.

WarrantyLevel⊑CPO:Attribute⊓ (A16)

∃DnS:requisiteFor.InformationGood⊓

∀DnS:requisiteFor.InformationGood⊓

=1 DnS:valuedBy.{NoWarrenty′, ‘UttermostCare′ ,

‘ FullWarranty′ }

Delivery Time (§5) In many applications delivery time is a crucial property that heavily
influences the prices. It is also a property that often has to be customized dynamically,
e.g., in order to adapt the contract to changing Web server load. A natural language clause
could be formulated as follows:

“The Provider shall deliver the Credit Information within five seconds af-
ter conclusion of the contract.”

In the context of Web services, delivery time usually refersto the response time, in
which the result is returned by the service. TheCPO:Attribute ResponseTimespecifies the
period in which theService Taskhas to be executed. Hence, it is modeled as a constraint
of ServiceTaskwhich isDnS:valuedByanCPO:AttributeValue ResponseTimeValue. The
approach is illustrated in Figure 3 and captured by the following axiom:

ResponseTime⊑CPO:Attribute⊓ ∃DnS:requisiteFor.ServiceTask⊓ (A17)

∀DnS:requisiteFor.ServiceTask⊓

=1 DnS:valuedBy.ResponseTimeValue

Prices and Payment Terms (§6) Usually the most important aspect regulated in a contract
is the price that has to be paid by the customer for invoking the service. Prices of services
may change frequently or are even determined dynamically ina negotiation or auction
process. For example, a corresponding clause could be simply specified as follows:

“The price for the provided credit information is EUR 15.”

Due to this importance we have defined aCustomeras aContractPartythat is obliged
to execute aCompensationTask(Axiom (A9)). The nature of this compensation is left
open and can be defined by constraining the allowed alternatives using policies. For the
case where no compensation is required (e.g. service usage is free of charge) simply no
policies are defined forCompensationTask. For the usual case where a certain amount
of money has to be paid we have specializedCompensationTaskto MonetaryCompen-
sationwhich requires the specification of theMonetaryUnitsthat have to be transferred
from the customer to the provider (Axiom (A18)).MonetaryUnitsareCompensationOb-
jectswhich specify a certainAmount of money in a givenCurrency(Axiom (A19)). The



S. Lamparter, S. Luckner, S. Mutschler 17

CPO:Attribute Amountis valued by exactly one floating number (Axiom (A20)) and the
CPO:Attribute Currencyis valued by exactly oneCurrencyValue(Axiom (A21)). Thus,
CurrencyValuecomprises Euro, Dollar, Yen, etc. This is formalized by the following ax-
ioms.

MonetaryCompensation⊑ CompensationTask⊓ (A18)

∀DnS:anakasticDutyTowards−.MonetaryUnit⊓

∃DnS:anakasticDutyTowards−.MonetaryUnit

MonetaryUnits⊑CompensationObject⊓ (A19)

∃DnS:requisites.Amount⊓

∃DnS:requisites.Currency

Amount⊑CPO:Attribute⊓ (A20)

=1 DnS:valuedBy.XSD:Float

Currency⊑CPO:Attribute⊓ (A21)

=1 DnS:valuedBy.CurrencyValue

Furthermore, a contract usually contains aPaymentTermthat specifies in which time-
frame aMonetaryCompensationhas to take place. We model thePaymentTermsas a
CPO:AttributeconstrainingMonetaryCompensationas shown in Figure 3.

PaymentTerm⊑CPO:Attribute⊓ (A22)

∃DnS:requisiteFor.MonetaryCompensation⊓

∀DnS:requisiteFor.CompensationTask⊓

=1 DnS:valuedBy.DOLCE:Temporal-Region

All regulations specified above can be extended either by introducing new
CPO:Attributeswithin an existingCPO:PolicyDescriptionor by adding furtherObliga-
tionsor Permissionsto theContractDescription.

6.3 Domain Ontology

In order to apply the contract ontology in a concrete application scenario, domain on-
tologies are required to introduce concepts and relations required for specializingTradin-
gObjectsas well asCOS:WebServiceandCompensationTasks. Since in our credit infor-
mation scenario we deal with information services, the functionality of a service can be
specified by introducing theSend InformationandMonetaryCompensationtasks, which
concretizeServiceTaskandCompensationTask, respectively. Furthermore, in order to de-
fine the functionality of a service specifying the service output is required, which can be
done by means of a reference to a specific type of information.In the following we discuss
a domain ontology dealing withTradingObjectsin the credit information services example.
As introduced above, there are five main categories of CreditInformation. Ontologically,
information mentioned above is represented by the conceptCSO:Datathat isOIO:realized
by aCSO:ComputationalObjectwithin the information system. Hence, we formally define
different types ofCreditInformationas follows:

CreditInformation⊑CSO:Data⊓ ∃DOLCE:part.CompanyIdentifier⊓ (A23)



18 Semi-Automated Management of Web Service Contracts

∀DOLCE:part.(BusinessBackgroundInformation⊔

CreditScoreCalculationInformation⊔

QualityOfCompanyInformation⊔

CreditLimitCalculation⊔ WarningInformation)

BusinessBackgroundInformation⊑CSO:Data⊓

∃DOLCE:part.CompanyIdentifier⊓ (A24)

∀DOLCE:part.(OwnershipInformation⊔

History⊔ Principles⊔Operations⊔ Location)

CompleteBusinessBackgroundInformation⊑CSO:Data⊓ (A25)

∃DOLCE:part.CompanyIdentifier⊓

∃DOLCE:part.Ownership⊓

∃DOLCE:part.History⊓

∃DOLCE:part.Principles⊓

∃DOLCE:part.Operations⊓

∃DOLCE:part.Location

OwnershipInformation⊑CSO:Data⊓ (A26)

∃DOLCE:part.CompanyIdentifier⊓

∃DOLCE:part.Ownership

The other types ofCreditInformationare defined analogously. Note that this model-
ing approach enables a DL-reasoner to automatically infer aCreditInformationhierarchy,
e.g. it is inferred that Ownership Information is a subclassof BusinessBackgroundInfor-
mationas well asCreditInformationor thatCompleteBusiness BackgroundInformationis
a subclass ofBusinessBackgroundInformation. Such a hierarchy can be utilized to pro-
vide interoperability in the contracting and contract monitoring process since it enables
improved matching of requested and provided information. Therefore, Rule (R3) defines
a matching rule that enables to compare twoCreditInformationconcepts using a built-in
subsumes, which implements a subsumption checking algorithm.

match(x, y) ←CreditInformation(x),CreditInformation(y), (R3)

subsumes(y, x)

A similar approach as presented here for the type of credit information provided by
a service can be realized for all attributes of a Web service contract. While some might
require complex descriptions of attribute values realizedby ontologies, others might be
valued by simple datatypes such as integers or strings. In this case, matching rules can
be defined using simple datatype operators such as ‘=’ or ‘<’ instead of thesubsumes-
predicate. Of course, depending on the domain ontology other notions of match besides
subsumption might be required, which are widely discussed in description logic literature
(Noia et al., 2003; Li and Horrocks, 2003; Grimm et al., 2004). A more thorough discus-
sion of using such customizable matching rules can be found in (Lamparter et al., 2007).



S. Lamparter, S. Luckner, S. Mutschler 19

7 REPRESENTING MONITORING INFORMATION

In the last section, we presented contract information as a collection of
CPO:PolicyDescriptionswhich are modeled by refiningDnS:SituationDescriptions. In
this section, we extend this approach in order to represent information about the exe-
cution of a contract. We call such informationmonitoring informationand represent
it by means of theDnS:Situation MonitoringInformation(Axiom (A27)). Monitoring-
Information is modeled as specialization ofCPO:Configurationand represents values
of CPO:Attributesused in the Web service execution. ACPO:Configurationidentifies
the value of anCPO:Attributebelonging to anDOLCE:Endurantor DOLCE:Perdurant.
Since we are dealing only with monitoring Web service invocations, we can specialize
our modeling approach. The Core Software Ontology (CSO) andthe Core Ontology
of Service (COS) (Oberle, 2005) introduce the fundamental concepts required for de-
scribing software systems. According to (Oberle, 2005), the main entities living in the
computational domain areCSO:ComputationalObjectsandCSO:ComputationalActivities.
CSO:ComputationalObjectscan be regarded as concrete realization ofCSO:Software
or CSO:Data.e The execution ofCSO:SoftwaretriggersCSO:ComputationalActivities
and theseCSO:ComputationalActivitiesmay involveCSO:Data. Rule (R4) and (R5)
capture this active and passive aspect by introducing the relations executesand in-
volvedIn, respectively. EachMonitoringInformationinstance has to contain at least one
CSO:ComputationalActivitythat is monitored (Axiom (A27)). As forCPO:Configurations
in general, eachCSO:ComputationalActivityandCSO:ComputationalObjectmay exhibit
certain properties that are captured byDOLCE:Qualities.

MonitoringInformation⊑CPO:Configuration⊓ (A27)

∃DnS:settingFor.CSO:ComputationalActivity⊓

∀DnS:settingFor.(CSO:ComputationalActivity⊔

CSO:ComputationalObject⊔

DOLCE:Quality⊔ DOLCE:Region)

executes(x, y)←CSO:Software(x),OIO:expresses(x, z), (R4)

OoP:Plan(z),DnS:defines(z, t),CSO:ComputationalTask

DnS:sequences(t, y)CSO:ComputationalActivity(y)

involvedIn(x, y)←CSO:Data(x),OIO:realizedBy(x, z), (R5)

DOLCE:participantIn(z, y),

CSO:ComputationalActivity(y)

Providing information via a Web service leads to aCSO:ComputationalActivitywhere
one party transfers aCSO:ComputationalObject, e.g. credit information, to another party.
In executing this activity various types of monitoring information about the activity it-
self as well as about participating objects can be measured or perceived, which are
represented asDOLCE:Qualitiesof the correspondingCSO:ComputationalActivityor
CSO:ComputationalObject.

Example 1. Figure 4 introduces a concrete example which represents information about
a specific Web service invocation as an instance ofMonitoringInformation. Consider the
execution of aCSO:ComputationalActivity‘Send’ carried out on February 27th, 2006

eNote thatCSO:Softwarecan be seen as a special form ofCSO:Data, viz., CSO:Software< CSO:Data.



20 Semi-Automated Management of Web Service Contracts

WebService/163:12:23:1

COS:ComputationalObject COS:ComputationalActivity

executes

CreditInformation/SAP

involvedIn

DOLCE:

participateIn

Dolce:Quality

DOLCE:

inherentIn
DOLCE:

inherentIn

Dolce:Region
DOLCE:

q-location

ResponseTime 25ms
DOLCE:

temporal-location

DOLCE:

inherentIn

MonitoringInformation

WebServiceInvocation

Send/022706/8:00

CSO:DataCSO:Software

OIO:

realizes

OIO:

realizes

Figure 4 RepresentingMonitoringInformation as DnS:Situation. Note that plotting UML
classes within aDnS:Situation-class illustrates aDnS:settingFor-relation between theDnS:Situation
and the contained classes.

at 8am. The activity was executed by a Web service with the IP-address 163:12:23:1
and involved the digital representation of credit information of the company SAP. Ac-
cording to the Core Ontology of Services (Oberle, 2005), aCOS:WebServiceis a spe-
cialization ofCSO:Softwareand thus we model ‘WebService/163:12:23:1’ as an instance
of the conceptCSO:Software, while‘Credit Information/SAP’ is modeled asCSO:Data.
Moreover, theDOLCE:Quality ResponseTimeof theSend-activity is measured and rep-
resented by theDOLCE:Region ‘25ms’. Of course, otherDOLCE:Qualitiesof the
CSO:ComputationalActivityas well as theCSO:ComputationalObjectbeyond ‘Respon-
seTime’ can be measured and represented in a similar way.

8 AUTOMATED COMPLIANCE MONITORING

A major advantage of machine-interpretable, formal contracts is the fact that monitor-
ing whether a Web service execution complies with the contract can be (at least partially)
automated. This is particularly important in a scenario where many (different) contracts are
closed and executed within a short time, which is usually thecase for large-scale service-
oriented architectures. Having introduced theContractDescriptionin Section 6 andMon-
itoringInformationcapturing information about contract execution in Section7, we intro-
duce in this section how the compliance ofMonitoringInformationwith respect to concrete
ContractDescriptioncan be verified.

Since terms within contracts are often context-dependent and require fuzzy interpre-
tations the evaluation process requires additional interpretations. For example, certain



S. Lamparter, S. Luckner, S. Mutschler 21

obligations have to be done “immediately” or “with utmost care”. Although such terms
are interpreted in various different ways, lawyers typically have guidelines how to interpret
such statements and expressions in a given context. Since these guidelines are not part
of the contract, we have to add them to the knowledge base in a formalized way, which
allows to include them in the contract evaluation process. For instance, if the term “imme-
diately” is used to specify a timeframe in which a response ofthe service is expected, one
could use the following rule of thumb: considering the current state of the art a response
is received “immediately” only if it is received within 5 seconds after sending the request.
Subsequently, we exemplify this approach using the a simpleProviderObligation.

Example 2. The credit information service provider X has to provide a complete set of
Business Background Informationof company SAP to customer Y. This has to be done
immediately after receiving the customer’s request. Therefore, we derive the following
formal definition of theProvider Obligation:

Obligation(ProviderObligationX)

Provider(X)

DnS:defines(ProviderObligationX, X)

InformationGood(BBIn f ormation/Z)

DnS:defines(ProviderObligationX, BBIn f ormation/S AP)

ServiceTask(Deliver)

DnS:defines(ProviderObligationX, Deliver)

ResponseTime(responseT imeX)

DnS:defines(ProviderObligationX, responseT imeX)

ResponseTimeValue(′immediately′ )

DnS:valuedBy(responseT imeX,′ immediately′ )

DnS:obligedTo(X,Trans f er)

DnS:anakasticDutyTowards(BBIn f ormation/Z,Trans f er)

DnS:requisiteFor(responseT imeX, Trans f er)

Assume the requester monitored the execution of the contract above and observed the
MonitoringInformationshown in Figure 4. Based on theMonitoringInformationthe re-
quester evaluates theProviderObligation. In legal practise typically a scheme of questions
is applied to determine the source of violation. The following questions exemplify this
approach using the obligation defined in Example 2:

1. Was the requested trading object delivered? To answer this question we have to find
out whether information is delivered by the provider at all and - in case it is - whether the
delivered information is complete with respect to the agreement in theContractDescrip-
tion. We realize this by comparing the deliveredCSO:ComputationalObjectcontained in
theMonitoringInformationwith theInformationGoodagreed on in the contract. Assuming
the hierarchy of credit information presented in Figure 1, the followingmatch-predicate
might be defined for credit information:

match(cr , co)←CreditInformation(cr ),CreditInformation(co), (R6)

subsumes(co, cr )



22 Semi-Automated Management of Web Service Contracts

We thus allow the provider to send more information than required, while making sure
that at least the information agreed on is provided. Based onthis match-predicate we
determine whether a delivered information is correct as follows:

correctInformation(m, c)←MonitoringInformation(m), (R7)

ProviderObligation(c)DnS:defines(c, t),

InformationGood(t),DnS:playedBy(t, d1),

CSO:Data(d1),DnS:settingFor(m, d2),

CSO:Data(d2),match(d1, d2)

Alternatively, the Rule R7 could also be expressed by means of a SPARQL-query. This
would be more appropriate, e.g., if the evaluation is only done once.

2. Was the correct service task executed? In a similar way we can also an-
swer this question by formulating thecorrectActivity-rule. This time the executed
CSO:ComputationalActivitystated in theMonitoringInformation is compared to the
CSO:ComputationalActivityagreed upon in theContractDescription. Again we use a
match-predicate that relies on thesubsumes-predicate. Thereby, we allow a general ac-
tivity description in the contract to be fulfilled by a more specific activity. For example, a
contract might specify that certain information has to be transferred. How this should be
done is not specified exactly. Therefore, sending by mail or telling on the phone might be
admissible since both are certain types for delivering information.

correctActivity(m, c)←MonitoringInformation(m), (R8)

ProviderObligation(c),DnS:defines(c, t),

ServiceTask(t),DnS:sequences(t, a1),

CSO:ComputationalActivity(a1),DnS:settingFor(m,a2),

CSO:ComputationalActivity(a2),match(a1, a2)

3. Was the task executed within the required timeframe? According to theProvider-
Obligation a ServiceTaskhas to be executed within a certain time, which is denoted by
ResponseTime. This is verified by the rule below, which compares the monitored execu-
tion time with theResponseTimein theContractDescription.

activityInTime(m, c) ←MonitoringInformation(m), (R9)

ProviderObligation(c),DnS:defines(c, t),

ServiceTask(t),ResponseTime(d),

DnS:requisiteFor(d, t), interpretedRT(d, r1),

DnS:settingFor(x, a),CSO:ComputationalActivity(a),

DOCLE:inherentIn(r2, a),

DOLCE:Region(r2),match(r1, r2)

However, sinceResponseTimeis expressed by aXSD:String rather than a
DOLCE:Temporal-Regionwe need a conversion rule. Note that this interpretation of the
term ”immediately” is not content of the contract but rathercommon sense knowledge



S. Lamparter, S. Luckner, S. Mutschler 23

modeled by a company’s lawyers. The interpretation may alsochange from time to time
(e.g. due to new court decisions) and thus Rule (R10) has to beadapted.

interpretedRT(d, v)←DnS:valuedBy(d, v),ResponseTime(d), (R10)

DnS:valuedBy(d, r1),ResponseTimeValue(r1),

swrlb:equals(r1,′ immediately′ ),

DOLCE:Temporal-Region(v), assigns(′< 5s′, v)

After the conversion both measures are expressed viaDOLCE:Temporal-Regionsand
thus can be compared by a correspondingmatch-predicate as done in Rule R9.

In order to answer the question whether aContractDescriptionis satisfied by aMoni-
toringInformationthe following query has to be executed:

SELECT ?C, ?M (R11)

WHERE{

?C rdf:type CCO:ContractDescription .

?M rdf:type CCO:MonitoringInformation .

?M correctInformation ?C .

?M correctActivity ?C .

?M activityInTime ?C .}

If the query returns a non-empty result set, the contract hasbeen fulfilled correctly.
Otherwise there is at least one obligation violated. However, the above query does not give
evidence about the reason of the violation. In order to determine the legal consequences of
a violation one might want to specify more fine-grained questions, which can be realized
by issuing separate queries.

Of course, similar questions about other elements of the obligations can be formulated
and expressed via rules or queries. Thereby, a company- and domain-specific evaluation
process can be assembled that includes interpretation rules where necessary.

9 CONCLUSION AND OUTLOOK

In this paper we presented an ontology framework for Web service contracts as well as
contract monitoring information and an algorithm to check whether a contract has been ex-
ecuted correctly. The framework relies on existing internet standards and thereby facilitates
interoperability in a Web environment. The approach does not aim towards full automa-
tion, but rather enables semi-automatic contract management. In our opinion full automa-
tion is at least for the moment not feasible across organizational boundaries. Therefore,
we suggest combining an umbrella contract covering static aspects with a formalized de-
scription of clauses that can be automatically negotiated,closed, monitored and executed.
Automation reduces the manual management effort and thus reduces costs for operating an
inter-organizational service oriented architecture. In addition, automation enables dynamic
re-configuration of the system at runtime, e.g. to deal with service failures.

We have implemented a prototype that enables dynamic contracting of Web services
during the runtime of a business process. The systems relieson a WS-BPEL engine that



24 Semi-Automated Management of Web Service Contracts

is used to execute a business process. In doing this, Web services are selected and con-
tracted at runtime. More details on the prototype can be found in Lamparter et al. (2007).
Up to now only monitoring information that are directly provided by the WS-BPEL en-
gine (e.g. response time of a Web service) can be used for monitoring the contract. To
realize more sophisticated contract monitoring, we plan tointegrate additional algorithms
and protocols for measuring and predicting service quality. First work in this direction is
presented in Casati et al. (2003), Ludwig et al. (2004), and Wang et al. (2005).

Acknowledgements

Research reported in this paper has been financed by the German Research Foundation
(DFG) within the scope of the Graduate School for Information Management and Market
Engineering (DFG grant no. GRK 895). In addition, we thank the reviewers and partic-
ipants of the HICSS’07 conference and the International Journal of Service Sciences for
their valuable comments and suggestions.

References

Angelov, S. and Grefen, P. (2003). The 4w framework for b2b e-contracting.Int. Journal
on Networking and Virtual Organisations, 1(3).

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P. F., editors
(2003). The Description Logic Handbook: Theory Implemenation and Applications.
Cambridge University Press.

Brockmans, S., Volz, R., Eberhart, A., and Löffler, P. (2004). Visual modeling of OWL
DL ontologies using UML. In McIlraith, S. A., Plexousakis, D., and van Harmelen,
F., editors,Proceedings of the Third International Semantic Web Conference (ISWC),
volume 3298 ofLecture Notes in Computer Science, pages 198–213, Hiroshima, Japan.
Springer.

Casati, F., Shan, E., Dayal, U., and Shan, M.-C. (2003). Business-oriented management of
web services.Commun. ACM, 46(10):55–60.

Cole, J. and Milosevic, Z. (2001). Extending support for contracts in ebXML. InITVE ’01:
Proceedings of the workshop on Information technology for virtual enterprises, pages
119–127. IEEE Computer Society.

Daskalopulu, A. and Sergot, M. (1997). The representation of legal contracts.AI and
Society, 11(1/2):6–17.

Dumitru, R., Keller, U., Lausen, H., de Bruijn, J., Lara, R.,Stollberg, M., Polleres, A.,
Feier, C., Bussler, C., and Fensel:, D. (2005). Web service modeling ontology.Applied
Ontology, 1(1):77 – 106.

Gangemi, A., Sagri, M.-T., and Tiscornia, D. (2004). A Constructive Framework for Legal
Ontologies. Deliverable d07, EU 6FP METOKIS Project, Deliverable. Available from
http://metokis.salzburgresearch.at.



S. Lamparter, S. Luckner, S. Mutschler 25

Global Grid Forum (2006). Grid Resource Allocation Agreement Protocol. Web Services
Specification. Available fromhttp://www.ogf.org/Public_Comment_Docs/
Documents/Oct-2006/WS-AgreementSpecificationDraftFinal\_sp\_tn\

_jpver\_v2.pdf.

Governatori, G. (2005). Representing business contracts in ruleml. International Journal
of Cooperative Information Systems, 14:181–216.

Governatori, G., Milosevic, Z., and Sadiq, S. (2006). Compliance checking between busi-
ness processes and business contracts. InProceedings of the 10th IEEE International
Enterprise Distributed Object Computing Conference (EDOC’06), pages 221–232, Los
Alamitos, CA, USA. IEEE Computer Society.

Griffel, F., Boger, M., Weinreich, H., Lamersdorf, W., and Merz, M. (1998). Electronic
contracting with COSMOS - how to establish, negotiate and execute electronic con-
tracts on the internet. In Kobryn, C., Atkinson, C., and Milosevic, Z., editors,2nd Int.
Enterprise Distributed Object Computing Workshop (EDOC ’98), page 10.

Grimm, S., Motik, B., and Preist, C. (2004). Variance in e-business service discovery. In
Semantic Web Services: Preparing to Meet the World of Business Applications, work-
shop at ISWC 2004.

Grosof, B. and Poon, T. (2003). Sweetdeal: Representing agent contracts with exceptions
using XML rules, ontologies, and process descriptions. InProceedings of the 12th World
Wide Web Conference, pages 340–349, Budapest, Hungary.

Gruber, T. R. (1993). A translation approach to portable ontologies.Knowledge Acquisi-
tion, 5(2):199–220.

Hage, J. (1996). A theory of legal reasoning and a logic to match. Artificial Intelligence
and Law, 4:199–273.

Hoffner, Y. and Field, S. (2005). Transforming agreements into contracts. International
Journal of Cooperative Information Systems, 14(2-3):217–244.

Hohfeld, W. (1913). Some fundamental legal conceptions as applied in judicial reasoning.
Yale Law Journal, 23.

Horrocks, I. and Patel-Schneider, P. F. (2004). A Proposal for an OWL Rules Language. In
WWW ’04: Proceedings of the 13th international conference on World Wide Web, pages
723–731, New York, NY, USA. ACM Press.

Horrocks, I., Patel-Schneider, P. F., and van Harmelen, F. (2003). From SHIQ and RDF to
OWL: The making of a web ontology language.Journal of Web Semantics, 1(1):7–26.

IBM Corporation (2003). Wsla language specification, version 1.0. http://www.
research.ibm.com/wsla.

Jin, H. and Wu, H. (2005). Semantic-enabled specification for web services agreement.
International Journal of Web Services Practices, 1(1–2):13–20.

Kangar, S. (1972). Law and logic.Theoria, 38:105–132.



26 Semi-Automated Management of Web Service Contracts

Kolovski, V., Parsia, B., Katz, Y., and Hendler, J. A. (2005). Representing Web Service
Policies in OWL-DL. In Gil, Y., Motta, E., Benjamins, V. R., and Musen, M. A., editors,
The Semantic Web - ISWC 2005, 4th International Semantic WebConference (ISWC
2005), volume 3729 ofLecture Notes in Computer Science, pages 461–475. Springer.

Lamparter, S., Ankolekar, A., Grimm, S., and Studer, R. (2007). Preference-based se-
lection of highly configurable web services. InProc. of the 16th Int. World Wide Web
Conference (WWW’07), pages 1013–1022, Banff, Canada.

Lamparter, S., Ankolekar, A., Oberle, D., Studer, R., and Weinhardt, C. (2006). A policy
framework for trading configurable goods and services in open electronic markets. In
Proceedings of the 8th Int. Conference on Electronic Commerce (ICEC’06), pages 162–
173, New Brunswick, Frederiction, Canada.

Li, L. and Horrocks, I. (2003). A software framework for matchmaking based on semantic
web technology. InWWW ’03: Proceedings of the twelfth international conference on
World Wide Web, pages 331–339, Budapest, Hungary. ACM Press.

Lindahl, L. (1977). Position and changea study in law and logic. Synthese Library, 112.

Ludwig, H., Dan, A., and Kearney, R. (2004). Cermona: an architecture and library for
creation and monitoring of ws-agreents. InICSOC ’04: Proceedings of the 2nd inter-
national conference on Service oriented computing, pages 65–74, New York, NY, USA.
ACM Press.

Ludwig, H., Keller, A., Dan, A., King, R., and Franck, R. (2003). A service level agreement
language for dynamic electronic services.Electronic Commerce Research, 3(1-2):43–
59.

Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari,A., and Schneider, L. (2002).
The WonderWeb library of foundational ontologies. WonderWeb Deliverable D17.
Available fromhttp://wonderweb.semanticweb.org.

Milosevic, Z. (1995).Enterprise Aspects of Open Distributed Systems. PhD thesis, Com-
puter Science Dept. The University of Queensland.

Milosevic, Z. and Governatori, G. (2005). Special issue on contract architectures and lan-
guages – guest editors’ introduction.International Journal of Cooperative Information
Systems, 14(2-3):73–76.

Moses, T., Anderson, A., Proctor, S., and Godik, S. (2003). XACML profile for web ser-
vices. available fromhttp://www.oasis-open.org/committees/download.php/
3661/draft-xacml-wspl-04.pdf. Oasis Working Draft.

Motik, B., Sattler, U., and Studer, R. (2005). Query answering for OWL-DL with rules.
Journal of Web Semantics: Science, Services and Agents on the World Wide Web,
3(1):41–60.

Noia, T. D., Sciascio, E. D., Donini, F. M., and Mongiello, M.(2003). A system for prin-
cipled matchmaking in an electronic marketplace. InWWW ’03: Proceedings of the
twelfth international conference on World Wide Web, pages 321–330, Budapest, Hun-
gary. ACM Press.



S. Lamparter, S. Luckner, S. Mutschler 27

OASIS ebXML Joint Committee (2004). Organization for the Advancement of Structured
Information Standards, Enabling a global electronic market: ebXML. http://www.
ebxml.org.

Oberle, D. (2005).Semantic Management of Middleware. PhD thesis, University of Karl-
sruhe(TH).

Oberle, D., Lamparter, S., Grimm, S., Vrandecic, D., Staab,S., and Gangemi, A. (2006).
Towards ontologies for formalizing modularization and communication in large soft-
ware systems.Journal of Applied Ontology, 2(2):163–202.

Oldham, N., Verma, K., Sheth, A., and Hakimpour, F. (2006). Semantic WS-Agreement
partner selection. InWWW ’06: Proceedings of the 15th international conference on
World Wide Web, pages 697–706, Edinburgh, Scotland. ACM Press.

Paschke, A. (2006). Verification, validation and integrityof distributed and interchanged
rule based policies and contracts in the semantic web. InInternational Semantic Web
and Policy Workshop (SWPW’06) at ISWC’06, Athens, Georgia, USA.

Paschke, A., Bichler, M., and Dietrich, J. (2005). Contractlog: An approach to rule based
monitoring and execution of service level agreements. InInternational Conference on
Rules and Rule Markup Languages for the Semantic Web (RuleML2005), Galway, Ire-
land.

Patil, A., Oundhakar, S., Sheth, A., and Verma, K. (2004). METEOR-S Web Service Anno-
tation Framework. InThe 13th International World Wide Web Conference Proceedings,
pages 553–563. ACM.

Reinecke, J., Dessler, G., and Schoell, W. (1989).Introduction to Business - A Contempo-
rary View. Allyn and Bacon, Boston.

Sergot, M. (2001). A computational theory of normative positions. ACM Trans. Comput.
Logic, 2(4):581–622.

Skylogiannis, T., Antoniou, G., Bassiliades, N., and Governatori, G. (2005). DR-
NEGOTIATE - a system for automated agent negotiation with defeasible logic-based
strategies. InEEE ’05: Proceedings of the 2005 IEEE International Conference on e-
Technology, e-Commerce and e-Service (EEE’05), pages 44–49, Washington, DC, USA.
IEEE Computer Society.

Sycara, K., Paolucci, M., Ankolekar, A., and Srinivasan, N.(2003). Automated discovery,
interaction and composition of semantic web services.Journal of Web Semantics, 1(1).

Tan, Y.-H. and Thoen, W. (1998). A logical model of directed obligations and permissions
to support electronic contracting.Int. J. Electronic Commerce, 3(2):87–104.

Uszok, A., Bradshaw, J. M., Johnson, M., Jeffers, R., Tate, A., Dalton, J., and Aitken, S.
(2004). Kaos policy management for semantic web services.IEEE Intelligent Systems,
19(4):32–41.

W3C (2004). Web ontology language (OWL).http://www.w3.org/2004/OWL/.

W3C (2006). Web Services Policy Framework (WS-Policy).http://www.w3.org/
Submission/WS-Policy/.



28 Semi-Automated Management of Web Service Contracts

Wang, G., Wang, C., Chen, A., Wang, H., Fung, C., Uczekaj, S.,Chen, Y.-L., Guthmiller,
W. G., and Lee, J. (2005). Service level management using qosmonitoring, diagnostics,
and adaptation for networked enterprise systems. InProceedings of the Ninth IEEE
International EDOC Enterprise Computing Conference (EDOC’05), volume 0, pages
239–250, Los Alamitos, CA, USA. IEEE Computer Society.


