
A case study in supporting DIstributed, Loosely-controlled and
evolvInG Engineering of oNTologies (DILIGENT)

Christoph Tempich2 & Sofia Pinto1 & Steffen Staab2 & York Sure2

1Dep. de Engenharia Informática, Instituto Superior Técnico, Lisboa, Portugal
sofia.pinto@dei.ist.utl.pt

2Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany
{sure,staab,tempich}@aifb.uni-karlsruhe.de

Abstract: Knowledge management solutions relying on central repositories sometimes have not
met expectations, since users often create knowledge ad-hoc using their individual vocabulary and
using their own decentral IT infrastructure (e.g., their laptop). To improve knowledge manage-
ment for such decentralized and individualized knowledge work, it is necessary to, first, provide a
corresponding IT infrastructure and to, second, deal with the harmonization of different vocabu-
laries/ontologies. In this paper, we briefly sketch the technical peer-to-peer platform that we have
built, but then we focus on the harmonization of the participating ontologies.

Thereby, the objective of this harmonization is to avoid the worst incongruencies by having users
share a core ontology that they can expand for local use at their will and individual needs. The
task that then needs to be solved is one of distributed, loosely-controlled and evolving engineering
of ontologies. In this paper we present a corresponding process template and a case study.
Key Words: Distributed Knowledge Management, Methodology, Case Study
Category: H 4.1 I 2.4 J C 2.4 I 2.6

1 Introduction

The knowledge structures underlying today’s knowledge management systems consti-
tute a kind of ontology that may be built according to established methodologies e.g.
the one by [9]. These methodologies have a centralized approach towards engineering
knowledge structures requiring knowledge engineers, domain experts and others to per-
form various tasks such as requirement analysis and interviews. While the user group
of such an ontology may be huge, the development itself is performed by a — com-
paratively — small group of domain experts who represent the user community and
ontology engineers who help structuring.

In Virtual Organizations [2], organizational structures change very often, since or-
ganizations frequently leave or join a network. Therefore, working based on traditional,
centralized knowledge management systems becomes infeasible. While there are some
technical solutions toward Peer-to-Peer knowledge management systems (e.g., [1]) —
and we have developed a technically sophisticated solution of our own [4] — traditional
methodologies for creating and maintaining knowledge structures appear to become un-
usable like the systems they had been developed for in the first place.

Therefore, we postulate that ontology engineering must take place in a Distributed,
evolvInG and Loosely-controlled setting. With DILIGENT we here provide a process



template suitable for distributed engineering of knowledge structures and intend to ex-
tend it towards a fully worked out and multiply tested methodology in the long run. We
here show a case study we performed using DILIGENT in a virtual organization.

The case study (cf. Section 4) suggests that the resulting ontology is indeed shared
among users, that it adapts fast to new needs and is quickly engineered. With some
loose control we could ensure that the core ontology remained consistent, though we
do not claim that it gives a complete view on all the different organizations.

In the following, we briefly introduce the organizational and technical setting of our
case study (Section 2). Then we sketch the DILIGENT process template (Section 3),
before we describe the case study.

2 Problem setting

2.1 Organizational setting at IBIT case study

In the SWAP project, one of the case studies is in the tourism domain of the Balearic Is-
lands. The needs of the tourism industry there, which accounts for 80% of the islands’
economy, are best described by the term ‘coopetition’. On the one hand the different
organizations compete for customers against each other. On the other hand, they must
cooperate in order to provide high quality for regional issues like infrastructure, facil-
ities, clean environment, or safety — that are critical for them to be able to compete
against other tourism destinations.

To collaborate on regional issues a number of organizations now collect and share
information about indicators reflecting the impact of growing population and tourist
fluxes in the islands, their environment and their infrastructures. Moreover, these in-
dicators can be used to make predictions and help planning. For instance, organiza-
tions that require Quality & Hospitality management use the information to better plan,
e.g., their marketing campaigns. As another example, the governmental agency IBIT1,
the Balearic Government’s co-ordination center of telematics, provides the local indus-
try with information about new technologies that can help the tourism industry to better
perform their tasks.

Due to the different working areas and objectives of the collaborating organizations,
it proved impossible to set up a centralized knowledge management system or even a
centralized ontology. They asked explicitly for a system without a central server, where
knowledge sharing is integrated into the normal work, but where very different kinds of
information could be shared with others.

To this end the SWAP consortium — including us at Univ. of Karlsruhe, IBIT, Free
Univ. Amsterdam, Meta4, and empolis — have been developing the SWAP generic
platform and we have built a concrete application on top that allows for satisfying the
information sharing needs just elaborated.

1 http://www.ibit.org



2.2 Technical setting: The SWAPSTER Platform for Peer-to-Peer KM

The SWAP environment (Semantic Web And Peer-to-peer; short SWAPSTER) [4] is
a generic platform which was designed to enable knowledge sharing in a distributed
network. Nodes wrap knowledge from their local sources (files, e-mails, etc.) and they
ask for and retrieve knowledge from their peers. For communicating knowledge SWAP-
STER transmits RDF structures , which are used to convey conceptual structures (e.g.,
the definition of what a conference is) as well as corresponding data (e.g., data about
I-Know-2004). For structured queries as well as for keyword queries, SWAPSTER uses
SeRQL, an SQL-like query language that allows for queries combining the conceptual
and the data level and for returning newly constructed RDF-structures.

3 DILIGENT process overview

As we have described before, decentralized cases of knowledge sharing, like our ex-
ample of a virtual organization, require an ontology engineering process that reflects
this particular organizational setting [8].2 Therefore, we have drafted the template of
such a process — we cannot claim that it is a full-fledged methodology yet. The result,
which we call DILIGENT, is described in the following. In particular, we elaborate on
the high-level process, the dominating roles and the functions of DILIGENT, before
we give the concrete case in Section 4 as an indicator for the validity of our ontology
engineering process design.

Key roles: In DILIGENT there are several experts, with different and complementary
skills, involved in collaboratively building the same ontology. In a virtual organization
they often belong to competing organizations and are geographically dispersed. Ontol-
ogy builders may or may not use the ontology. Vice versa, most ontology users will
typically not build or modify the given ontology.

Overall process: An initial ontology is made available and users are free to use it and
modify it locally for their own purposes. There is a central board that maintains and
assures the quality of the shared core ontology. This central board is also responsible
for deciding to do updates to the core ontology. However, updates are mostly based on
changes re-occurring at and requests by decentrally working users. Therefore the board
only loosely controls the process. Due to the changes introduced by the users over time
and the on-going integration of changes by the board, the ontology evolves. Let us
now survey the DILIGENT process at the next finer level of granularity. DILIGENT
comprises five main steps: (1) build, (2) local adaptation, (3) analysis, (4) revision,
(5) local update (cf. Figure 1).

Build. The process starts by having domain experts, users, knowledge engineers and
ontology engineers build an initial ontology. In contrast to existing ontology engineer-
ing methodologies (cf. [5, 10]), we do not require completeness of the initial shared

2 In fact, we conjecture that the majority of knowledge sharing cases falls into this category.



K-ProviderK-Provider

K-EngineerK-Engineer

O-EngineerO-Engineer

O-User 1O-User 1

O-User nO-User n

Control Board
Editors

Control Board
Editors

O IO I

O 1

O n

1

5

3 4

2

,

Figure 1: Roles and functions in distributed ontology engineering

ontology with respect to the domain. The team involved in building the initial ontol-
ogy should be relatively small, in order to more easily find a small and consensual first
version of the shared ontology.

Local adaptation. Once the core ontology is available, users work with it and, in par-
ticular, adapt it to their local needs. Typically, they will have their own business re-
quirements and correspondingly evolve their local ontologies (including the common
core). In their local environment, they are also free to change the reused core ontology.
However, they are not allowed to directly change the core ontology from which other
users copy to their local repository. Logging local adaptations (either permanently or at
control points), the control board collects change requests to the shared ontology.

Analysis. The board analyzes the local ontologies and the requests and tries to identify
similarities in users’ ontologies. Since not all of the changes introduced or requested by
the users will be introduced to the shared core ontology,3 a crucial activity of the board
is deciding which changes are going to be introduced in the next version of the shared
ontology. The input from users provides the necessary arguments to underline change
requests. A balanced decision that takes into account the different needs of the users
and meets user’s evolving requirements4 has to be found.

Revise. The board should regularly revise the shared ontology, so that local ontologies
do not diverge too far from the shared ontology. Therefore, the board should have a well-
balanced and representative participation of the different kinds of participants involved
in the process: knowledge providers, domain experts, ontology engineers and users. In
this case, users are involved in ontology development, at least through their requests
and re-occurring improvements and by evaluating it, mostly from an usability point of
view. Knowledge providers in the board are responsible for evaluating the ontology,
mostly from a technical and domain point of view. Ontology engineers are one of the
major players in the analysis of arguments and in balancing them from a technical
point of view. Another possible task for the controlling board, that may not always be

3 The idea in this kind of development is not to merge all user ontologies.
4 This is actually one of the trends in modern software engineering methodologies (see Rational

Unified Process).



a requirement, is to assure some compatibility with previous versions. Revision can be
regarded as a kind of ontology development guided by a carefully balanced subset of
evolving user driven requirements. Ontology engineers are responsible for updating the
ontology, based on the decisions of the board. Revision of the shared ontology entails
its evolution.

Local update. Once a new version of the shared ontology is released, users can update
their own local ontologies to better use the knowledge represented in the new version.
Even if the differences are small, users may rather reuse e.g. the new concepts instead
of using their previously locally defined concepts that correspond to the new concepts
represented in the new version.

4 Case study

We are now going to describe how DILIGENT ontology engineering is taking place in
the IBIT case study.

This case study took place in one organization with seven peers and it lasted for two
weeks. The case study will be extended in the future to four organizations corresponding
to 21 peers and it is expected that the total number of organizations will grow to 7
corresponding to 28 peers.

Building. In the IBIT case study two knowledge engineers were involved in building
the first version of the shared ontology with the help of two ontology engineers. In this
case, the knowledge engineers were also knowledge providers. Moreover, they received
additional training such that, they are able to act as ontology engineers on the board.
This they did already during this case study — together with two experts from the
domain area.

The ontology engineering process started by identifying the main concepts to be
represented in the ontology through the analysis of competency questions and their an-
swers. The most frequent queries and answers exchanged by the participants were ana-
lyzed. The identified concepts were divided into three main modules: “Sustainable
Development Indicators”, “New Technologies” and “Quality&Hospitality Man-
agement”. From the competency questions we quickly created a first ontology with
22 concepts and 7 relations for the “Sustainable Development Indicator” module,
which was the domain of the then participating organization. This ontology was de-
fined during one workshop lasting for three hours. The other modules will be further
elaborated in future efforts.

Based on previous experience of IBIT with the participants we could expect that
users would mainly specialize the modules of the shared ontology corresponding to
their domain of expertise and work. Thus, it was decided by the ontology engineers and
knowledge providers involved in building the initial version that the shared ontology
should only evolve by addition of new concepts, and not from other more sophisticated
operations, such as restructuring or deletion of concepts.



Local Adaptation. The developed core ontology for “Sustainable Development In-
dicator” was distributed among the users and they were asked to extend it with their
local structures. With assistance of the developers they extracted on average 14 folders.
The users mainly created sub concepts of concepts in the core ontology from the folder
names. In other cases they created their own concept hierarchy from their folder struc-
ture and aligned it with the core ontology. They did not create new relations. Instance
assignment took place, but was not significant.

Analyzing. The members of the board gathered the evolving structures and analyzed
them. The following observations were made:

Concepts matched A third of the extracted folder names was directly aligned with the
core ontology. A further tenth of them was used to extend existing concepts.

Folder names indicate relations In the core ontology a relation inYear between the
concepts Indicator and Temporal was defined. This kind of relation is often en-
coded in one folder name. e.g. the folder name “SustInd2002” matches the con-
cepts Sustainable Indicator and Year5. It also points to a modelling problem,
since Sustainable Indicator is a concept while “2002” is an instance of concept
Year.

Missing top level concepts The concept project was introduced by more than half of
the participants, but was not part of the initial shared ontology.

Refinement of concepts The top level concept Indicator was extended by more than
half of the participants, while other concepts were not extended.

Concepts were not used Some of the originally defined concepts were never used.
Concepts are identified as used, when users created instances, aligned documents
with them, or created sub concepts.

Folder names represent instances The users who defined the concept project used
some of their folder names to create instances of that concept e.g. “Sustainable
indicators project”.

Different labels The originally introduced concept Natural spaces was often aligned
with a newly created concept Natural environments and never used itself.

Ontology did not fit One user did create his own hierarchy and could use only one of
the predefined concepts. Indeed his working area was forgotten in the first ontology
building workshop.

The DILIGENT methodology is supported by an Ontoedit plug-in[11], which is
an implementation of the Edit component in the SWAP system. The plug-in supports
the board mainly in recognizing changes and extensions by different users to the core
ontology. It also supports the user in performing these changes.

From the discussions with the domain experts we have the impression that the local
extensions are a good indicator for the evolution direction of the core ontology. How-
ever, since the users made use of the possibility to extend the core ontology with their

5 Year is sub class of class Temporal



folder names, as we expected, the resulting local ontologies represent the subjects of
the organized documents. Therefore, a knowledge engineer is still needed to extend the
core ontology, but the basis of his work is being improved and eased significantly. From
our point of view there is only a limited potential to automate this process.

Revision. The board extended the core ontology where it was necessary and performed
some renaming. More specifically the board introduced (1) one top level concept (Pro-
ject) and (2) four sub concepts of the top level concept Indicator and one for the concept
Document. The users were further pointed to the possibility to create instances of the
introduced concepts.

Local update. The extensions to the core ontology were distributed to the users. The
feedback of the users was in general positive. However, due to the early development
stage of SWAPSTER a prolonged evaluation of the user behavior and second cycle in
the ontology engineering process has not yet been performed.

5 Lessons learned

The case study helped us to better comprehend the use of ontologies in a peer-to-peer
environment. First of all our users did understand the ontology mainly as a classifica-
tion hierarchy for their documents. Hence, they did not create instances of the defined
concepts. However, our expectation that folder structures can serve as a good input for
an ontology engineer to build an ontology was met.

Currently we doubt that our manual approach to analyze local structures will scale
to cases with many more users. Therefore, we are looking into technical support to
recognize similarities in user behavior. Furthermore, local update will be a problem
when changes happen more often. Last, but not least, we have so far only addressed the
ontology creation task itself – we have not yet measured if users get better and faster
answers with the help of DILIGENT-engineered ontologies. All this remains work to
be done in future.

In spite of the technical challenges, user feedback was very positive since (i) the
upfront ontology engineering effort was low, thus the system could be used quickly (ii)
they are integrated into the ontology development.

6 Discussion

It is now widely agreed that ontologies are a core enabler for sophisticate knowl-
edge management systems [3]. The development of ontologies in centralized settings
is well studied and established methodologies exist (cf. [5]). However, current experi-
ences from projects suggest, that ontology engineering should be subject to continuous
improvement rather than a one time action and that ontologies promise the most ben-
efits in decentralized rather than centralized systems. Hence, a methodology for dis-
tributed, loosely-controlled and dynamic ontology engineering settings is needed. In
[6] a methodology for collaborative ontology engineering is proposed. The aim of their



work is to support the creation of a static ontology in a collaborative ontology engi-
neering setting. With DILIGENT we define a process which takes into account that
requirements on a knowledge management system change over time. Furthermore, we
allow a quick introduction phase with later refinement. Obviously, such a process needs
tool support from ontology engineering environments. There exist already some which
allow for remote and collaborative ontology engineering (cf. [7]). However, none exists
which could support the complete cycle. We have an implementation, which is a first
step towards such a tool.

DILIGENT will eventually result in a methodology with tool support which sup-
ports ontology engineers to build ontologies in a decentralized environment yet system-
atically.

Acknowledgements.
Research reported in this paper has been partially financed by EU in the IST project SWAP

(IST-2001-34103), the IST thematic network OntoWeb (IST-2000-29243), the IST project SEKT
(IST-2003-506826) and Fundação Calouste Gulbenkian (21-63057-B). In particular we want to
thank Immaculada Salamanca and Esteve Lladó Martı́ from IBIT for the fruitful discussions and
the other people in the SWAP team for their collaboration towards SWAPSTER.

References

1. M. Bonifacio et al. Peer-mediated distributed knowldege management. In L. van Elst et al.,
editors, Proceedings of the AAAI Spring Symposium “Agent-Mediated Knowledge Manage-
ment (AMKM-2003)”, Stanford, CA, USA, 2003.

2. Luis M. Camarinha-Matos and Hamideh Afsarmanesh, editors. Processes and Foundations
for Virtual Organizations, volume 262 of IFIP INTERNATIONAL FEDERATION FOR IN-
FORMATION PROCESSIN. Kluwer Academic Publishers, 2003.

3. D. OLeary. Using AI in knowledge management: Knowledge bases and ontologies. IEEE
Intelligent Systems, 13(3):34–39, May/June 1998.

4. M. Ehrig et al. The swap data and metadata model for semantics-based peer-to-peer sys-
tems. In Proceedings of MATES-2003. First German Conference on Multiagent Technolo-
gies, LNAI, Erfurt, Germany, September 22-25 2003. Springer.

5. A. Gómez-Pérez et al. Ontological Engineering. Advanced Information and Knowlege Pro-
cessing. Springer, 2003.

6. Clyde W. Holsapple and K. D. Joshi. A collaborative approach to ontology design. Com-
mun. ACM, 45(2):42–47, 2002.

7. Riichiro Mizoguchi. Ontology engineering environments. In Steffen Staab and Rudi Studer,
editors, Handbook on Ontologies, chapter 14, pages 275–298. Springer, 2004.

8. H. Sofia Pinto and J.P. Martins. Evolving Ontologies in Distributed and Dynamic Settings.
In D. Fensel et al., editors, Proc. of the 8th Int. Conf. on Principles of Knowledge Represen-
tation and Reasoning (KR2002), pages 365–374, San Francisco, 2002. Morgan Kaufmann.

9. G. Schreiber et al. Knowledge Engineering and Management — The CommonKADS
Methodology. The MIT Press, Cambridge, Massachusetts; London, England, 1999.

10. S. Staab, H.-P. Schnurr, R. Studer, and Y. Sure. Knowledge processes and ontologies. IEEE
Intelligent Systems, 16(1), January/Febrary 2001. Special Issue on Knowledge Management.

11. Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. OntoEdit: Collabora-
tive ontology development for the semantic web. In I. Horrocks and J.A. Hendler, editors,
Proc. of the 1st Int. Semantic Web Conf. (ISWC 2002), volume 2342 of LNCS, pages 221–
235, Sardinia, IT, 2002. Springer.


