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Abstract. After decades of concurrent development of symbolic and
connectionist methods, recent years have shown intensifying efforts of
integrating those two paradigms. This paper contributes to the develop-
ment of methods for transferring present symbolic knowledge into con-
nectionist representations. Motivated by basic ideas from formal concept
analysis, we propose two ways of directly encoding closure operators on
finite sets in a 3-layered feed forward neural network.

1 Introduction

On the scientific quest for enabling machines to fulfill more and more sophisti-
cated cognitive tasks, two basic antagonistic paradigms evolved.

On one side, one tries to capture (in a top-down manner, essentially by intro-
spection and psychological experiments) the basic entities of human thought and
their interplay in terms of symbols®, symbol manipulation systems and formal
logic. Also approaches involving conceptual graphs mainly fall into that class.

On the other side, advances in biology and medicine have provided bottom-up
insights into the human way of information processing via networks of neurons.
So, a contrary approach — started by [2] — tries to employ these findings by simu-
lating neural structures (although this is mostly done in an extremely simplified
way).

The interest in the integration of symbolic methods based on computational
logic with artificial neural networks (also known as connectionist systems) has
grown significantly in the last years. As a motivating goal of those efforts ap-
pears to combine the advantages of both approaches: While symbolic systems
are superior in dealing (i.e., representing and reasoning) with structured data,
connectionist systems show impressive capabilities when it comes to learning on
larger datasets and generalizing the results to new input. See [3] for an overview
of this prospering research area.

* This is an extended version of a paper presented at NeSy07 — the Third Workshop
on Neural-Symbolic-Integration at IJCAI 2007. Sebastian Rudolph is supported by
the Deutsche Forschungsgemeinschaft (DFG) under the ReaSem project and by the
European Union under the NeOn project (IST-2005-027595).

1 As opposed to the rich semiotic meaning of the term symbol, we use this word in a
more syntactic sense following [1].
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Fig. 1. The neural-symbolic learning cycle.

The neural-symbolic learning cycle depicted in Fig. 1 (see also [1]) proposes a
general framework for organizing a neural-symbolic integration. In our paper, we
focus on the representation subtask, i.e. encoding explicitly prespecified back-
ground knowledge. In particular, we investigate ways of canonically encoding
closure operators into neural networks. Closure operators on attribute or feature
sets arise naturally in various domains; whenever the validity of some features
enforces the validity of others (as in human associative thinking and logic en-
tailment to name just two extremes of a wide spectrum), this can be described
by closure operators. So assume a neural network for some purpose has to be
designed, where some rule-like partial information about the network’s desired
behavior is already known and can be stated in form of implications on the
feature set. We now look for a neural network obeying those prescribed rules
(which can then be trained on an example set to acquire further behavior). Pre-
vious approaches [4, 5] tackle this problem by assigning a node of the network
to each implication. We propose a contrary approach, where — roughly speaking
— network nodes don’t take the role of enforcing wanted features but preventing
unwanted ones. This approach is motivated by the mathematical area of formal
concept analysis.

In Section 2.1 we will introduce the basic notions closure operator and im-
plication and show their correspondence. Section 2.2 will sketch the elementary
ideas of formal concept analysis, based on which we will unfold our represen-
tation approach. Very briefly, Section 2.3 will recall the notion of a 3-layered
feedforward network. Section 3 then combines the approaches and provides two



ways of encoding a formal context’s closure operator into a neural network of
the specified kind. In Section 4, we show how the approach can be applied to
propositional logic programs, where it can be used to compute models. Finally,
in Section 5, we conclude and give topics for ongoing research.

2 Preliminaries

2.1 Closure Operators and Implications

In this section, we will introduce two notions — closure operator and implications
— and show their tight correspondence.

The following considerations are based on an arbitrary set M. Intuitively,
it may be conceived as a set of features or attributes or atomic propositions,
depending on the modelled problem. Many of the definitions and theoretical
results presented in this and the next section apply to arbitrary sets, however,
when it comes to questions of practical realization and computability, finiteness
of M has to be presumed.

We will first define the fundamental notion of a closure operator. Roughly
speaking, applying such an operator to a set can be understood as a minimal
extension of that set in order to fulfill certain properties.

Definition 1. Let M be an arbitrary set. A function ¢ : P(M) — P(M) (where
P(M) denotes the powerset of M) will be called

— EXTENSIVE, if A C ¢(A) for all AC M,
— MONOTONE, if A C B implies p(A) C p(B) for all A,B C M, and
— IDEMPOTENT, if p(p(A)) = p(A) for all AC M.

If p is extensive, monotone, and idempotent, we will call it a CLOSURE OPERA-
TOR. In this case, we will additionally call

— @(A) the CLOSURE of A,
— A CLOSED, if A= p(A).

The family of all closed sets is also called CLOSURE SYSTEM. Furthermore,
any closure system constitutes a lattice with set inclusion as the respective order
relation.

Mark that the notion of a closure operator is ubiquitous in both human
associative thinking and classical (at least monotonic) logics.?

In the sequel, we show in which way closure operators are closely related to
implications.

Definition 2. Let M be an arbitrary set. An IMPLICATION on M is a pair (A, B)
with A, B C M. To support intuition, we write A— B instead of (A, B).3

2 For example, in classical first order logic, taking the set of all consequences
cons(P) :={¢ | P = ¢} of a formula set @ is a closure operator.

3 To facilitate reading we will occasionally omit the parentheses, i.e., we will write
a,b—c instead of {a,b}—{c}.



For C C M and a set J of implications on M, let C” denote the smallest set
with C C C? that additionally fulfills

ACC? implies BCC?
for every implication A— B in 3.4 If C = C?, we call C' J-CLOSED.

It is well known that for a given set A C M and implication set J, A” can be
computed in linear time with respect to |J| (see [6] or [7]). As can be easily seen,
for any set J of implications on any set M, (.)? is a closure operator. Moreover,
for any closure operator ¢ : P(M) — P(M), there exists (at least) a set J of
implications on M such that (.)? = ¢.}

An elementary observation from logic becomes particularly obvious in this
setting: a contradiction implies everything. Thus, if, say, two elements a,b € M
are contradictory, this can be expressed by the implication {a,b} — M. In the
sequel, we will use the shorthand a,b— 1 for these special cases.

2.2 Formal Concept Analysis

The mathematical theory of formal concept analysis mainly deals with concep-
tual hierarchies which are generated from basic data structures encoding object-
attribute relationships. Thereby, it provides a rather applied access to lattice
theory For a comprehensive introduction into formal concept analysis, see [§].

In this section, we sketch the basic definitions and some results from formal
concept analysis, as far as they are needed for this work. We start by defining
the central underlying data structure.

Definition 3. A (FORMAL) CONTEXT K is a triple (G, M, I) with

— an arbitrary set G called OBJECTS,
— an arbitrary set M called ATTRIBUTES,
— a relation I C G x M called INCIDENCE RELATION

We read gIm as: “object g has attribute m”.

Intuitively, a formal context is represented by a so-called cross table, where
each row is associated to an object, each column to an attribute, and crosses
indicate which object has which attributes.

Definition 4. Let K = (G, M,I) be a formal context. We define a function
() P(G) — P(M) with

Al = {m | gIm for all g€ A}
4 Note, that this is well-defined, since the mentioned properties are closed wrt. inter-

section.
® A naive way to achieve this: given o, let 3= {A—p(A)| A C M}.



for A C G. Furthermore, we use the same notation to define the function (.)! :
P(M) — P(G) where

B! :={g | gIm for all m € B}

for BC M.

For convenience, we sometimes write g' instead of {g}! and m! instead of

{m}!.

Applied to an object set, this function yields all attributes common to these
objects; by applying it to an attribute set we get the set of all objects having
those attributes. The following facts are consequences of the above definitions:

Proposition 1.

— () is a closure operator on G as well as on M.
— For AC G, Al is a (.)!-closed set and dually
— for BC M, B is a () -closed set.

The next definition shows how a conceptual hierarchy can be built from a
formal context.

Definition 5. Given a formal context K = (G, M,I), a FORMAL CONCEPT i$ a
pair (A, B) with ACG, BC M, A= B!, and B= A’

We call the set A EXTENT and the set B INTENT of the concept (A, B).
Let (A1, By) and (Aa, Bs) be formal concepts of a formal context. We call (Ay, By)
a SUBCONCEPT of (As, Ba) (written: (A1, B1) < (Aa, B2)) if Ay C As. Then,
(As, Ba) will be called SUPERCONCEPT of (A1, By).

Proposition 2. The concept intents of a formal concept are exactly those at-
tribute sets closed with respect to (.)'1.

It is well known from FCA that the set of all formal concepts of a formal con-
text together with the subconcept-superconcept-order form a complete lattice,
the so called concept lattice.

2.3 On Neural Networks

In this section, we recall the notion of a particular neural network giving a formal
definition that we will build upon in the subsequent sections.

Definition 6. A 3-LAYERED FEEDFORWARD NETWORK is defined as a tuple
N = (Z,H,0,t,w) where

— I, H,0O are finite disjoint sets called INPUT NODES, HIDDEN NODES, and
OUTPUT NODES,

—t:(ZUHUO) — R is the THRESHOLD FUNCTION, and

—w:(ZxH)U(H x O) — R is the WEIGHT FUNCTION.



Clearly, neural networks are intended as computational models, i.e. they are
designed to calculate something. Hence given a neural network we can define a
function capturing its computational behaviour.

Definition 7. Given a 3-layered feedforward network N as specified in Defini-
tion 6, the ASSOCIATED NETWORK FUNCTION fx : P(Z) — P(O) is defined in
the following way: For a given argument set S, we define the set As CZTUHUQO
of ACTIVATED NEURONS as follows (using the shortcut xa(a) = |{a} N A|):

— for every i € T, we set i € Ag exactly if xs(i) — t(i) > 0,
— for every h € H, we set h € As exactly if ) ;.7 xa(i)win —t(h) >0, and
— for every o € O, we set h € As exactly if 3, 3 xa(i)who — t(0) > 0.

Finally, we set fn(S)=AsNO.

This definition exactly mirrors the usual way of calculating with neural net-
works, presuming the Heaviside step function as activation function.

In the sequel, we aim at the special case of simulating a closure operator
¢ : P(M)— P(M) with this kind of neural network, i.e., input and output layer
correspond to the same set (namely M).

3 Encoding of Closure Operators inspired by FCA

The basic idea for this paper is to use formal contexts to represent closure
operators. In particular (as we have seen in Section 2.2), for a formal context
K = (G, M,I), the function (.)!f : P(M) — P(M) is a closure operator on
M. Moreover, any closure operator on a finite set M can be represented by an
appropriate formal context.%

So, in this section, we propose two canonical ways to translate a formal
context into a 3-layered feedforward network, which — given a set A C M —
computes its closure AL,

The intuition hereby is to identify the hidden layer neurons with the object
set of the formal context. We realize the (.)!!-operator by first applying (.)! to A
(which by definition yields an object set represented by the activated neurons in
the hidden layer) and, afterwards, applying (.)! to A! thus obtaining the closure
of the attribute set at the output layer.

Definition 8. For a given formal context K = (G, M,I), we define a corre-
sponding 3-layered feedforward network Nx in the following way:

—Z={im|me M}

- O={om|me M}
—H—{hy | g€ G
—t(i):=0.5 forallieT

5 One method, how to construct a formal context with this property will be explicated
in Section 4.



0 if gIm
—1 otherwise.

— t(n):=—-0.5 forallne HUO

- Wi, hy = Whyo,, =

Next, we will prove that indeed the associated network function fu, corre-
sponds to the closure operator ()7, i.e., for all A C M, we have that A/l =

{m [ om € fne({im | M € A})}

Proposition 3. Let K= (G, M, I) be a formal context and Nk the correspond-
ing neural network. Then

1. for every A C M, activating (exactly) the set {i,, | m € A} of input neurons
leads to an activation of (exactly) the set {h, | g € AT} of hidden neurons
and

2. for every B C G, activating (exactly) the set {hy | g € B} of hidden neurons
leads to an activation of (exactly) the set {o,, | m € B} of output neurons.

Proof. Consider the hidden layer neuron hgy representing the object g € G. Now,
since AT = {g | gIm for all m € A} we have that g € A’ exactly if g has all
attributes from A. Obviously, this is the case if and only if

Z XAu (Em) Wi, 0, = Z Wi, h, = 0> —0.5.

meM meA

The second claim is proved in exactly the same manner.

The next corollary then follows immediately be the definition of ()1 as
twofold application of (.)!.

Corollary 1. Ng computes (.)!1.

This approach is quite close to formal concept analysis since the neurons of
the hidden layer directly correspond to the object set of the represented formal
context. The negative weights are necessary due to the fact that (.)! is (in both
variants) an antitone function (i.e. A C B implies B! C Al).

However, this can be overcome by a simple “work around” instead of mir-
roring the functions A — Al and B — B! (for A C M and B C G), one could
use the functions A — M \ Al and B — (M \ B)! instead. Both of them are
monotone and can hence be modelled with only positive weights, and still their
composition yields the wanted operator (.)!/. In the sequel, we will elaborate
this idea.

Definition 9. For a given formal context K = (G, M,I), we define a corre-
sponding 3-layered feedforward network Nx in the following way:

—Z=A{im|meM}

O ={om|me M}

—H={hy g€ G)

t(i) :==0.5 foralli el

— t(om) = —0.5+|{g € G| =gIm}| for all 0,, € O



0 if gIm
1 otherwise.

— t(h):==0.5 for allh e H

- Wi, hy = Whyo,, =

Proposition 4. Let K = (G, M,I) be a formal context and Nx the correspond-
ing neural network. Then

1. for every A C M, activating (exactly) the set {i,, | m € A} of input neurons
leads to an activation of (exactly) the set {hy | g € G\ AL} of hidden neurons
and

2. for every B C G, activating (exactly) the set {hy | g € B} of hidden neurons
leads to an activation of (exactly) the set {0, | m € (G \ B)'} of output
neurons.

Proof. 1. Consider the hidden layer neuron hy representing the object g € G.
Now, since A! = {g | gI'm forall m € A}, we have that g € Al exactly if ¢
has all attributes from A. Obviously, this is the case if and only if

Z Wing = 0 < 0.5.
meA

Therefore, any h, being activated must be in G\ AL.
2. Now, consider the output layer neuron o,, representing the attribute m € M.
If B is activated in the hidden layer, o,, will be activated exactly if

> wygm = {g € B|~gIm}| > =05+ [{g € G| ~gIm}|
geB

Yet, due to B C G, this can only be the case iff {g € B | ~gIm}| = |{g €
G | ~gIm}| which is equivalent to the statement that gIm for all g € G\ B.
Hence, o, is activated exactly if m € (G \ B)’.

Corollary 2. Ny computes ().

Proof. Due to the preceding proposition, applying Nk to an attribute set A will
first activate the hidden neurons representing G\ A’ and then the output neurons
representing (G \ (G \ A))! = (A1)! = AT

As already mentioned, using this type of network will activate exactly those
hidden layer neurons not contained in A, if A is entered.

An interesting feature of both presented networks is their symmetry: for all
m € M and g € G, w;,, h, = Wh,o,,- Although this puts structural constraints
on the neural network and might therefore hamper the application of learning
strategies, it might be useful from a quite different point of view: in cases, where
the neural network will be hardwired, input and output layer could be identified
and calculation be done in a “back-and-forth manner” using the links twice for
every calculation.



4 Application to propositional logic programs

In this section, we will show, how the presented strategy can be applied in a
propositional logic programming scenario.
Logic programming is especially suited for this approach, since

— any logic program essentially consists of a set of implications and hence
— entailment can (at least in the negation-free case) therefore be described by
a closure operator on the ground facts.

Consequently, one can assign to every logic program an operator Tp which
applied to a set of ground facts intuitively calculates the immediate consequences
by “applying” each implication once. The entailment closure operator can then
be simulated by iteratively applying Tp until a fixed point is reached. [5] presents
an approach to encode Tp into a recurrent 3-layered neural network, by assigning
every implication to a node of the middle layer. To make this clear, consider the
following example.

Imagine, some kind of animal has to be determined via some tests. Let
furthermore the only available tests be to indicate whether the animal is a
mammal, a bird, a monkey, a donkey, an owl, a fowl or a frog. Hence M :=
{donkey, monkey, mammal, frog, bird, owl, fowl}. Then the implications presented
in Fig. 2 characterize the setting:

monkey — mammal

donkey — mammal

owl —> bird

fowl —> bird
monkey, donkey — |
owl, fowl — |
mammal, bird — L
mammal, frog — L
bird, frog — |

Fig. 2. Implication representing the knowledge in our example.

Following [4], the neural network corresponding to the Tp-operator repre-
senting those implications interpreted as a logic program would look like the one
represented in Fig, 3.

The set {donkey, fowl} demonstrates that, in general, Tp may have to be
applied several times to calculate the closure, since

Tp({donkey, fowl}) = {donkey, mammal, fowl, bird}

and
Tp({donkey, mammal, fowl, bird}) = M.
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Fig. 3. Neural network corresponding to the Tp-operator of our propositional setting.
All weights are set to 1. The dotted lines are those indicating a contradiction.

Now we consider how our method would apply. So, we have to find a formal
context K = (G, M, I), where A/l = AY for all A C M. One possibility to do so
is to consider the lattice of all J-closed sets. Fig. 4 represents this.

mammal
O

monkey

Fig. 4. Lattice of the J-closed sets.

Yet, a well-known result of FCA provides a direct way to find a minimal
set of objects for a formal context that is supposed to generate a given lattice.
One has to take all supremum-irreducible elements as objects. Looking at the
diagram, the supremum-irreducible elements are exactly those having only one
lower neighbour. In our particular case, these are exactly all upper neighbours of
the bottom element. Hence, we can derive the formal context depicted in Fig. 5.
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Fig. 5. The formal context K corresponding to the closure operator to describe.

According to the preceding section, there are two ways of using this kind of
formal context to define a neural network that computes the closure of a given
set directly (i.e., no manyfold application — likewise no recurrent organisation —
of the net would be necessary).

The first one (corresponding to the definition of Nx) is shown in Fig. 6. Note
that all drawn edges correspond to weights of -1.
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Fig. 6. Neural network corresponding to the consequence operator of our propositional
setting. All weights are set to -1.

The second network (corresponding to the definition of Ni) is shown in Fig. 7.
Here all drawn edges carry weight of 1.
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Fig. 7. Neural network Ng corresponding to the consequence operator of our proposi-
tional setting. All weights are set to 1.

5 Conclusion and Future Work

In our paper, we presented two new canonical ways for generating neural net-
works that compute the closure operator of a given finite set. We thereby provide
a method to support the representation part of the neural-symbolic learning
cycle by presenting an encoding strategy for a kind of background knowledge
generically occurring in the area of knowledge processing.

In contrast to other methods, where the closure is approximated iteratively
(using a recurrent network), the networks presented in our approach will calcu-
late it directly, i.e., by a single run of the network.

Moreover, as shown by our example, there are cases where this kind of rep-
resentation is also advantageous in terms of the number of hidden layer neurons
needed. In general, this approach seems to be especially beneficial, if the number
of implications becomes large.

Naturally, the proposed method requires preprocessing of the implicative
information to be encoded. Depending on how this information is given, it has
to be transformed into a formal context. The way we presented here — namely
generating the whole lattice of the closed sets and identifying the supremum-
irreducible elements of it — is certainly not optimal with respect to time costs
(in the worst case, the size of the lattice can be 2!/M). So one important field of
future research is to find more efficient methods to convert implicative knowledge
into small contexts. On the more theoretical side, also complexity bounds for this
kind of task would be of interest.



More generally, we are convinced, that connectionist approaches — if taken
into the focus of (up to now more symbolically oriented) fields like conceptual
structures — could contribute to a deeper and more comprehensive understanding
of either field. This could even pave the way to an integrated neural-symbolic
theory of conceptual thinking.
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