
Surfing the Service Web

Sudhir Agarwal1, Siegfried Handschuh1, and Steffen Staab1,2

1 AIFB, University of Karlsruhe
{agarwal,sha,sst}@aifb.uni-karlsruhe.de,
http://www.aifb.uni-karlsruhe.de/WBS

2 Ontoprise GmbH, 76131 Karlsruhe, Germany,
http://www.ontoprise.com/

Abstract. The way that web services are currently being developed
places them beside rather than within the existing World Wide Web.
In this paper we present an approach that combines the strength of the
World Wide Web, viz. interlinked HTML pages for presentation and
human consumption, with the strength of semantic web services, viz.
support for semi-automatic composition and invocation of web services
that have semantically heterogeneous descriptions. The objective we aim
at eventually is that a human user can seamlessly surf the existing World
Wide Web and the emerging web services and that he can easily compose
and invoke Web services on the fly without being a software engineer.
This paper presents our framework, OntoMat-Service, which trades off
between having a reasonably easy to use interface for web services and
the complexity of web service workflows. It is not our objective that
everybody can produce arbitrarily complex workflows of web services
with our tool, the OntoMat-Service-Surfer. However, OntoMat-Service
aims at a service web, where simple service flows are easily possible —
even for the persons with not much technical background, while still
allowing for difficult flows for the expert engineer.

1 Introduction

The Stencil Group defines web services as: loosely coupled, reusable software
components that semantically encapsulate discrete functionality and are dis-
tributed and programmatically accessible over standard internet protocols. Though
this definition captures the broad understanding of what web services are, it
raises the question, what web services have to do with the web. Even if HTTP
is used as a communication protocol and XML/SOAP to carry some syntax this
appears to be a rather random decision than a deeply meaningful design.

We believe that it makes sense to actually integrate the strengths of the con-
ventional World Wide Web, viz. lightweight access to information in a highly-
distributed setting, with the strengths of web wervices, viz. execution of function-
ality by lightweight protocols in a highly-distributed setting. To seamlessly inte-
grate the two aspects we envision a service web that uses XHTML/XML/RDF
to transport information and a web service framework to invoke operations and a
framework, OntoMat-Service, to bind the two aspects together. OntoMat-Service
offers an infrastructure, OntoMat-Service-Surfer, that allows

– for seamlessly browsing conventional web pages, including XHTML adver-
tisements for web services;

– for direct, manual invocation of an advertised web service as a one-off use of
the service;

– for tying web service advertisements to each other when browsing them;
– for tying web service advertisements to one’s own conceptualization of the

web space when browsing them; and
– for invoking such aggregated web services.

For these objectives, we build on numerous existing technologies like RDF
[9], ontologies [2] or WSDL [1]. To integrate the web and web services into the
service web, we make specific use of a new type of semantic annotation [6],
namely deep annotation [7].

The paper proceeds as follows. We first describe a simple use case for OntoMat-
Service (cf. section 2), including a detailed WSDL description of a web service
used for the running example. In section 3, we describe the process that allows
to turn web services into a service web and that lets a user surfing the web
with OntoMat-Service-Surfer exploit the very same tool to aggregate and invoke
web services. The first step of this process, i.e. advertising web services in a
form that combines presentation for human and machine agent consumption, is
sketched in section 4. The second step of this process, i.e. using browsing and
semantic deep annotation to tie together conceptual descriptions, is described
in section 5. The third step comprises the generation of simple web service flows
and is described in section 6. The fourth and final step described in section 7
deals with the invocation of web service flows. Before we conclude, we overview
some related work.

2 Use Case

A typical use case supported by OntoMat-Service is the following (adapted from
a larger scenario in [11]): An employee in a small enterprise needs a new laptop.
In order to buy one he defines the characteristics of the laptop like processor
speed, disk size, etc. Based on the configuration of the laptop he collects offers
from laptop vendors. When he receives an offer he also solicits insurance terms
from a third party. Once the most reasonable laptop and the best insurance
contract terms are determined, the employee purchases the laptop and closes
the service contract.

In our scenario, we assume a laptop vendor and an insurer offering web ser-
vices with two operations each, i.e. getLaptopOffer / buyLaptop and getInsur
anceTerms / closeServiceContract, respectively. The sequence of operations
that must be executed by the customer is depicted in Figure 1.

The laptop vendor and the insurer being web service providers describe their
web services with WSDL documents. In Figure 2, we show how a conventional

2

Fig. 1. Sequence Diagram for the Use Case

WSDL document of the laptop vendor located at http://laptop-vendor.de/lap
top.wsdl might look like.3

The WSDL document describes:

– Data type definitions in the XML element types. They are only sketched
in figure 2 as they correspond to the laptop vendor’s ontology depicted in
N34 in figure 4. Thereby, we assume the definitions given in Figure 3. In our
running example, the WSDL document of the laptop vendor, we describe
the class Laptop.

– Messages that a service sends and/or receives and that constitute the web
service operations in the XML element portType. For instance, our running
example specifies ‘getOffersRequest’ that a potential customer would send
to the laptop vendor to solicit an offer. getOffersRequest must be provided
with two arguments, namely processor speed and disk size. It returns a set
of laptop offers with properties such as specified in the vendor ontology (cf.
WSDL document in Figure 2 and vendor ontology in Figure 4).

WSDL provides a naming convention for URIs such that each conceptual element
(e.g., types, portType, etc.) of a WSDL document can be uniquely referenced.
Such a URI consists of a targetNamespace pointing to the location of the WSDL
document and to element names of the WSDL document. For example, the URI
http://laptop.wsdl/laptop/#part(getOffersRequest/diskSpace) refers to
the second part (diskSpace) of the message getOffersRequest of the WSDL
document in Figure 2 (cf. [1] for further specifications).

The web service description of the insurer looks similarly. We here only men-
tion that the insurer provides the operations getInsuranceTerms and close-

3 The single ideosyncrasy we have here is that the WSDL document employs RDFS
in order to describe the data structures instead of the more common XML schema
— though actually WSDL does not require XML Schema and it allows RDFS.

4 Notation 3 or N3 is basically equivalent to RDF in its XML syntax, but more com-
pact. Cf. http://www.w3.org/DesignIssues/Notation3

3

<?xml version="1.0" encoding="UTF-8"?> <definitions
name="LaptopService"

targetNamespace="http://laptop.wsdl/laptop/"
<types>

<rdf:RDF>
<rdfs:Class rdf:ID="Laptop">

<rdfs:label>Laptop</rdfs:label>
</rdfs:Class>
<rdf:Property rdf:ID="diskSpace">

<rdfs:label>diskSpace</rdfs:label>
<rdfs:range rdf:resource="&rdfs;Literal"/>
<rdfs:domain rdf:resource="#Laptop"/>

</rdf:Property>
...

<rdf:Property rdf:ID="price">
<rdfs:label>price</rdfs:label>
<rdfs:range rdf:resource="&rdfs;Literal"/>
<rdfs:domain rdf:resource="#Laptop"/>

</rdf:Property>
...

</rdf:RDF>
</types>
<message name="getOffersRequest">

<part name="processorSpeed" type="rdf:ID=processorSpeed"/>
<part name="diskSpace" type="rdf:ID=diskSpace"/>

</message>
<message name="getOffersResponse">

<part name="laptopOffers" type="rdf:ID=laptops"/>
</message>

...
<portType name="LaptopService">

<operation name="getLaptopOffers" parameterOrder="processorSpeed diskSpace">
<input message="tns:getOffersRequest" name="getOffersRequest"/>
<output message="tns:getOffersResponse" name="getOffersResponse"/>

</operation>
...

</portType>
</definitions>

Fig. 2. Web Service Description of Laptop Vendor

ServiceContract. getInsuranceTerms requires a description of Laptop (accord-
ing to the insurer’s ontology in Figure 5) and a timePeriod, for which the contract
is supposed to run. getInsuranceTerms returns a set of insurance terms avail-
able.

@prefix rdfs: <http://www.w3.org/rdf-schema#>. @prefix : <#>.
@prefix a rdf:Type.

Fig. 3. N3 shortcuts

In the remainder of the paper, we assume that the customer has the plan
depicted in Figure 1. However, in our running example, we will mostly focus on
the first two steps to illustrate our framework.

3 Overview of the Complete Process of OntoMat-Service

Figure 7 shows the complete process of our framework, OntoMat-Service. First,
the figure consists of process steps, which are illustrated by a circle representing

4

:Laptop a rdfs:Class.
:price rdfs:domain :Laptop;

rdfs:range :rdfs:Literal.
:diskSpace rdfs:domain :Laptop;

rdfs:range :rdfs:Literal.
:processorSpeed rdfs:domain :Laptop;

rdfs:range :rdfs:Literal.
:laptopID rdfs:domain :Laptop;

rdfs:range :rdfs:Literal.

:Offer a rdfs:Class.
:laptops rdfs:domain :Offer;

rdfs:range :Laptop.

:Sale a rdfs:Class.
:laptop rdfs:domain :Sale;

rdfs:range :Laptop.
:creditCardNumber rdfs:domain :Sale;

rdfs:range :Literal.
:customerReceipt rdfs:domain :Sale;

rdfs:range :Literal.

Fig. 4. Ontology of the laptop vendor

:Laptop a rdfs:Class.
:id rdfs:domain :Laptop;

rdfs:range :Literal.

:ContractTerms a rdfs:Class.
:laptop rdfs:domain :ContractTerms;

rdfs:range :Laptop.
:timePeriod rdfs:domain :ContractTerms;

rdfs:range :Literal.
:price rdfs:domain :ContractTerms;

rdfs:range :Literal.

Fig. 5. Ontology of the insurance company

:Product a rdfs:Class.
:id rdfs:domain :Product; rdfs:range :Literal.

:HardDisk a :Product.
:diskSize rdfs:domain :HardDisk; rdfs:range :Literal.
:Computer a :Product.
:hasHDD rdfs:domain :Computer; rdfs:range :HardDisk.
:price rdfs:domain :Computer; rdfs:range :Literal.
:cpuSpeed rdfs:domain :Computer; rdfs:range :Literal.

:Agent a :rdfs:Class.
:Company a :Agent.
:creditCardNumber rdfs:domain :Company; rdfs:range :Literal.

:Purchase a :rdfs:Class.
:hasBuyer rdfs:domain :Purchase; rdfs:range :Agent.
:hasObject rdfs:domain :Purchase; rdfs:range :Product.

:Insurance a :rdfs:Class.
:hasObject rdfs:domain :Insurance; rdfs:range :Product.
:price rdfs:domain :Insurance; rdfs:range :Literal.
:timePeriod rdfs:domain :Insurance; rdfs:range :Literal.

Fig. 6. Ontology of the customer

the step and a person icon representing the logical role of the person who exe-
cutes the step, viz. service provider, annotating Service Web surfer and a user
invoking a Web Service. The two latter roles typically coincide. Second, the fig-
ure comprises information that is used by a person or by OntoMat-Service-Surfer
in a process step.

The four main steps run as follows:

Init: OntoMat-Service starts with a common WSDL web service description
by the service provider (e.g., Figure 2). Obviously, the WSDL document is
primarily intended for use by a machine agent or a software engineer who
has experience with web services. It is not adequate for presenting it to a
user who is ‘only’ expert in a domain.

5

Fig. 7. The Complete Process of OntoMat-Service

Web Service Presentation (Step 1): In the first step, the web service provider
makes the web service presentation readable as a nicely formatted (X)HTML
document — possibly including advertisements, cross-links to other HTML
pages or services, or other items that make the web page attractive to the
potential customer (cf. Section 4 for details).
Thereby, it is important that the understandable, but informal description
of the web service is implicitly annotated to relate the textual descriptions
to their corresponding semantic descriptions in their WSDL document.
Step 1 is a manual step that may be supported by tools such as WSDL Docu-
mentation Generator from http://www.xmlspy.com. However, we would not
assume that tools like WSDL Documentation Generator would be sufficient
to generate an amenable presentation, as they still produce rather rigid and
technically oriented descriptions.

Result 1: Human understandable web page that advertises the web service and
embeds/refers to machine understandable web service descriptions (WSDL
+ ontology).

Deep Annotation (Step 2): At a client side, a potential user of the web ser-
vice browses the web page. OntoMat-Service-Surfer shows the web page
like a conventional browser. In addition, OntoMat-Service-Surfer highlights
human-understandable items (e.g. text phrases) that associate an underlying
machine-understandable semantics.
The logical role of the user here is one of an annotator/surfer. He can decide
to just view the page and proceed directly to step 4 (described below). Al-
ternatively, he can decide to map some of the terminology used in the web
page of the web service to his own terminology (or to the terminology of
someone else).
For the latter purpose, he loads an ontology into OntoMat-Service-Surfer (if
it is not already pre-loaded). Then he aligns terminology mentioned in the
web page by drag’n’drop-ping it onto the ontology loaded into OntoMat-
Service-Surfer. OntoMat-Service-Surfer generates mapping rules from these
annotations that bridge between the ontology of the service provider and the
ontology loaded into OntoMat-Service-Surfer (cf. Section 5 for details).
Typically, the user will map to more than one web service, i.e. often he will
map to different ontologies.

6

Result 2: Sets of mapping rules between web service ontologies and pre-loaded
ontology.

Web Service Planning (Step 3): At the client side, a user might view the
web services as well as their annotations that yield mapping rules. The third
logical role here is one of a service planner and invocator (this logical role is
shared between the third and fourth step). For this purpose, the user decides
to select
– a set of web service operations he wants to use and
– a set of mapping rules he wants to use.

The reader may note that very frequently the roles of an annotator/surfer
and a service invocator will just coincide. Hence, the two selections just
mention will take place implicitly — just by the web service pages he has
browsed and the annotations that the service invocator has performed in
step 2 of the OntoMat-Service process.
Once the two selections have been performed im- or explicitly, a module for
web service planning will compute logically possible web service flows. For
this objective, web service planning may employ a rich set of knowledge:
goals, pre-conditions of web services, post-conditions of web services, pre-
vious similar cases, etc. In the current version of OntoMat-Service we just
exploit the pre- and post-conditions derived from mapping one web service
output to another web service input via the customer ontology. The web
service description in the associated WSDL document describes what types
are required for the input of a web service and what types appear in the
output of a web service. Since data that wanders from one web service to
the next can only proceed if types are compatible, OntoMat-Service-Surfer
can compute a restricted set of possible web service flows (cf. Section 6).
Though in general this model may be too weak to compute complex flows it
is quite sufficient and straightforward to use with a small number of selected
and semantically aligned web services — such as an end user or prototype
builder will use.

Result 3: Sets of possible web service flows.
Web Service Invocation (Step 4): The final user, i.e. the invocator, can se-

lect one such flow from the list or modify any, if none of them fits his needs.
Obviously, he can always create a new flow on his own. Once the user has a
flow, that fulfils his current needs, he invocates the flow (cf. Section 7). Dur-
ing the execution, the tranformation of the data of one ontology to another
will happen automatically via the mapping rules. The user achieves his goal
at the completion of the invocation of the web service flow.

4 Semantic Web Page Markup for Web Services

In this section we show how a web service provider can semantically annotate the
web pages describing his web services. Such a combined presentation allows for
improved ways to find the web services (e.g., by a combined syntactic/semantic
search engine) and it enables a user to define mapping rules between the ontology
used in the web service description and the client’s ontology.

7

The basic idea is that a conventional HTML page about the web service and
web service parameters is extended by URIs referring to conceptual elements of
the corresponding WSDL documents. To carry these two pieces of information,
we use wsdlLocation and elementURI inside the span tags. In Figure 8, we
show how such an web service advertisement(HTML page) for the laptop vendor
service might look like.

<html><head><title>Laptop Vendor Service</title></head> <body><h1
align="center">Laptop Vendor Service</h1> <p><h2>getLaptopOffers</h2>
This service delivers the top offers of the laptops available in
the city. We have the largest archive of the laptop offers for the
city. So, the possibility that you find your desired laptop at a
reasonable price is very high. Just try it and get convinced from
our great offers. <span
wsdlLocation="http://laptop-vendor.de/laptop.wsdl"
elementURI="http://laptop.wsdl/laptop/#part(getOffersRequest/processorSpeed)">
Processor speed Specifies the speed of the
processor. Please use only the units "MHz" and "GHz". For example,
"2GHz", "1.4GHz" and "1600MHz" are valid whereas "1800" or
"170000KHz" are invalid. <span
wsdlLocation="http://laptop-vendor.de/laptop.wsdl"
elementURI="http://laptop.wsdl/laptop/#part(getOffersRequest/diskSpace)">
Disk space Specifies the disk space. Please use
only the units "GB" and "MB". For example, "20GB", "30.5GB" are
valid whereas "40" or "25000KB" are invalid. <span
wsdlLocation="http://laptop-vendor.de/laptop.wsdl"
elementURI="http://laptop-vendor.wsdl/laptop/#part(getOffersResponse/laptopOffers)">
Top Offers This is the list of the most reasonable
offers available in the city that fulfill your requirements.
</p>

...
</body></html>

Fig. 8. Web Service Description as HTML Page

When such an HTML page is opened in OntoMat-Service-Surfer, the span
tags are interpreted and elements between and are highlighted
to support the annotation step described in the next section.

5 Browsing and Deep Annotation

In this section, we describe the second main step of the OntoMat-Service pro-
cess. This step consists of browsing web pages about web services with OntoMat-
Service-Surfer. Thereby, the user may deep-annotate [7] these web pages gener-
ating mapping rules between a client ontology and the ontologies referred to in
the WSDL documents as a ‘side effect’. We call this action ‘deep-annotation’ as
its purpose is not to provide semantic annotation about the surface of what is
being annotated, this would be the web page, but about the semantic structures
in the background, i.e. the WSDL elements.

Thus, this step is about web service discovery by browsing and using in-
formation retrieval engines like Google as well as about reconciling semantic
heterogenity between different web services, such as described in the WSDL
documents and the web service ontologies they embed or refer to.

8

5.1 User Interaction

Service Browsing With OntoMat-Service-Surfer the user can surf the ser-
vice web, i.e. he can browse the web pages of web service advertisements and
OntoMat-Service-Surfer highlights semantic annotations added by the web ser-
vice provider. OntoMat-Service-Surfer indicates semantically-annotated web ser-
vice elements, e.g. input parameters, by graphical icons on the web page. Thus,
the user may easily identify relevant terminology that needs to be aligned with
his own ontology.

As an alternative to deep annotation, the ontology browser in OntoMat-
Service-Surfer may also visualize the underlying service ontology. OntoMat-
Service-Surfer is able to interpret the description of web service operations and
provide a corresponding form interface. The user may then directly proceed to
web service invocation (Section 7) and invoke a concrete web service operations
with data he provides via this generic form interface.

Deep Annotation The user selects an ontology to be used for annotation and
loads it into OntoMat-Service-Surfer. The user annotates the web service by
drag’n’dropping highlighted items from the web page into the ontology browser
of OntoMat-Service-Surfer. Doing so, he does not only extend the web page with
metadata (which is possible), but most important here he establishes mappings
between concepts, relations and attributes from the ontology used by the web
service provider to his client ontology.

In the following we describe the deep-annotation of the vendor web ser-
vice shown in Figure 9. The web page advertising the web service describes the
getLaptopOffer operation and constitutes the context for the usage of the ven-
dor ontology. The aim of the annotator is to translate the terminology used in
the description of getLaptopOffer (cf. the WSDL document in Figure 2 and
the vendor ontology in Figure 4) into his client ontology (Figure 6).

By drag’n’drop, one generates a graph of instances, relations between in-
stances and attribute values of instances in the browser that visualizes the client
ontology (cf. the left pane depicted in Figure 9).

When performing a drag’n’drop one will create a literal instance, if one drop’s
an instance of the vendor ontology onto a concept in the client ontology, or a
literal value, if one drop’s an attribute value of an instance onto an attribute
in the client ontology. For instance, dropping ‘IBM’ onto the concept company

would create a corresponding literal instance in the client ontology, dropping
‘7MB’ creates a corresponding attribute value to a selected instance in the client
ontology.

If one drop’s a concept A from the vendor ontology onto a client ontology
concept B, one will create a generic instance. A generic instance is just a variable
that states that concept A in the vendor ontology corresponds to concept B in
the client ontology.5

5 Corresponding generalizations exist for attributes and relationships.

9

Fig. 9. Screenshot of OntoMat-Service-Surfer annotating vendor service

Thus, one may compile different types of instances in the client ontology.
Each graph of non-separable, newly created instances and values in the client
ontology corresponds to a mapping rule. For instance, one may (i), drag’n’drop
‘processorSpeed (from vendor ontology) onto cpuSpeed (from client ontology) that
belongs to Computer (again in the client ontology). Thereby, (ii), a generic in-
stance is created for Computer with value Laptop (as cpuSpeed belongs to Computer

and processorSpeed belongs to Laptop). The corresponding N3 notation reads as:

@prefix vendor: <http://laptop.wsdl/laptop/#>

@prefix client: <http://www.company.de/company.daml#>

vendor:Laptop a :GenericInstance; a client:Computer;

client:cpuSpeed vendor:processorSpeed.

vendor:processorSpeed a :GenericInstance.

Its interpretation as a mapping is in first order logic:

FORALL X,Y (instanceOf(X,Computer) AND cpuSpeed(X,Y))

<- (instanceOf(X,vendor:Laptop) AND vendor:processorSpeed(X,Y)).

One may trace the later drag’n’drop action in Figure 9, where action 1 picks
up ‘Processor Speed’ with its underlying web service parameter processorSpeed

(cf. the markup elementURI="http://laptop.wsdl/laptop/#part(getLaptop
OfferRequest/processorSpeed)" in Figure 8). He drops onto the attribute

10

that comes closest in his client ontology, viz. the aforementioned cpuSpeed, and
generates the consequences just mentioned. Similarly, the second text item “Disk
Space” being annotated with the input parameter diskSpace is handled in action
2. This time, however, the annotator must also create a hasHDD relationship
between the generic instance hardisk1 and the generic instance of computer1 to
build a larger graph representing a mapping rule with two generic attribute
values (on cpuSpeed and diskSpace). Finally, the annotator maps the output
parameters in action 3 (cf. Figure 9).

5.2 Mapping Rules derived from Annotation

The results of deep annotation are mapping rules between the client ontology
and each service ontology. The annotator may publish the client ontology and the
mapping rules derived from annotations. This enables third parties (in particular
logical roles that follow in the OntoMat-Service process) to execute the services
on the basis of the semantics defined in the client ontology.

The mapping rules are defined in F-Logic. F-logic is a deductive, object-
oriented database language that combines the declarative semantics and expres-
siveness of deductive database languages with the rich data modelling capabili-
ties supported by object oriented model [8]. The annotator does not have to write
F-logic rules. They are generated automatically by the OntoMat-Service-Surfer.
Figure 10 and Figure 11 give the reader an intuition of how such automatically
generated mapping rules look like when visualized with the OntoEdit plugins
OntoMap (cf., [7]). Figure 10 shows the mapping from the company ontology
to the vendor ontology which is a result from the annotation effort indicated in
Figure 9. The result for the corresponding mapping of the insurer’s ontology in
depicted in Figure 11.

Fig. 10. Mapping between Client Ontology (left window) and Vendor Ontology (right
window)

11

Fig. 11. Mapping between Client Ontology (left window) and Insurer’s Ontology (right
window)

6 Web Services Planning

In this step, the web service end consumer selects the web service operations, he
wants to use to accomplish certain tasks at hand. By making such a selection,
he restricts the sets of relevant mapping rules.

The inputs and outputs of web services are specified in the web service de-
scription documents of the web services. By considering the mapping rules and
the information about the input and output types of web services, the planning
component is able to infer valid web service flows.

If the output of a web service operation A is of type t and the input of
another web service operation B is also of type t, then the service operations
A and B can be plugged together (first A then B). Since, different web service
providers will have different ontologies in general, this approach can only infer
web service flows in which all the web services are provided by one web service
provider. However, web service flows consisting of web service operations from
different providers can be inferred by using the restrictions contained in sets of
mapping rules. For example, if the output of a service A is of type t1 and the
input of another web service B is of type t2 and there is a mapping rule from
t1 to t2, the services A and B can be plugged together (first A then B). In
our running example, the service getInsuranceTerms can be called only after
getLaptopOffer, since the former requires a laptop, which is the output of
getOffer.

7 Web Services Invocation

Finally, the user is presented with a list of feasible flows consisting only of web
services selected by him in the previous step. The user chooses a flow from the
list and invokes it.

12

The actual invocation is performed by a generic web services client engine.
This engine takes a flow of web services as input. When the user requests the
invocation of such a flow, the engine calls the web services in the order as specified
in the flow. The invocation engine can be configured in a way such that data
required from the client is retrieved automatically from client’s ontology (with
instances) during the invocation. The execution component communicates with
OntoBroker [4], whenever mapping between concepts is required (cf. Figure 12).

Fig. 12. Service Flow in our Running Example

The invocation component differentiates between the following cases (cf. Fig-
ure 12):

– There are no mapping rules: In this case, the user is provided with a
form like interface, in which he has to enter required data according to the
ontology of the respective web service provider to proceed the execution.

– Automatic retrieval of data from client’s ontology is not configured
and mapping rules are defined: In this case, the user is provided with a
form like user interface, in which he has to enter required data according to
his own (client’s) ontology.

– Automatic retrieval of data from client’s ontology is configured
and mapping rules are defined: In this case, the invocation runs fully
automatically.

This kind of approach is a generalization of common approaches to invoca-
tion of single web service operations. Let us consider this simple case in our
framework: If a user wants to manually call only one web service operation, he
will skip the definition of mapping rules. The flow will consist of only one web
service operation. When executing the single web service operation, the invoca-
tion engine will request data from the user via a form interface that reflects the
ontology of the service provider (because no mapping rule exists).

13

8 Related Work

In this paper we provide an original framework, OntoMat-Service, to embed the
process of web service discovery (here: by browsing web pages and retrieving web
pages from search engines like Google), composition (here: by deep annotation
and reasoning over logically possible configurations), and invocation (here: by
OntoMat-Service-Surfer, and the mapping to a client ontology). The considera-
tion of semantic heterogenity is germane to OntoMat-Service. It offers semantic
translations as one of its core modules.

OntoMat-Service does not aim at a web service discovery, composition and in-
vocation that is intelligent in the sense that it completely automates the task that
typically the user is supposed to do. Rather, it provides an interface, OntoMat-
Service-Surfer, that supports the intelligence of the user and guides him to add
semantic information such that only few logically valid paths remain to be chosen
from by the user.

To fully pursue such an objective, one needs a large set of different modules.
We have built on our existing experience and tool framework for semantic an-
notation (cf. [6, 7]) and for logical reasoning [4]. We have not yet dealt with the
issue of web service flow execution and monitoring that is certainly needed to
complement our current version of OntoMat-Service.

Closest to our approach come frameworks that facilitate the building of web
service flows. A number of software systems are available to facilitate manual
composition of programs, and more recently web services. Such programs, which
include a diversity of workflow tools [18, 5], and more recently service composi-
tion aids such as BizTalk Orchestration [10] enable a software engineer to man-
ually specify a composition of programs to perform some task — though they
typically neglect the aspect of semantic heterogenity that is core to OntoMat-
Service.6

Web Services Invocation Framework (WSIF) [16] is an open source frame-
work to execute any web service, that can be described by a WSDL document.
However, it does not support the execution of a flow of web services.

Some technologies have been proposed that use some form of semantic markup
of web services in order to automatically compose web services to perform some
desired task (e.g., [13, 3, 12]). In [13], the authors use situation calculus for rep-
resenting web service description and petri nets for describing the execution
behavious of web services. In [3], the authors present an architecture of intelli-
gent brokers that offer problem solving methods that can be configured and used
by the users according to their needs. In [12] the authors propose an extended
version of Golog for formalizing the provision of high-level generic procedures
and customization of constraints. In [15], the authors propose a rule based expert
system to automatically compose web services from existing web services.

On the one hand most recent experiences from such advanced projects like
IBrow, however, have shown that these automatic composition techniques can-
not yet been carried over to an open world setting. There one needs to tightly

6 BizTalk even allows for XML-based (non-semantic) translations of data.

14

integrate the user of a web service — such as we do in OntoMat-Service. On the
other hand OntoMat-Service can obviously be extended in the future to consider
more types of automatic semantic matchmaking, service discovery [14, 17] and
configuration of web services into the web planning phase.

9 Discussion

In this paper we have described OntoMat-Service, an original framework to tie
together the World Wide Web and web services into a Service Web. Germane
to OntoMat-Service is its blending of browsing the Web, aggregating conceptual
descriptions and web services and then investigating and invoking them from
one platform.

We have also presented OntoMat-Service-Surfer, a tool that constitutes a
prototype implementation of OntoMat-Service. Currently, our prototype under-
stands WSDL with RDF(S) for web service descriptions, but its flexible architec-
ture allows easy integration of more powerful web service description languages
like DAML-S [2].

Clearly, one must be aware of what OntoMat-Service and OntoMat-Service-
Surfer can do and what they can’t do. OntoMat-Service is not intended to cater
to businesses that want to establish durable, complex and high-quality web ser-
vice connections with intricate interactions. For this objective, the integration
by semantic annotation may provide a quick, first prototype, but semantic an-
notation cannot provide arbitrary complex mapping rules or arbitrary complex
workflows. On the other hand, OntoMat-Service allows exactly for easily build-
ing a prototype web service integration and it allows for users with domain
knowledge to participate in the Service Web — without programming.

OntoMat-Service opens up many interesting questions that need to be solved
in the future, such as

– how to automate the way that Web Services are presented to the World;
– how to make compiled flows understandable to their users; or
– how to characterize the boundaries of what functionality can be aggregated

and executed.

Eventually, OntoMat-Service and OntoMat-Service-Surfer, in conjunction
with their counterparts in semantic annotation [6] and deep annotation [6], open
up the possibility to bring Web pages, databases and Web Services into one co-
herent framework and thus progress the Semantic Web to a large Web of data
and services.

10 Acknowledgements

A part of this work was funded by the SemIPort project of the federal ministry
of education and research (BMBF).

15

References

1. Web service description language (wsdl) version 1.2, March 2003.
2. Anupriya Ankolekar, Mark Burstein, Jerry R. Hobbs, Ora Lassila, Drew McDer-

mott, David Martin, Sheila A. McIlraith, Srini Narayanan, Massimo Paolucci, and
et al. Terry Payne. Daml-s: Web service description for the semantic web. In 1st
Int’l Semantic Web Conf. (ISWC 02), 2002.

3. V. Richard Benjamins, Enric Plaza, Enrico Motta, Dieter Fensel, Rudi Studer, Bob
Wielinga, Guus Schreiber, and Zdenek Zdrahal. Ibrow3 - an intelligent brokering
service for knowledge-component reuse on the world wide web. In Proc.11th Banff
Knowledge Acquisition for Knowledge-Based System Workshop (KAW98), 1998.

4. S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology based
access to distributed and semi-structured information. In DS-8 — Proceedings of
the Conference on Database Semantics, pages 351–369, 1999.

5. C.A. Ellis and G.J. Nutt. Modelling and enactment of workflow systems. Appli-
cation and Theory of Petri Nets, LNCS 691:Modelling and enactment of workflow
systems, 1993.

6. S. Handschuh and S. Staab. Authoring and annotation of web pages in cream. In
Proceedings of the 11th International World Wide Web Conference, WWW 2002,
Honolulu, Hawaii, May 7-11, 2002, pages 462–473. ACM Press, 2002.

7. S. Handschuh, S. Staab, and R. Volz. On deep annotation. In Proceedings of the
12th International World Wide Web Conference, WWW 2003, Budapest, Hungary,
May 20-24, 2003 (to appear). ACM Press, 2003.

8. Michael Kiefer, Georg Lausen, and James wu. Logical foundations of object ori-
ented and frame-based languages. Journal of the ACM, 1995.

9. O. Lassila and R. Swick. Resource description framework (RDF) model and
syntax specification. Technical report, W3C, 1999. W3C Recommendation.
http://www.w3.org/TR/REC-rdf-syntax.

10. D. et al. Lowe. BizTalk(TM) Server: The Complete Reference., November 2001.
11. Alexander Maedche and Steffen Staab. Services on the move — Towards p2p-

enabled semantic web services. In Proceedings of the 10th International Confer-
ence on Information Technology and Travel & Tourism, ENTER 2003, Helsinki,
Finland, 29th-31st January 2003. Springer, 2003.

12. S. McIlraith and T. Son. Adapting golog for composition of semantic web services.
In Proc 8th International Conference on Principles of Knowledge Representation
and Reasoning, 2002.

13. Srini Narayanan and Sheila McIlraith. Simulation, verification and automated
composition of web services. In WWW2002, May 2002.

14. M. Paolucci, T. Kawmura, T. Payne, and K. Sycara. Semantic matching of web
services capabilities. In First Int. Semantic Web Conf., 2002.

15. Shankar R. Ponnekanti and Armando Fox. Sword: A developer toolkit for building
composite web services. In Proceedings of the 11th International World Wide Web
Conference, WWW 2002, Honolulu, Hawaii, May 7-11, 2002. ACM Press, 2002.

16. Apache Web Services Project. Web services invocation framework.
17. Katia P. Sycara, Matthias Klusch, Seth Widoff, and Jianguo Lu. Dynamic service

matchmaking among agents in open information environments. SIGMOD Record,
28(1):47–53, 1999.

18. van der Aalst and W..M..P. Woflan. A petri-net-based workflow analyzer, systems
analysis - modelling - simulation. 35(3):345–357, 1999.

16

