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1 Introduction

Our approach to the automatic acquisition of disjointness axioms relies on a machine
learning classifier that determines disjointness of any two classes. The classifier is
trained based on a “Gold Standard” of manually created disjointness axioms, i.e. pairs
of classes each of which is associated with a label — “disjoint” or “not disjoint” — and a
vector of feature values. As in our earlier experiments [7], we used a variety of lexical
and logical features, which we believe to provide a solid basis for learning disjoint-
ness. These features are used to build an overall classification model on whose basis
the classifier can predict disjointness for previously unseen pairs of classes. We im-
plemented all features and auxiliary methods for training and classification within the
open-source framework LeDA! (Learning Disjointness Axioms), a complete redesign
and re-implementation of our original prototype. LeDA is open-source and publicly
available under the LGPL license.

2 Classification Features

In the following, we give a brief overview of the 14 features we used for the experiments
that we report on in Section 4. The current feature set differs from the original one [7]
in that it focuses more on lexical and ontology-based similarity, which turned out to
work very well in previous experiments. At the same time, we omitted several “weak”
features including, e.g., OntoClean meta-properties and enumerations.

Taxonomic Overlap. In description logics, two classes are disjoint iff their “taxonomic
overlap”, i.e. the set of common individuals must be empty. Because of the open world
assumption in OWL, the individuals of a class do not necessarily have to exist in the
ontology. Hence, the taxonomic overlap of two classes is considered not empty as long
as there could be common individuals within the domain that is modeled by the on-
tology. Following these considerations, we developed several methods to compute the
actual or possible overlap of two classes. Both of the following formulas are based on
the Jaccard similarity coefficient [3].

"http://ontoware.org/projects/leda/
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These two features are complemented by f,,s, that represents a particular case of
taxonomic overlap, while at the same time capturing negative information such as class
complements or already existing disjointness contained in the ontology. The value of
fsup for any pair of classes ¢ and co is 1 for ¢y © ¢a V eg T ¢1, 0 for ¢; C - and
unde fined otherwise.
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Note that subsumption as well as taxonomic overlap greater than zero mostly, but
not necessarily implies non-disjointness. This particularly holds when the respective
feature values are computed based on a learned background ontology (see further be-
low), but also for many of the lightweight ontologies that we target with LeDA.

Semantic Distance. The semantic distance between two classes ¢; and ¢, is the mini-
mum length of a path consisting of subsumption relationships between atomic classes
that connects ¢y and c» (as defined in [7]).

fpatn(c1,c2) = min length(p) 2)

peEpaths(cy,c2)

Object Properties. This feature encodes the semantic relatedness of two classes, ¢; and
c2, based on the number of object properties they share. More precisely, we divided
the number of properties p with p(ci, ca) or p(ce, ¢1) by the number of all properties
whose domain subsumes c¢; whereas their range subsumes ¢y or vice-versa. This mea-
sure can be seen as a variant of the Jaccard similarity coefficient with object properties
considered as undirected edges.

Label Similarity. The semantic similarity of two classes is in many cases reflected by
their labels — especially, in case their labels share a common prefix or postfix. This is
because the right-most constituent of an English noun phrase? can be assumed to be the
lexical head, that determines the syntactic category and usually indicates the semantic
type of the noun phrase. A common prefix, on the other hand, often represents a nominal
or attribute adjunct which describes some semantic characteristics of the noun phrase
referent. In order to compute the lexical similarity of the two class labels, we therefore
used three different similarity measures:

% At least in English, people seem to prefer noun phrases for labeling classes.



e Levenshtein. The Levenshtein distance measures the edit distance of two strings,
i.e. it returns the number of insertion, deletion and substitution operations that are
required to transform one string into the other.

o OGrams. The idea of the QGrams metric is that two strings have a small edit dis-
tance if they have many g-grams in common. A g-gram is a substring of the original
string with length ¢g. Our implementation of the QGrams feature is based on the
SimMetrics® library, with ¢ = 3.

o Jaro-Winkler. The Jaro-Winkler distance is a variant of the Jaro distance metric tak-
ing into account the number of matching characters, the number of transpositions
and the length of a common prefix.

WordNet Similarity. In order to compute the lexical similarity of two classes (their
labels, to be precise), we applied two variants of a WordNet-based similarity measure by
Patwardhan and Pedersen [4]*. This similarity measure computes the cosine similarity
between vector-based representations of the glosses, that are associated with the two
synsets.’. We omitted any sort of word sense disambiguation at this point, assuming
that every class label refers to the most frequently used synset it is contained in.

Features based on Learned Ontology. As an additional source of background knowl-
edge about the classes in our input ontology we used an automatically acquired corpus
of Wikipedia articles. By querying Wikipedia for each class label® we obtained an ini-
tial set of articles some of which were disambiguation pages. We followed all content
links and applied a simple word sense disambiguation method in order to obtain the
most relevant article for each class: For each class label we considered the article to
be most relevant, which had, relative to its length, the highest “terminological overlap”
with all of the labels used in the ontology. The resulting corpus of Wikipedia articles
was fed into Text2Onto [1] to generate an additional background ontology for each of
the original ontologies in our data set (cf. Section 3), consisting of classes, individuals,
subsumption and class membership axioms.

Based on this newly acquired background knowledge, we defined the following
features: subsumption, taxonomic overlap of subclasses and individuals — all of these
are defined as their counterparts described above — as well as document-based lexical
context similiarity, which we computed by comparing the Wikipedia article associated
with the two classes. This type of similarity is in line with Harris’ distributional hy-
pothesis [2] claiming that two words are semantically similar to the extent to which
they share syntactic contexts.

http://www.dcs.shef.ac.uk/~sam/simmetrics.html

‘http://www.d.umn.edu/-tpederse/similarity.html

5 In WordNet, a synset is a set of (almost) synonymous words, roughly corresponding to a class
or concept in an ontology. A gloss is a textual description of a synset’s meaning, that most
often also contains usage examples.

® Labels that were written as one word, though consisting of nominal compounds or other types
of complex noun phrases.



Note that in order to enable the computation of feature values on the background
ontology (e.g. taxonomic overlap of two classes), we had to map each class in the orig-
inal ontology, i.e. the one to be enriched with disjointness axioms, to its counterpart
in the automatically generated background ontology. We did this by determining for
each class the one with the most similar label according to the Jaro-Winkler similarity
measure.

3 Scenario

For the evaluation of our approach we used 6 ontologies from the OntoFarm [6] data
set.” Since all of them represent knowledge about the same domain, namely the one of
scientific conferences and workshops, we hoped that training performed on any of these
ontologies would enable us to classify all other ontologies in the data set. Although our
approach is domain-independent in principle, it most probably works best if the ontolo-
gies used for training and testing share lexical and structural characteristics, which is
less likely to be the case for ontologies from completely different domains.

Gold Standard. In order to obtain a reference set of disjointness axioms for training
and evaluating LeDA as well as to get an upper bound for the evaluation of mapping
debugging, we manually added a minimal and complete number of disjointness axioms
to the ontologies described above.® For these sets of explicit disjointness axioms, we
computed the transitive closure by “materializing” all implicit disjointness relationships
(positive examples). All pairs of classes whose disjointness could not be inferred from
the initial, minimal set of axioms were considered not disjoint, thus serving as negative
examples in the Gold Standard. This way we obtained a logically “cleaner” and much
bigger data set than in of our earlier experiments with learning disjointness.

[Ontology  [[Classes[Properties[Disjointness[Added Axioms|

CMT 30 59 27 8
CRS 14 17 12 0
CONFTOOL|| 39 36 43 1
EKAW 71 33 83 25
PCS 24 38 0 23
SIGKDD 51 28 0 64

Table 1. Evaluation data sets. The last column shows the number of (explicit) disjointness axioms
that were added in the creation of the Gold Standard.

7 The ontologies can be obtained from http://nb.vse.cz/~svabo/caei2006/.
¥ A set of disjointness axioms D is minimal with respect to ontology @ iff for all d € D we
have O U D \ {d} }~ d.



4 Evaluation

4.1 Setting

Training and Test Data. Unlike in our earlier experiments where a single ontology had
to serve as a basis for both training and testing, the conference ontologies data set al-
lows us to use 6 x 5 = 30 different combinations of ontologies for the evaluation of
learning disjointness: for each of the 6 ontologies, we thus performed 5 experiments
using each of the remaining ontologies as training data, and finally averaged over the
individual results. Note that we removed all previously existing disjointness axioms
from the ontologies prior to training and classification, because we wanted to get com-
parable results for all ontologies, independently of their respective numbers of existing
disjointness axioms.

When testing on any of the ontologies, we always classified (and evaluated against)
all possible pairs of classes — not just those explicitly marked as disjoint by the user. This
is because we hoped that the resulting redundancy would help to rule out incorrectly
classified pairs of classes in a post-processing (debugging) step. As a classifier for all
experiments, we used Weka’s implementation of NaiveBayes with default parameters®,
which turned out to perform slightly better in our initial tests than Decision Trees and
SVMs — especially on the smaller data sets.

Baseline and Evaluation Measures. We generated macro-average values for precision,
recall and F-measure!® by averaging over the respective results on the sets of positive
and negative examples. As a reasonable baseline for our evaluation, we computed a
majority baseline for accuracy (Accpqse), that is defined as the number of examples in
the majority class (e.g. “not disjoint”) divided by the overall number of examples. The
majority baseline represents the performance level that would be achieved by a naive
classifier that labels all entities in the test set with the majority class, i.e. “disjoint” for
all ontologies in our data set. This simple, yet efficient strategy is hard to beat, especially
for data sets that are relatively unbalanced and biased towards one of the target classes.

4.2 Results

Training on CMT
Classification|| Py | P—- | P ||Ry|R—| R || F+ | F- | F || Acc|Accpase

CMT||N/A|N/A|N/A||N/A|N/A|N/A|IN/A|N/A|N/A|IN/A| 68.5
CONFTOOL||90.7(96.6/93.7(199.5|58.2|78.9(|94.9|72.6|83.8||91.3| 80.3
CRS|[93.8/100.{96.9(/100.|68.8|84.4(|96.8(81.5|89.2{|94.5| 82.4
EKAW|(92.2|195.9/94.1|{99.6|52.0|75.8]|95.8|67.4|81.6|(92.5| 85.1
PCS|[80.7|98.0(89.4|(99.5|53.2|76.4||89.1|69.0|79.1||83.9| 66.3
SIGKDD||77.0{84.8|80.9(/97.7|30.9|64.3|(86.1|45.3(65.7||77.9| 70.4

Table 2. Results (NaiveBayes)

®http://www.cs.waikato.ac.nz/ml/weka/
011 the following we use the term F'-measure to refer to the F'-measure, where recall and
precision are evenly weighted.



Training on CONFTOOL

Classification

Py

P_[ P R

R_| R [F;

F

F

Ace

Accbase

CMT
CONFTOOL
CRS

EKAW

PCS
SIGKDD

83.8
N/A
93.6
92.5
81.0
77.1

85.0
N/A
84.6
79.1

84.4
N/A
89.1
85.8
86.7(83.9|(95.6
81.0{79.1|96.9

95.1
N/A
97.3
97.5

59.9
N/A
68.8
54.5

717.5
N/A
83.1
76.0
55.9|75.8|(87.7

89.1
N/A
95.4
94.9

70.2
N/A
759
64.5
68.0

31.764.3|185.9

45.5

79.7
N/A
85.7
79.7
719
65.7

84.0
N/A
92.3
91.1
82.2
77.6

68.5
80.3
82.4
85.1
66.3
70.4

Table 3. Res

ults (NaiveBaye

s)

Training

on CRS

Classification

P_[ P R,

R_|R[F;

F_

Ace

Accbase

CMT
CONFTOOL
CRS

EKAW

PCS
SIGKDD

81.1
88.7
N/A
89.6
78.4
76.1

86.6
82.0
N/A
86.3
87.0
83.3

92.0
75.3
N/A
83.0
95.6
90.5

98.0
96.0
N/A
98.8
98.9
98.8

50.4|74.2
50.0{73.0
N/A|N/A
34.1166.5
46.2|72.6

88.8
922
N/A
93.9
87.4

65.1
60.1
N/A
48.3
62.3

26.2(62.5|/86.0

40.6

77.0
76.2
N/A
71.1
74.9
63.3

83.0
86.9
N/A
89.2
81.2
77.3

68.5
80.3
82.4
85.1
66.3
70.4

Table 4. Results (NaiveBayes)

Training on EKAW

Classification

P_[ PRy

R_| R [ F;

F_

Acc

ACCbase

CMT
CONFTOOL
CRS

EKAW

PCS
SIGKDD

82.6
91.2
93.9
N/A
81.0
77.0

69.5
68.4
47.1
N/A
76.1|78.6(/90.7
68.3]72.7|(93.4

76.1
79.8
70.5
N/A

87.9
92.8
82.0
N/A

59.9
63.7
75.0
N/A

73.9
78.3
78.5
N/A

85.2
92.0
87.5
N/A
58.1|74.4|185.6
33.9(63.7||84.4

64.3
66.0
57.8
N/A
65.9
453

74.8
79.0
72.7
N/A
75.8
64.9

79.1
87.0
80.8
N/A
79.7
75.8

68.5
80.3
82.4
85.1
66.3
70.4

Table 5. Res

ults (NaiveBaye
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Training

on PCS

Classification

P_[ P R,

R_|R[F;

F

Ace

Accbase

CMT
CONFTOOL
CRS

EKAW

PCS
SIGKDD

85.6
89.9
93.3
91.9
N/A
78.8

86.8
524
66.7
91.8

86.2
71.2
80.0
91.9
N/A|N/A|IN/A
59.0(68.9|87.0

95.5
86.5
92.7
99.2

65.0(80.3
60.6|73.6
68.8(80.8
50.0{74.6
N/A|N/A|IN/A

90.2
88.2
93.0
95.4

74.3
56.2
67.7
64.7
N/A

44.4|165.7(|82.7

50.6

82.3
722
80.4
80.1
N/A
82.7

85.9
81.4
88.5
91.9
N/A
74.4

68.5
80.3
82.4
85.1
66.3
70.4

Table 6. Res

ults (NaiveBaye

s)

Traini

ng on SIGKDD

Classification

Py

P_[ PRy

R_[R[F,

F

Acc

ACCbase

CMT
CONFTOOL
CRS

EKAW

PCS
SIGKDD

94.7
92.6
93.5
95.5
83.4
N/A

84.4
533
75.9
65.4
83.1
N/A

89.6
73.0
84.7
80.5
83.3
N/A

924
84.4
95.3
93.1
934
N/A

88.7
72.6
68.8
75.0
63.4
N/A

90.1
78.5
82.1
84.1
78.4
N/A

93.5
88.3
94.4
94.3
88.1
N/A

86.5
61.4
72.1
69.9
72.0
N/A

90.0
74.9
83.3
82.1
80.1
N/A

91.3
82.1
90.7
90.4
83.3
N/A

68.5
80.3
82.4
85.1
66.3
70.4

Table 7. Results (NaiveBayes)




4.3 Feature Ranking

Table 8 shows a ranking of our features (see Section 2) with respect to their performance
on our data set. The first column contains the gain ratio [5] values that were computed
by averaging over all training data sets.

Not surprisingly, foveriap, and fs,y performed best on our data set. This is because
we exploited the taxonomy in the creation of the gold standard, assuming the ontologies
to be carefully designed. A different methodology for acquiring the reference set of
disjointness axioms and taxonomies of lower quality as in our earlier experiments would
probably have led to different results.

Two features, foyeriap; and fqo. did not contribute at all, which is easy to explain
for the first one, because there are no individuals contained in any of the ontologies, but
not completely obvious for the fy,., i.e. the document-based lexical context similarity.
We assume that the performance of this feature suffers from the fact that only very few
classes had associated Wikipedia articles in our experiments.

| Gain Ratio[Feature [Description

0.53953417| foveriap. Taxonomic overlap wrt. subclasses

0.52329850 | fsub Subsumption

0.10352250| fprop Object properties

0.06150700 fé’verlapc Taxonomic overlap wrt. subclasses (learned ontology)
0.04459383| f2.; Subsumption (learned ontology)

0.03102233| fygrams Label similarity (QGrams)

0.02297483| fuwn, WordNet similarity (Patwardhan-Petersen v1)

0.02070767| fjaro—winkier |Label similarity (JaroWinkler)
0.01720867 | fievenshtein |Label similarity (Levenshtein)

0.00706467| fpath Semantic distance
0.00089500| fuwn. WordNet similarity (Patwardhan-Petersen v2)
0.00010067 ffverlapi Taxonomic overlap wrt. instances (learned ontology)
0.0 faoe Lexical context similarity (Wikipedia articles)
0.0| fovertap; Taxonomic overlap wrt. instances

Table 8. Feature ranking: average gain ration (full training set)

5 Conclusion

In this report, we have presented the implementation and evaluation of LeDA, an open-
source tool for the automatic acquisition of disjointness axioms.

In the next weeks and month, we are going to perform a more detailed evaluation
on different subsets of our data (e.g. all sibling classes) and a deeper analysis of er-
rors made by the trained classifiers. By evaluating our approach on data from multiple
domains we further hope to find out more about content related and structural char-
acteristics of ontologies that hinder or facilitate learning disjointness. Finally, we will



implement a LeDA plugin for the NeOn Toolkit, in order to make our approach more
easily applicable within a standard ontology engineering process.

Acknowledgements: Research reported in this paper has been partially financed by
the EU under the IST-2006-027595 project NeOn (http://www.neon—-project.
com).

References

1. P. Cimiano and J. Volker. Text2onto - a framework for ontology learning and data-driven
change discovery. In A. Montoyo, R. Munoz, and E. Metais, editors, Proceedings of the
10th International Conference on Applications of Natural Language to Information Systems
(NLDB), volume 3513 of Lecture Notes in Computer Science, pages 227-238, Alicante, Spain,
JUN 2005. Springer.

2. Z. Harris. Distributional structure. In J. Katz, editor, The Philosophy of Linguistics, pages
2647, New York, 1985. Oxford University Press.

3. P.Jaccard. The distribution of flora in the alpine zone. 11:37-50, 1912.

4. B. Patwardhan and Pedersen. Using measures of semantic relatedness for word sense disam-
biguation. In Proceedings of the Fourth International Conference on Intelligent Text Process-
ing and Computational Linguistics, pages 241-257, FEB 2003.

5. J.R. Quinlan. C4.5 Programs for Machine Learning. Morgan Kaufmann, California, 1993.

6. O. Svab, S. Vojtech, P. Berka, D. Rak, and P. Tomasek. Ontofarm: Towards an experimental
collection of parallel ontologies. In Poster Proceedings of the International Semantic Web
Conference 2005, 2005.

7. J. Volker, D. Vrandecic, Y. Sure, and A. Hotho. Learning disjointness. In E. Franconi,
M. Kifer, and W. May, editors, Proceedings of the 4th European Semantic Web Conference
(ESWC’07), volume volume 4519 of Lecture Notes in Computer Science, pages 175-189.
Springer, JUN 2007.



