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Abstract. (Semi-)automatic mapping — also called (semi-)automatic alignment
— of ontologies is a core task to achieve interoperability when two agents or
services use different ontologies. In the existing literature, the focsisbdar
been on improving the quality of mapping results. We here consider QQ@iMkQ
Ontology Mapping, as a way to trade off between effectiveness (i@litgu

and efficiency of the mapping generation algorithms. We show that QGM ha
lower run-time complexity than existing prominent approaches. Thershow

in experiments that this theoretical investigation translates into practicditsene
While QOM gives up some of the possibilities for producing high-qualityltesu

in favor of efficiency, our experiments show that this loss of quality isgnait.

1 Introduction

Semantic mappinigbetween ontologies is a necessary precondition to edtaiblisr-
operation between agents or services using differentogies. In recent years we have
seen a range of research work on methods proposing such myadgi-3]. The focus
of the previous work, however, has been laid exclusivelynoproving theeffectiveness
of the approach (i.e. the quality of proposed mappings se@valuated against some
human judgement given either a posteriori or a priori).

When we tried to apply these methods to some of the real-woddasios we ad-
dress in other research contributions [4], we found thagtalg mapping methods were
not suitable for the ontology integration task at hand, ag il neglecte@fficiency To
illustrate our requirements: We have been working in reaitmsre light-weight ontolo-
gies are applied such as the ACM Topic hierarchy with @5 concepts or folder struc-
tures of individual computers, which corresponded® to 10° concepts. Finally, we
are working with Wordnet exploiting its0® concepts (cf. [5]). When mapping between
such light-weight ontologies, the trade-off that one hafate is between effectiveness
and efficiency. For instance, consider the knowledge manageplatform built on a
Semantic Web And Peer-to-peer basis in SWAP [4]. Itis ndtaaht to provide its user
with the best possible mapping, it is also necessary to ansisgjueries within a few
seconds — even if two peers use two different ontologies @ave hever encountered
each other before.

In this paper we present an approach that considers bothutdéygof mapping
results as well as the run-time complexity. Our hypothesithat mapping algorithms
may be streamlined such that the loss of quality (comparedgsiandard baseline) is
marginal, but the improvement of efficiency is so tremendia it allows for the

! Frequently also called alignment.



ad-hoc mapping of large-size, light-weight ontologies.stibstantiate the hypothesis,
we outline a comparison of the worst-case run-time behggwen in full detail in
[6]) and we report on a number of practical experiments. To@@aches used for our
(unavoidably preliminary) comparison represent difféi@asses of algorithms for on-
tology mapping. Comparing to these approaches we can abtwt/our new efficient
approach QOM achieves good quality. The complexity of QOM(fi® (n - log(n))
(measuring with being the number of the entities in the ontologies) agdir{st*) for
approaches that have similar effective outcomes.

The remainder of the paper starts with a clarification of tealogy (Section 2). To
compare the worst-case run-time behavior of different agghes, we then describe a
canonical process for ontology mapping that subsumes ffexatit approaches com-
pared in this paper (Section 3). The process is a core bgilliock for later deriving
the run-time complexity of the different mapping algorithnSection 4 presents our
toolbox to analyze these algorithms. In Section 5, diffesgyproaches for proposing
mappings are described and aligned to the canonical prooeesof them being our
approach QOM. The way to derive their run-time complexitpuglined in Section 6.
Experimental results (Section 7) complement the compag$oun-time complexities.
We close this paper with a short section on related work arahealasion.

2 Terminology

2.1 Ontology

As we currently focus on light-weight ontologies, we builid RDF/S to represent on-
tologies. To facilitate the further description, we brieglynmarize its major primitives
and introduce some shorthand notations. An RDF model isritbestcby a set of state-
ments, each consisting of a subject, a predicate and antohjeontologyO is defined
by its set of Concept§ (instances of “rdfs:Class”) with a corresponding substompt
hierarchyH ¢ (a binary relation corresponding to “rdfs:subClassOf"g@l&ionsR (in-
stances of “rdf:Property”) exist between single concdpédations are arranged alike in
a hierarchyHy, (“rdfs:subPropertyOf”). An entity € Z may be an instance of a class
¢ € C (“rdf:type”™). An instancei € Z may have ong or many role fillers froni¥ for a
relationr from R. We also call this type of tripléi, r, j) a property instance.

2.2 Mapping

We here define our use of the term “mapping”. Given two onte®@; andO,, map-
ping one ontology onto another means that for each entitga@otC, relation R, or
instancel) in ontology O, we try to find a corresponding entity, which has the same
intended meaning, in ontologys.

Definition 1. We define an ontology mapping functiamp, based on the vocabulary,
&, of all termse € £ and based on the set of possible ontologi®s,as a partial
function:

map:EXxOxO—=E&,

2 http:/lwww.w3.0rg/RDFS/



withVe € O1(3f € Os : map(e, O1,05) = f Vmap(e, 01,02) = 1).

A terme interpreted in an ontologg is either a concept, a relation or an instance,
i.e.ejp € CURUZ. We usually writee instead ofe|o when the ontology) is clear
from the context of the writing. We writeiap,,, o, (e) for map(e, O1, O2). We derive
arelationmap, o, by definingmap, o, (e, f) < mapg, o,(e) = f. We leave out
01, O when they are evident from the context and writep(e) = f andmap(e, f),
respectively. Once a (partial) mappingap, between two ontologie®; and O is
established, we also sagtititye is mapped onto entity” iff map(e, f). An entity can
either be mapped to at most one other entity. A pair of estilie f) that is not yet
in map and for which appropriate mapping criteria still need to ésted is called a
candidate mapping

2.3 Example

The following example illustrates a mapping. Two ontolagiy andO- describing the
domain of car retailing are given (Figure 1). A reasonabl@piieg between the two
ontologies is given in Table 1 as well as by the dashed lindsarfigure.

{Characteristic
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Fig. 1. Example Ontologies and their Mappings

| OntologyO; | OntologyOs |

Object Thing
Car Automobile
Porsche KA-128Mlarc’s Porschge
Speed Characteristig
250 km/h fast

Table 1. Mapping Table for Relatiomap,,, o, (e, f)

Apart from one-to-one mappings as investigated in this pape entity often has
to be mapped to a complex composite such as a concatenatiemtf (first and last
name) or an entity with restrictions (a sports-car is a cargytaster than 250 km/h). [7,



8] propose approaches for this. We do not deal with such sssfieomplete ontology
mappings here.

3 Process

We briefly introduce a canonical process that subsumeseaathtipping approaches we
are aware of. Figure 2 illustrates its six main steps. It is started witlo twntologies,
which are going to be mapped onto one another, as its input:

1. Feature engineeringransforms the initial representation of ontologies inforanat
digestible for the similarity calculations. For instanttes subsequent mapping process
may only work on a subset of RDFS primitives.

2. Selection of Next Search Step3he derivation of ontology mappings takes place in
a search space of candidate mappings. This step may choasenpute the similarity
of a restricted subset of candidate concepts déirsf)|e € Oy, f € Oz} and to ignore
others.

3. Similarity Computation determines similarity values of candidate mappings.

4. Similarity Aggregation. In general, there may be several similarity values for a
candidate pair of entities f from two ontologiesD,, O, e.g. one for the similarity of
their labels and one for the similarity of their relationsto other terms. These different
similarity values for one candidate pair must be aggregateda single aggregated
similarity value.

5. Interpretation uses the individual or aggregated similarity values tovdamappings
between entities fron®; and O,. Some mechanisms here are, to use thresholds for
similarity mappings [2], to perform relaxation labelling]] or to combine structural
and similarity criteria.

6. Iteration. Several algorithms perform an iteration over the wholecgss in order
to bootstrap the amount of structural knowledge. Iteratiay stop when no new map-
pings are proposed. Note that in a subsequent iterationrgeyeral of steps 1 through
5 may be skipped, because all features might already beablaih the appropriate for-
mat or because some similarity computation might only beired in the first round.
Eventually, the output returned is a mapping table reptesgprthe relation

I’Ila.pol)o2 .

Iteration {8) \
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@ npy Feature Search Step Similarity Similarity Inter- i
@ Engineering Selection Computation Aggregation pretation

Fig. 2. Mapping Process

3 The process is inspired by CRISP-DM, http://www.crisp-dm.org/, thes8Ruadustry Standard
Process for Data Mining.



4 A Toolbox of Data Structures and Methods

The principal idea of this section is to provide a toolbox afaistructures and methods
common to many approaches that determine mappings. Thés g a least common
denominator based on which concrete approaches instagttat process depicted in
Figure 2 can be compared more easily.

4.1 Features of Ontological Entities

To compare two entities from two different ontologies, onesiders their characteris-
tics, i.e. their features. The features may be specific foappimg generation algorithm,
in any case the features of ontological entities (of corg;eptations, instances) need to
be extracted from extensional and intensional ontologydiefns. See also [9] and [10]
for an overview of possible features and a classificatioh@fit. Possible characteristics
include:

— ldentifiers i.e. strings with dedicated formats, such as unified resoidentifiers
(URIs) or RDF labels.

— RDF/S Primitivessuch as properties or subclass relations

— Derived Featureswhich constrain or extend simple RDFS primitives (ermpst-
specific-class-of-instance)

— Aggregated Features.e. aggregating more than one simple RDFS primitive, &.9.
sibling is every instance-of the parent-concept of an imta

— OWL Primitives such as an entity being tsameAs another entity

— Domain Specific Featureare features which only apply to a certain domain with
a predefined shared ontology. For instance, in an applicatiwere files are repre-
sented as instances and the relatiashcode-of-file is defined, we use this feature
to compare representations of concrete files.

Example We again refer to the example in Figure 1. The actual featomsists of a jux-
taposition of relation name and entity name. T concept of ontology 1 is character-
ized through itsl@bel, Car), the concept which it is linked to througsubclassOf, Ve-
hicle), its (concept siblingboat), and the (direct properthasSpeed). Car is also de-
scribed by its instances through (instanersche KA-123). The relatiorhasSpeed

on the other hand is described through the (dom@am) and the (rangeSpeed).
An instance would b&orsche KA-123, which is characterized through the instanti-
ated (property instanceh@sOwner, Marc)) and (property instancehésSpeed, 250
km/h)).

4.2 Similarity Computation

Definition 2. We define a similarity measure for comparison of ontologitieatas a
function as follows (cf. [11]):

sim: ExEx O xO—[0,]1]



Different similarity measuresmy (e, f, O1, O2) are indexed through a labkl Further,
we leave ouq, O, when they are evident from the context and wsitey (e, f). The
following similarity measures are needed to compare thteifea of ontological entities
at iterationt.

— Object Equalityis based on existing logical assertions — especially dessrfrom
previous iterationssim,y; (a, b) := {1 iff map,_; (a) = b, 0 otherwisg

— Explicit Equalitychecks whether a logical assertion already forces twoiestio
be equalsime,y,(a,b) := {1 iff statement(a, “sameAs”,b), 0 otherwisg

— String Similaritymeasures the similarity of two strings on a scale from 0 tof1 (c
[12]) based on Levenshtein’s edit distane€[13].

. L min(|c|,|d|)—ed(c,d)
SlInSt/,»(C7 d) = max((), W)

— SimSetFor many features we have to determine to what extent tvgoagentities
are similar. To remedy the problem, multidimensional saalil4] measures how
far two entities are from all other entities and assumesitiiay have very similar
distances to all other entities, they must be very similar:

simee(E. ) = Efgf=  Zfgt

with e = (sim(e, e1),sim(e, e3), . .., sim(e, f1),sim(e, f2),...), f analogously.

These measures are all input to the similarity aggregation.

4.3 Similarity Aggregation

Similarities are aggregated by:

Simagg(€7 f) = Zk:lmn wnaditsime (e,])

=1l...n U)k
with wy, being the weight for each individual similarity measureq adj being a func-
tion to transform the original similarity valuedj : [0, 1] — [0, 1]), which yields better
results.

4.4 Interpretation

From the similarity values we derive the actual mappings basic idea is that each
entity may only participate in one mapping and that we aseigppings based on a
threshold: and a greedy strategy that starts with the largest simjlaaltues first. Ties
are broken arbitrarily byirgimaz , 5y, but with a deterministic strategy.
P(L,L,EU{L},EU{L}).
P(g.h.U\{e}, V\{f}) < Ple. f,U, V) Asim(g, h) >
A(g; h) = argmax g pycin\ (e} x v\ {7} 5Magg (9, 2
map(e, f) «— 3X1, XoP(e, f, X1, X2) A (e, f) £ (L, L

~— — o~

5 Approaches to Determine Mappings

In the following we now use the toolbox, and extend it, toayiider to define a range of
different mapping generation approaches. In the courski®kection we present our
novel Quick Ontology Mapping approach — QOM.



5.1 Standard Mapping Approaches

Our Naive Ontology Mapping (NOM)[9] constitutes a straigbtward baseline for
later comparisons. It is defined by the steps of the procestehas follows. Where
appropriate we point to related mapping approaches anfiyiiiescribe the difference
in comparison to NOM.

1. Feature EngineeringFirstly, the ontologies have to be represented in RDFS. \We us
features as shown in Section 4.1.

For PROMPT and Anchor-PROMPT [2] any ontology format is ahiié as long as it
can be used in the Protege environment. GLUE [3] learns iarach; based on a sample
mapping set, a similarity estimator to identify equal imstas and concepts.

2. Search Step SelectioAll entities of the first ontology are compared with all et
of the second ontology. Any pair is treated as a candidateomgp

This is generally the same for other mapping approacheagththe PROMPT algo-
rithm can be implemented more efficiently by sorting the lafiest, thus only requiring
the comparison of two neighboring elements in the list.

3. Similarity Computation The similarity computation between an entity @f and
an entity ofO- is done by using a wide range of similarity functions. Eachilsirity
function is based on a feature (Section 4.1) of both ontegnd a respective similar-
ity measure (Section 4.2). For NOM they are shown in Table 2.

The PROMPT system determines the similarity based on thet expality (not only
similarity) of labels. Anchor-PROMPT adds structural caments. In GLUE the sim-
ilarity is gained using the previously learned Similaritgtihator. It further adds other
features using Relaxation Labelling based on the intuiti@ mappings of a node are
typically influenced by the node’s neighborhood.

4. Similarity Aggregation NOM emphasizes high individual similarities and de-
emphasizes low individual similarities by weighting inidival similarity results with
a sigmoid function first and summing the modified values tAenproduce an aggre-
gated similarity (cf. Section 4.2) NOM appliedj(z) = ﬁ Weightsw, are
assigned by manually maximizing the f-measure on ovewhimg data from different
test ontologies.

In systems with one similarity value such as PROMPT or GLUE #tep does not
apply.

5. Interpretation NOM interpretes similarity results by two means. First,gphes a
threshold to discard spurious evidence of similarity. ®elc&NOM enforces bijectivity
of the mapping by ignoring candidate mappings that wouldateothis constraint and
by favoring candidate mappings with highest aggregatedasity scores.

As PROMPT is semi-automatic this step is less crucial. Ispn¢s all pairs with a
similarity value above a relatively low threshold value #éinel users can decide to carry
out the merging step or not. The relaxation labelling prec#sSLUE can also be seen
as a kind of interpretation.

6. Iteration The first round uses only the basic comparison method baskdbels and

string similarity to compute the similarity between ertiti By doing the computation
in several rounds one can access the already computed pdiosa more sophisticated
structural similarity measures. Therefore, in the secanthd and thereafter NOM re-



| ComparindNo| Feature | Similarity Measure |

1 (label X1) string similarity(X1, X»)

2 (URL) string equalitylU RI,, U RI>)

3 (X1,sameAsX>) relation explicit equality(X; , X2)

4 (direct properties;;) SimSett, Y2)

5 | all (inherited propertie$;) SimSett, Y2)
Concepts 6 all (super-concepts;) SimSetf7, Y2)

7 all (sub-concept¥}) SimSetl, Y2)

8 (concept siblings;) SimSett1, Ya)

9 (direct instance¥; ) SimSetf, Y)

10 (instances;;) SimSet{1, Y2)

1 (label X1) string similarity (X, X»)

2 (URIL) string equalityU RI1, U RI5)

3 (X1,sameAsX,) relation explicit equality(X;, X3)
Relations 4 |(domainX 1) and (rangeX,1)|object equalityX 41, Xa2), (Xr1, Xr2)

5 all (super-propertie¥;) SimSetl, Y2)

6 all (sub-propertied;) SimSett, Y2)

7 (property siblingsy?) SimSett1, Y2)

8 (property instances;) SimSett, Y2)

1 (label X1) string similarity (X, X»)

2 (URL) string equalitylU RI,, U RI>)
Instances | 3| (X1,sameAsX,) relation explicit equality(X1, X»)

4 all (parent-concepts;) SimSet{, Y2)

5 (property instances; ) SimSet{7, Y2)
Property- | 1 |(domainX41) and (rangeX,1)|object equality 41, Xa2), (Xr1, Xr2)
Instances | 2 (parent property;) SimSet{, Y2)

Table 2. Features and Similarity Measures for Different Entity Tyggontributing to
Aggregated Similarity in NOM. The corresponding ontologyindicated through an
index.

lies on all the similarity functions listed in Table 2.

PROMPT also requires these iterations after feedback hers dieen by the user. The
GLUE system heavily relies on iterations for the relaxatiivelling process. Both do
not change the strategies during the iterations.

5.2 QOM — Quick Ontology Mapping

The goal of this paper is to present an efficient mapping ahyar For this purpose, we
optimize the effective, but inefficient NOM approach towsadir goal. The outcome is
QOM — Quick Ontology Mapping. We would also like to point obat the efficiency
gaining steps can be applied to other mapping approacheslas w

1. Feature EngineeringLike NOM, QOM exploits RDF triples.

2. Search Step Selectio major ingredient of run-time complexity is the number of
candidate mapping pairs which have to be compared to agfirad the best mappings.
Therefore, we use heuristics to lower the number of candiai@ppings. Fortunately we
can make use of ontological structures to classify the dateimappings into promis-
ing and less promising pairs.



In particular we use a dynamic programming approach [15this approach we
have two main data structures. First, we have candidate imgg@pvhich ought to be
investigated. Second, an agenda orders the candidate myappiiscarding some of
them entirely to gain efficiency. After the completion of thienilarity analysis and
their interpretation new decisions have to be taken. Theesyblas to determine which
candidate mappings to add to the agenda for the next itardthe behavior of initiative
and ordering constitutes a search strategy.

We suggest the subsequent strategies to propose new dandidppings for in-
spection:

Random A simple approach is to limit the number of candidate mappimgselecting
either a fixed number or percentage from all possible maping

Label This restricts candidate mappings to entity pairs whoseléafire near to each
other in a sorted list. Every entity is compared to its “ldbedighbors.

Change Propagation QOM further compares only entities for which adjacent eit
were assigned new mappings in a previous iteration. Thisoisvated by the fact
that every time a new mapping has been found, we can expelstaditad similar
entities adjacent to these found mappings. Further, toeptexery large numbers
of comparisons, the number of pairs is restricted.

Hierarchy We start comparisons at a high level of the concept and piyptstonomy.
Only the top level entities are compared in the beginning.thiés subsequently
descend the taxonomy.

Combination The combined approach used in QOM follows different optatian
strategies: it uses a label subagenda, a randomness sdhagew a mapping
change propagation subagenda. In the first iteration tet faibagenda is pursued.
Afterwards we focus on mapping change propagation. Fivedl\shift to the ran-
domness subagenda, if the other strategies do not idenfffgisntly many correct
mapping candidates.

With these multiple agenda strategies we only have to chéigkéand restricted num-
ber of mapping candidates for each original erftiBlease note that the creation of the
presented agendas does require processing resources itsel

3. Similarity Computation QOM, just like NOM, is based on a wide range of ontol-
ogy feature and heuristic combinations. In order to opt@é@OM, we have restricted
the range of costly features as specified in Table 3. In pdaticQOM avoids the com-
plete pair-wise comparison of trees in favor of a(n incortg)léop-down strategy. The
marked comparisons in the table were changed from featunehwoint to complete
inferred sets to features only retrieving limited size dirgets.

4. Similarity Aggregation The aggregation of single methods is only performed once
per candidate mapping and is therefore not critical for trexall efficiency. Therefore,
QOM works like NOM in this step.

5. Interpretation Also the interpretation step of QOM is the same as in NOM.

6. Iteration QOM iterates to find mappings based on lexical knowledgedirdtbased

on knowledge structures later.

* We have also explored a number of other strategies or combinationsitigiers with simple
data sets but they did not outperform results of QOM presented here.



| Comparing [Change] Feature |Similarity Measuré

5 all (inherited propertiesy;) SimSett, Y2)
Concepts — bBa |(properties of direct super-concepts)| SimSetl, Ys)
6 all (inherited super-concepts;) SimSett, Y2)
— 6a (direct super-concept’}) SimSett, Y2)
7 all (inherited sub-concept¥}) SimSet{, Y2)
— 7a (direct sub-concept%;;) SimSetfs, Y2)
10 all (inherited instances;1) SimSett, Y2)
— 104 (instances of direct sub-concepl§) | SimSet{i, Ys)
Relations 5 all (inherited super-propertie®;) SimSett, Y2)
— ba (direct super-properties;;) SimSet{, Y2)
6 all (inherited sub-propertie¥;) SimSet{, Y2)
— 6a (direct sub-properties;;) SimSet{7, Y2)
Instances 4 all (inherited parent-concepts;) SimSet{, Y2)
— 4a (direct parent-concept¥;) SimSett, Y2)

Table 3. Features and Similarity Measures for Different Entity Ty@&ontributing to
Aggregated Similarity in QOM. The lower case “a” indicatbattthe feature has been
modified for efficiency considerations.

In all our tests we have found that after ten rounds hardlyfarifier changes occur
in the mapping table. This is independent from the actualsizhe involved ontologies.
QOM therefore restricts the number of runs.

Assuming that ontologies have a fixed percentage of entitits similar lexical
labels, we will easily find their correct mappings in the fitstation. These are further
evenly distributed over the two ontologies, i.e. the distato the furthest not directly
found mapping is constant. Through the change propagatjenda we pass on to the
next adjacent mapping candidates with every iteration. sSkp number of required
iterations remains constant; it is independent from the sfzhe ontologies.

6 Comparing Run-time Complexity

We determine the worst-case run-time complexity of the ritigms to propose map-
pings as a function of the size of the two given ontologieréhy, we wanted to base
our analysis on realistic ontologies and not on artifacts.Wdnted to avoid the con-
sideration of large ontologies withleaf concepts but a depth of the concept hierarchy
Hc of n — 1. [16] have examined the structure of a large number of ogtetoand
found, that concept hierarchies on average have a branfdgtay of around® and that
the concept hierarchies are neither extremely shallow rivemely deep. The actual
branching factor can be described by a power law distributitence, in the following
we base our results on their findings.

Theorem 1. The worst case run-time behaviors of NOM, PROMPT, Anchd®RT,
GLUE and QOM are given by the following table:



NOM O(n? -log*(n))
PROMP?P O(n -log(n))
Anchor-PROMPT | O(n? - log?(n))
GLUE® 0(n?)

QOM O(n - log(n))

Proof Sketch 1 The different algorithmic steps contributing to complgkire aligned
to the canonical process of Section 3.

For each of the algorithms, one may then determine the cdstach step. First,
one determines the cost for feature engineerifegf. The second step is the search
step i.e. candidate mappings selectigerl§. For each of the selected candidate map-
pings comp we need to compute different similarity functionsim, and aggregate
them @gg. The number of entities involved and the complexity of dspective simi-
larity measure affect the run-time performance. Subsetfythre interpretation of the
similarity values with respect to mapping requires a rum&i complexity ofnter. Fi-
nally we have to iterate over the previous steps multiplesitter).

Then, the worst case run-time complexity is defined for glt@gches by:

c = (feat + sele + comp - (3, simy + agg) + inter) - iter

Depending on the concrete values that show up in the indiidcess steps the dif-
ferent run-time complexities are derived in detail in [6].

7 Empirical Evaluation and Results

In this section we show that the worst case considerationry oser to practical ex-
periments and that the quality of QOM is only negligibly lovtban the one of other
approaches. The implementation itself was coded in Java tise KAON-framework
for ontology operations.

7.1 Test Scenario

Metrics We use standard information retrieval metrics to assesdlifferent ap-
proaches (cf. [17]):
#correct_found_-mapping

Precision p = # found_-mappings
Recall r o= #correct_found_-mappings
- #Hexisting-mappings

F-Measuref; = =~

5 This complexity assumes an ideal implementation of PROMPT using a sorte@Hes tool
itself requiresO(n?).

8 This result is based on optimistic assumptions about the learner.

" In this paper we assume that the retrieval of a statement of an ontoltityyfesm a database
can be done in constant access time, independent of the ontology.gizgaged on sufficient
memory and a hash function.

8 http://kaon.semanticweb.org/



Data Sets Three separate data sets were used for evaluation purpasesl world on-
tologies and especially their mappings are scarce, stagere asked to independently
create and map ontologiés.

Russia 1In this first set we have two ontologies describing Russia Jtudents cre-
ated the ontologies with the objectives to represent theecoof two independent travel
websites about Russia. These ontologies have approxiym#i8lentities each, includ-
ing concepts, relations, and instances. The total numbposdible mappings is 160,
which the students have assigned manually.

Russia 2The second set again covers Russia, but the two ontologienare difficult
to map. After their creation they have been altered by dedetitities and changing the
labels at random. They differ substantially in both labeld atructure. Each ontology
has 300 entities with 215 possible mappings, which wereucag@tduring generation.
Tourism Finally, the participants of a seminar created two ont@egihich separately
describe the tourism domain of Mecklenburg-VorpommernthBmntologies have an
extent of about 500 entities. No instances were modellet thits ontology though,
they only consist of concepts and relations. The 300 magpirege created manually.

Strategies We evaluated the mapping strategies described in the pegections:

— PROMPT — As the PROMPT algorithm is rather simple and fast & it as
a baseline to evaluate the speed. The empirical evaluatibased on the actual
implementation of PROMPT rather than its theoretic potnés described in the
previous section.

— NOM / Anchor-PROMPT — Naive Ontology Mapping is an approadking use
of a wide range of features and measures. Therefore it reduitle levels of effec-
tiveness and represents our quality baseline. In termsuaftstal information used
and complexity incurred it is similar to Anchor-PROMPT.

— QOM — Quick Ontology Mapping is our novel approach focusimgedficiency.

To circumvent the problem of having semi-automatic mergimgs (PROMPT and
Anchor-PROMPT) in our fully automatic mapping tests, weuassd that every propo-
sition of the system is meaningful and correct. Further, atad difficulties in running
Anchor-PROMPT with the size of the given data sets, we rafethé results of the
somewhat similar NOM. For GLUE we face another general gmoblThe algorithm
has a strong focus on example instance mappings. As we cgrotle this, we re-
frained from running the tests on a poorly trained estimatoich would immediately
result in poor quality results.

7.2 Results and Discussion

We present the results of the strategies on each of the datangéigures 3 and 4. The
tourism dataset shows similar characteristics as Russial Isatherefore not plotted.
The x-axis shows the elapsed time on a logarithmic scalgj-thés corresponds to the
f-measure. The symbols represent the result after eactiderstep.

% The datasets are available from http://www.aifb.uni-karlsruhe.de/WBSmapping/.
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Depending on the scenario PROMPT reaches good resultsweitsihort period of
time. Please notice that for ontologies with a small numlbainilar labels (Figure 4)
this strategy is not satisfactory (f-measure 0.06). In st} the f-measure value of the
NOM strategy rises slowly but reaches high absolute valfiep to 0.8. Unfortunately
it requires a lot of time. Finally the QOM Strategy is plottédreaches high quality
levels very quickly. In terms of absolute values it also se¢oreach the best quality
results of all strategies. This appears to be an effect of Caahleving an about 20
times higher number of iterations than NOM within the givienet frame.

Lessons LearnedWe had the hypothesis that faster mapping results can baetta
with only a negligible loss of quality. We here briefly preséme bottom line of our
considerations in this paper:

1. Optimizing the mapping approach for efficiency — like QOBEd — decreases
the overall mapping quality. If ontologies are not too laggee might prefer to
rather avoid this.

2. Labels are very important for mapping, if not the most intgat feature of all, and
alone already return very satisfying results.



3. Using an approach combining many features to determinmpimgs clearly leads
to significantly higher quality mappings.

4. The Quick Ontology Mapping approach shows very good tesQuality is low-
ered only marginally, thus supporting our hypothesis.

5. QOM is faster than standard prominent approaches by arfat10 to 100 times.

Recapitulating we can say that our mapping approach is feggtive and efficient.

8 Related Work

We only present closely related work not yet mentioned is faiper.

Various authors have tried to find a general descriptionrafiarity with several of
them being based on knowledge networks. [18] give a geneeaview of similarity.

Original work on mapping is presented by [19] in their tool @WI, which uses
inferencing to execute mappings, but is based on manuaigrasd mappings or very
simple heuristics. An interesting approach for schema ardl@agy mapping is pre-
sented by [20]. Explicit semantic rules are added for carsition. A SAT solver is
used to prevent mappings to imply semantical contradistion

Despite the large number of related work on effective mappineady mentioned
throughout this paper, there are very few approaches gatiBmissue of efficiency.

Apart from the ontology domain research on mapping and raten has been done
in various computer science fields. [1] present an appraaitiégrate documents from
different sources into a master catalog. There has alsorbsearch on efficient schema
and instance integration within the database community). i2a good source for an
overview. Due to the different domain comparisons with qapraach are very difficult.

9 Conclusion

The problem of mapping two ontologies effectively and edfittly arises in many ap-
plication scenarios [4, 5]. We have devised a generic psorexdel to investigate and
compare different approaches that generate ontology mgepin particular, we have
developed an original method, QOM, for identifying map@ibhgtween two ontologies.
We have shown that it is on a par with other good state-ofatth@lgorithms concerning
the quality of proposed mappings, while outperforming thveith respect to efficiency
— in terms of run-time complexity@(n - log(n)) instead ofO(n?)) and in terms of

the experiments we have performed (by a factor of 10 to 100).
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