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The Semantic Web augments the current WWW by giving information a well-defined meaning,
better enabling computers and people to work in cooperation. This is done by adding machine
understandable content to web resources. Such added content is called metadata, whose semantics
is provided by referring to an ontology—a domain’s conceptualization agreed upon by a community.
The Semantic Web relies on the complex interaction of several technologies involving ontologies.
Therefore, sophisticated Semantic Web applications typically comprise more than one software
module. Instead of coming up with proprietary solutions, developers should be able to rely on a
generic infrastructure for application development in this context. We call such an infrastructure
Application Server for the Semantic Web whose design and development are based on existing
Application Servers. However, we apply and augment their underlying concepts for use in the
Semantic Web and integrate semantic technology within the server itself. The article discusses
requirements and design issues of such a server, presents our implementation KAON SERVER
and demonstrates its usefulness by a detailed scenario.

Categories and Subject Descriptors: D.2.6 [Software Engineering]: Programming Environments;
D.2.7 [Software Engineering]: Distribution, Maintenance, and Enhancement—Extensibility;
D.2.11 [Software Engineering]: Software Architectures; H.3.5 [Information Storage and Re-
trieval]: Online Information Services—Web-based services

General Terms: Design, Languages, Management
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1. INTRODUCTION

The Internet was designed as an information space, with the goal that it should
be useful not only for human-human communication, but also that machines
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Fig. 1. Information flow in the research and academia example.

would be able to participate and help. One of the major obstacles to this is the
fact that most information on the WWW is designed for human consumption,
and even if it were derived from a database with well defined meanings (in
at least some terms), the meaning of the data would not be evident to a web
application system.1

The way out of this shortcoming is the Semantic Web, which augments the
current WWW by giving information a well-defined meaning, better enabling
computers and people to work in cooperation [Fensel et al. 2003]. This is done
by adding machine understandable content to Web resources. The results of
this process are metadata, usually circumscribed as data about data, that can
be a simple statement like “site x’s author is Daniel Oberle.” Descriptions like
this are given their semantics by referring to an ontology, a domain’s conceptu-
alization agreed upon by a community [Gruber 1993]. In the statement above,
we could express that “Daniel Oberle” is a “PhD-Student” and “PhD-Student”
is a specialization of “Graduate-Student.”

Ontologies serve various needs in the Semantic Web, like storage or exchange
of data corresponding to an ontology, ontology-based reasoning or ontology-
based navigation. Building a complex Semantic Web application, one may not
rely on a single software module to deliver all of these different services. The
developer of such a system would rather want to easily combine different—
preferably existing—software modules.

An example would be the domain ontology for an application supporting
research and academia. Such an application, manages information about
a university’s staff, their publications, students, and courses. Its ontology
can be easily expressed by Semantic Web languages and constructed by a
corresponding editor (cf. Figure 1). There will be properties of concepts that
require structured XML Schema data types [Biron and Malhotra 2001] whose
correctness can be checked by a validator. A description logic reasoner is
usually applied for semantic validation of the ontology. An ontology store saves
the ontology and can be reused by a research and academia portal. The latter

1Semantic Web Roadmap, Tim Berners-Lee, http://www.w3.org/DesignIssues/Semantic.html.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.



P1: OJL
acmj054-02 ACM-TRANSACTION April 25, 2005 21:57

Supporting Application Development in the Semantic Web • 3

may exploit a rule-based inference engine that is capable of handling large
amounts of instances and deduction of additional information by rules.

So far, such integration of ontology-based modules has had to be done in an
ad hoc manner, generating a one-off endeavour, with little possibilities for reuse
and future extensibility of individual modules or the overall system.

This article is about an infrastructure that facilitates plug’n’play engineer-
ing of ontology-based modules and thus, the development and maintenance
of comprehensive Semantic Web applications, an infrastructure that we call
Application Server for the Semantic Web (ASSW ). It facilitates reuse of ex-
isting modules, for example, ontology stores, editors, and inference engines.
It combines means to coordinate the information flow between such modules,
to define dependencies, to broadcast events between different modules and to
translate between ontology-based data formats.

Existing Application Servers [Mohan et al. 2001] are frequently viewed as
part of a three-tier application, consisting of a front-end, for example, web
browser-based graphical user interface, a middle-tier business logic applica-
tion or set of applications, and a third-tier, back-end, database, and transaction
server. The Application Servers are the middleware between browser-based
front-ends and back-end databases and legacy systems.2 Typically their func-
tionality comprises connectivity and security, flexible handling of software mod-
ules, monitoring, transaction processing and so on.

The Application Server for the Semantic Web will help to put the Semantic
Web into practice because it adopts this idea for easier development of Semantic
Web applications. In our scenario (cf. Figure 1), such a server would facilitate
the building of the portal, for example, by enabling the reuse of required
software modules. The portal as a whole would become part of the Semantic
Web because it publishes and consumes ontology-based metadata. The fact
that an Application Server for the Semantic Web is used is merely a relief for
the developer. The greatest benefit is in the building of complex applications.
We do not envision every Semantic Web application being built by such a
server, analogous to applications in general that are not all developed on the
basis of application servers. Apart from facilitating application development,
our server uses semantic technology, which allows us to achieve an even
greater functionality than existing Application Servers.

The article is structured as follows: First, we provide a brief overview of the
Semantic Web, in particular of its languages, in Section 2. We list requirements
for an Application Server for the Semantic Web in Section 3. Sections 4 and 5 de-
scribe the design decisions that directly meet important requirements, namely
extensibility, and ones that call for the semantic enhancement of the server. The
conceptual architecture is then provided in Section 6. Section 7 presents the
KAON SERVER, a particular Application Server for the Semantic Web, which
was developed as part of the EU-funded WonderWeb project. In Section 8 we
elaborate on the scenario depicted in Figure 1: how it can be implemented by
making use of the KAON SERVER. Related work and conclusions are given in
Sections 9 and 10, respectively.

2cf. searchDatabase.com, http://searchdatabase.techtarget.com.
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Fig. 2. Static and dynamic aspects of the Semantic Web layer cake.

2. THE SEMANTIC WEB

In this section we want to introduce the reader to the architecture and lan-
guages of the Semantic Web that we support in our Application Server. The left
hand side of Figure 2 shows the static part of the Semantic Web,3: its language
layers. Unicode, the URI and namespaces (NS) syntax and XML are used as a
basis. XML’s role is limited to that of a syntax carrier for data exchange. XML
Schema [Biron and Malhotra 2001] defines simple data types like string, date,
or integer.

The Resource Description Framework (RDF) may be used to make simple
assertions about Web resources or any other entity that can be named. A sim-
ple assertion is a statement that an entity has a property with a particular
value, for example, that this article has a title property with value “Supporting
application development in the Semantic Web.” RDF Schema extends RDF by
class and property hierarchies that enable the creation of simple ontologies.

RDF and RDFS are already standardized by the World Wide Web Consortium
(W3C) [Lassila and Swick 1999]. Figure 3 depicts an example for ontology-based
metadata in the domain of research and academia. The ontology features a con-
cept Person, with specializations such as Graduate-Student, PhD-Student as
well as AcademicStaff and AssistantProfessor. RDFS’ modelling primitives for-
malize the domain description as RDF statements, for example, “PhD-Student
rdfs:subClassOf Graduate-Student.” CooperatesWith is a symmetric property
defined on Person by using the rdfs:domain and rdfs:range primitives.

XML serializations of RDF statements can be added to Web resources
like the homepages of PhD-Student “Daniel Oberle,” and AssistantProfessor
“Steffen Staab.” The metadata formally define both as instances of the ontol-
ogy’s concepts through the rdf:type primitive. Relationships are provided with
formal semantics by referring to the ontology. A search engine could later infer
that “Steffen Staab” also cooperates with “Daniel Oberle”, because the property
is defined to be symmetric.

3Semantic Web—XML 2000, Tim Berners-Lee, http://www.w3.org/2000/Talks/1206-xml2k-
tbl/Overview.html.
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Fig. 3. Semantic Web example.

The Ontology layer features the Web Ontology Language (OWL [van
Harmelen et al. 2003]). OWL is a family of richer ontology languages consist-
ing of OWL Lite, DL and Full. They augment RDF Schema and are based
on the descriptions logics (DL) paradigm [Baader et al. 2003]. OWL Lite is
the simplest of these. It is a limited version of OWL DL, enabling simple and
efficient implementation. OWL DL is a richer subset of OWL Full for which
reasoning is known to be decidable so complete reasoners may be constructed,
though they will be less efficient than an OWL Lite reasoner. OWL Full is the
full ontology language, which is however undecidable.

The Logic layer4 will provide an interoperable language for describing the
sets of deductions one can make from a collection of data—how, given an
ontology-based information base, one can derive new information from existing
data.

The Proof language will provide a way of describing the steps taken to reach
a conclusion from the facts. These proofs can then be passed around and veri-
fied, providing short cuts to new facts in the system without having each node
conduct the deductions themselves.

The Semantic Web’s vision is that once all these layers are in place, we will
have an environment in which we can trust that the data we are seeing, the

4A better description of this layer would be “Rule layer,” as the Ontology layer already features a
logic calculus with reasoning capabilities. We here use the naming given by Tim Berners-Lee in
his roadmap.
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deductions we are making, and the claims we are receiving have some value.
The goal is to make a user’s life easier by the aggregation and creation of new,
trusted information over the Web [Dumbill 2001]. The standardization process
has currently reached the Ontology layer—Logic, Proof and Trust layers aren’t
specified yet.

The right hand side of Figure 2 depicts the Semantic Web’s dynamic aspects
that apply to data across all layers. Often, the dynamic aspects are neglected
by the Semantic Web community, however, from our point of view, they are
essential for putting the Semantic Web into practice. Transactions and roll-
backs of Semantic Web data operations should be possible, following the well-
known ACID properties (atomicity, consistency, independence, durability) of
Database Management Systems (DBMS). Evolution and versioning of ontolo-
gies are important aspects, because ontologies usually are subject to change (cf.
Stojanovic at al. [2002a]). As in all distributed environments, monitoring of data
operations becomes necessary for security reasons. Finally, reasoning engines
must be applied for the deduction of additional facts5 as well as for semantic
validation.

3. REQUIREMENTS

The requirements for an Application Server for the Semantic Web can be divided
into five groups. First, such a server should respond to the static aspects of the
Semantic Web layer cake. Second, the dynamic aspects result in another group
of requirements: finding, accessing, modifying and storing of data, transactions
and rollbacks, evolution and versioning, monitoring as well as inferencing and
verification. Third, clients may want to remotely connect to the server by differ-
ent protocols and must be properly authorized. Hence, another group deals with
connectivity and security. Fourth, the system is expected to facilitate an extensi-
ble and reconfigurable infrastructure. This set of requirements therefore deals
with flexible handling of modules. The last group subsumes requirements that
are associated with semantic descriptions of software modules. In the following
subsections we will investigate the groups organized in common requirements
that hold for every Application Server (Subsection 3.1), requirements that are
specific to the Semantic Web (Subsection 3.2) and requirements that call for
the semantic enhancement of the server itself (Subsection 3.3).

3.1 Common Requirements

3.1.1 Connectivity and Security.

—Connectivity. An Application Server for the Semantic Web should enable
loose coupling, allowing access through standard protocols, as well as close
coupling by embedding it into an application. In other words, a client should
be able to use the system locally and connect to it remotely.

5E.g. if “cooperatesWith” is defined as a symmetric property in OWL DL between persons, a rea-
soner should be able to deduce that B cooperatesWith A, given the fact that A cooperatesWith
B.
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—Ease of use. A developer does not want to expend extra effort in connecting to
and using a software module when an Application Server for the Semantic
Web is applied. A software module ought to be accessed seamlessly.

—Offering functionality via different communication protocols. There might be
the need to offer a software module’s functionality via another communica-
tion protocol. The Application Server for the Semantic Web should be able
to offer its methods via separate web services enhanced by automatically
generated DAML-S [Burstein et al. 2002] descriptions, for instance via peer
or agent protocols.

—Security. Guaranteeing information security means protection against unau-
thorized disclosure, transfer, modification, or destruction, whether acciden-
tal or intentional. To realize it, any operation should only be accessible by
properly authorized clients. Proper identity must be reliably established by
employing authentication techniques. Confidential data must be encrypted
for network communication and persistent storage. Finally, means for
monitoring (logging) of confidential operations should be present.

3.1.2 Flexible Handling of Modules.

—Extensibility. The need for extensibility applies to most software systems. It is
a principle of software engineering to avoid system changes when additional
functionality is needed in the future. Hence, extensibility is also desirable
for an Application Server for the Semantic Web. In addition, such a server
has to deal with the multitude of layers and data models in the Semantic
Web that lead to a multitude of software modules, for example, XML parsers
or validators that support the XML Schema datatypes, RDF stores, tools
that map relational databases to RDFS ontologies, ontology stores, and OWL
reasoners. Therefore, extensibility regarding new data APIs and correspond-
ing software modules is an important requirement for such a server.

—Integrating existing functionality via different communication protocols. The
Semantic Web will be populated by different kinds of software entities, for
example, web services, peers, or agents. A developer might want to integrate
the ones needed to build an application. That would lift the responsibility
of handling different protocols from the developer and enable them to be
included in a transaction, for example.

—Dependencies. The server should enable the expression of dependencies
between different software modules; for instance, the setting up of event
listeners between modules. Another example would be the management of a
dependency like “module A is needed for module B.”

3.2 Semantic Web Specific Requirements

3.2.1 Requirements Stemming from the Semantic Web’s Static Part.

—Language Support. A trivial requirement is the support of all the Semantic
Web’s ontology and metadata standards. An Application Server for the Se-
mantic Web has to be aware of RDF, RDFS, OWL as well as future languages
that will be used to specify the logic, proof, and trust layers.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.
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—Semantic Interoperation. We use the term semantic interoperation in the
sense of translating between different ontology languages with different se-
mantics. At the moment, several ontology languages populate the Semantic
Web. We have already mentioned RDFS, OWL Lite, OWL DL and OWL Full
apart from proprietary ones. Usually, ontology editors and stores focus on
one particular language and are not able to work with others. Hence, an
Application Server for the Semantic Web should enable translation between
different languages and semantics [Grosof et al. 2003; Bennett et al. 2002].

—Ontology Mapping. In contrast to semantic interoperation, ontology mapping
translates between different ontologies of the same language. Mapping may
become necessary as web communities usually have their own ontology and
could use ontology mapping to facilitate data exchange [Noy and Musen 2000;
Handschuh et al. 2003].

—Ontology Modularization. Modularization is an established principle in
software engineering. It has to be considered also for ontology engineering
as the development of large domain ontologies often includes the reuse of
several existing ontologies. E.g. top-level ontologies might be used as a start-
ing point. Hence, an Application Server for the Semantic Web should provide
means to fulfill that requirement [Borgida and Serafini 2002; Bozsak et al.
2002].

3.2.2 Requirements Stemming from the Semantic Web’s Dynamic Part.

—Finding, Accessing, Modifying and Storing of Ontologies. Semantic Web
applications like editors or portals have to access, modify and finally store
ontological data. In addition, the development of domain ontologies often
requires other ontologies as starting points. Examples are Wordnet [Miller
et al. 1990] or top-level ontologies for the Semantic Web [Oltramari et al.
2002]. These could be stored and offered by the server to editors.

—Transactions and Rollback. The dynamic aspects, transactions, and rollbacks
(cf. Figure 2) lead to further requirements. All updates to the Semantic Web
data must be done within transactions assuring the properties of atomicity,
consistency, isolation (concurrency) and durability (ACID) [Ullman 1988]. Al-
though in general transactions can be considered as a common requirement,
they can become specific as the Semantic Web languages require special
handling.

—Evolution and Versioning. Ontologies are applied in dynamic environments
with changing application requirements (cf. [Stojanovic et al. 2002a]). To
fulfill the changes, the underlying ontology must often be evolved as well.
Database researchers distinguish between schema evolution and schema
versioning [Noy and Klein 2002]. Schema evolution is the ability to change
a schema of a populated database without loss of data (i.e. providing access
to both old and new data through the new schema). Schema versioning is
the ability to access all the data (both old and new) through different version
interfaces. For ontologies, however, a distinction between evolution, which
allows access to all data only through the newest schema, and versioning,
which allows access to data through different versions of the schema, cannot

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.
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be made. This is due to the fact that multiple versions of the same ontol-
ogy are bound to exist and must be supported. Hence, ontology evolution
and versioning can be combined into a single concept defined as the ability
to manage ontology changes and their effects by creating and maintaining
different variants of the ontology.

—Monitoring. See “Connectivity and Security” in Subsection 3.1.
—Inferencing and Verification. Reasoning engines are core components of

semantics-based applications and can be used for several tasks like se-
mantic validation and deduction. An Application Server for the Semantic
Web should provide access to such engines, which can deliver the reasoning
services required.

3.3 Requirements for Smantic Enhancement of the Application Server

This last group contains requirements that call for the semantic enhancement
of the Application Server for the Semantic Web.

—Discovery of Software Modules. For a client, there should be the possibility of
stating precisely what it wants to work with, for example, an RDF store that
holds a certain RDF model and offers a transaction concept. Hence, means
for intelligent discovery of software modules are required.

—API Discovery. The developer may want to find a certain API (application
progammer’s interface) independent of a concrete software module that im-
plements it. Preferably, the developer wants to specify high level details and
get a comprehensive list of existing APIs that perform desired tasks. As there
can be several related and overlapping APIs, the system should recommend
the one that fits best.

—Classification of Software Modules. The conceptualization used by the de-
scriptions should also facilitate the classification of new software modules.
Mostly, their APIs fulfill overlapping tasks, for example, an ontology store
offers both inferencing and storing.

—Implementation Tasks. The Application Server for the Semantic Web itself
should take advantage of semantic descriptions. For example, when loading
a module, its description could express required libraries and other modules
as properties. Libraries might rely on others, the same holds for components.
By defining corresponding properties transitively, the task of automatically
infering all necessary libraries and components is simplified.

While the common requirements are met by most of the existing Application
Servers, Semantic Web specific requirements and the ones that call for the
semantic enhancement of the server itself are clearly beyond state-of-the-art.
In the following Sections, 4 to 6, we develop an architecture that is a result
of the requirements put forward in this section. Thereafter we present the
implementation details of our Application Server for the Semantic Web called
KAON SERVER.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.
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4. COMPONENT MANAGEMENT

Due to the requirement for Extensibility, we decided to use the Microkernel
design pattern. The pattern applies to software systems that must be able to
adapt to changing system requirements. It separates a minimal functional core,
the Microkernel, from extended functionality and application-specific parts.
The Microkernel also serves as a socket for plugging in these extensions and
coordinating their collaboration [Buschmann et al. 1996].

In our setting, the Microkernel’s minimal functionality offers simple man-
agement operations: starting, initializing, monitoring, combining and stopping
of software modules as well as dispatching of messages between them. This ap-
proach requires software modules to conform to a management interface so that
they can be managed by the Microkernel. Conformity is accomplished by mak-
ing existing software deployable: bringing existing software into the particular
infrastructure of the Application Server for the Semantic Web. This means that
existing software is wrapped such that it can be managed by the Microkernel.
Thus, a software module becomes a deployed component. The word deployment
stems from service management and service oriented architectures where it
is a technical term [Bishop 2002]. We adopt and apply it in our setting. It de-
scribes the process of registering a component to the Microkernel with possible
initialization and start.

Apart from the cost of making existing software deployable, a drawback
of this approach is that performance will suffer slightly in comparison to
stand-alone use, since a request has to first pass through the Microkernel
(and possibly the network). A client that wants to make use of a deployed
component’s functionality talks to the Microkernel, which in turn dispatches
requests.

The Microkernel and component approach delivers several benefits. By mak-
ing existing functionality, like RDF stores, inference engines and so on deploy-
able, one is able to manage them in a centralized infrastructure. As a result,
we are able to deploy and undeploy components ad hoc, reconfigure, monitor
and possibly distribute them dynamically. Proxy components can be developed
for software that cannot be made deployable, for example, because it has been
developed for a particular operating system. Throughout the article, we will
show further advantages; among them:

—Enabling a client to discover the component it is in need of (cf. Section 5).
—Definition of dependencies between components (cf. Section 6).
—Easy integration of modularization, transactions, evolution and semantic

interoperation by interceptors (cf. Section 6).

Thus, we have responded to the requirement for extensibility. In the follow-
ing, we discuss how the requirements that call for the semantic enhancement
of the server are met.

5. COMPONENT DESCRIPTION

This section responds to the group of “Requirements for semantic enhance-
ment of the Application Server.” All of them implicitly call for a formal

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.
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Fig. 4. Overview of ontologies.

conceptualization providing the means for component description. Hence, the
definition and usage of an ontology is the first design choice derived here.

As pointed out in Section 4, all components are managed in a central in-
frastructure, namely the Microkernel. In order to allow a client to discover the
components it needs, we have to distinguish between them. Thus, the second
design choice is a registry that stores descriptions of all deployed components.
The Microkernel and component approach allows us to implement the registry
itself as a component.

For the ontology’s design we tried to stay as close as possible to DAML-S
[Burstein et al. 2002] for it is an accepted standard that has been investigated
for a long time and has a sound basis. DAML-S is an initiative of the Semantic
Web community to facilitate automatic discovery, invocation, composition, in-
teroperation and monitoring of web services through their semantic description.
Expressed in DAML+OIL, it is conceptually divided into three subontologies
for specifying what a service does (Profile), how the service works (Process) and
how the service is implemented (Grounding). The existing grounding enables
aligning the semantic specification with implementation details described us-
ing WSDL [Christensen et al. 2003], the industry standard for web service
description.

Although DAML-S serves as a good starting point for our ontology, the main
difficulty was in the type of software entities to be described. While DAML-S
describes web services, our goal is to describe components and their APIs. As
a result some parts of DAML-S were not reusable. Figure 4 presents all the
subontologies in DAML-S in comparison to ours. The following discussion is
organized using our design principles (cf. also Oberle at al. [2003]).

Modularity. Modularity enables easy reuse of specifications and extensibil-
ity of the ontology. An important issue is the size of the reusable parts. For
example, because a Profile instance contains a lot of information, which is often
very specific, such as the contact information of the providers, it is less likely

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.
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that this instance will be reused by any other description (except if it is pro-
vided by the same company). Therefore a coarser granularity (less information
per concept) increases the chance of reusability. We have applied this principle
by making an effort to centralize related content to a certain concept whose in-
stance can be reused at description time. We decided to group together chunks
of information that are most likely to be reused. Also, we have grouped this
information in small ontologies that are used by other subontologies.

Semantic vs. Syntactic Descriptions. We have adopted the separation be-
tween semantic and syntactic descriptions. Therefore we are able to map a
certain semantic description to several syntactic descriptions if the same se-
mantic functionality is accessible in different ways, and vice versa. However,
we modified some of the DAML-S subontologies as follows:

—We have kept the DAML-S Profile ontology for specifying semantic informa-
tion about the described modules and extended it with a few concepts for
describing APIs at the conceptual level that are grouped in a small subon-
tology called API Description.

—We did not use the Process ontology since we have not been interested in the
internal working of the modules in the first step.

—We formalized a subset of IDL6 terms and use them to describe the syntactic
aspects of APIs in an Implementation ontology, which is further discussed
below.

—As a consequence of the above changes, we could not reuse the existing
DAML-S Grounding and wrote an IDL Grounding ontology.

Generic vs. Domain Knowledge. Our approach for building the ontology can
be described in terms of the ONIONS [Gangemi et al. 1999] ontology develop-
ment methodology, which advises grouping knowledge with different general-
ity in generic, intermediate and domain ontologies. We have built two domain
ontologies: Semantic Web Profiles and Semantic Web API Description, which
specify the type of existing Semantic Web software modules at coarse and fined
grained level, respectively. As depicted in Figure 4, all the other subontologies
are categorized in the intermediate-level. For the top- or generic-level, which is
not shown in the Figure, we applied DOLCE [Oltramari et al. 2002].

We would like to conclude this section with a closer look at the Implementa-
tion subontology. It is primarily used to facilitate component discovery for the
client and it is important for further understanding. Its core taxonomy is shown
below. We start with the definition of a component and then refine it.

Component. Software module that is deployable to the Microkernel.
System Component. Component providing functionality for the Application

Server for the Semantic Web itself, for example, the registry.
Functional Component. Component that is of interest to the client and

can be discovered. Ontology-related software modules become functional com-
ponents by making them deployable, for example, RDF stores.

6Interface Description Language, cf. http://www.omg.org.
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External Module. An external module cannot be deployed directly as it may
be programmed in a different language, live on a different computing platform,
and so forth. It equals a functional component from a client perspective by
having a proxy component deployed that relays communication to the external
module.

Proxy Component. Special type of functional component that manages the
communication to an external module. Examples are proxy components for
inference engines, like FaCT [Horrocks 1998].

Each component can have attributes like the name of the interface it im-
plements, connection parameters or several other low-level properties. Be-
sides, we express associations between components. Associations can be de-
pendencies between components, for example, an ontology store component
can rely on an RDF store for actual storage, or event listeners. Associations
will later be put in action by an association management system component
(cf. Section 6).

So far we have discussed the requirement for Extensibility and Requirements
for semantic enhancement of the Application Server, which led to fundamen-
tal design decisions. The next section continues with an overall view of the
conceptual architecture.

6. CONCEPTUAL ARCHITECTURE

When a client connects to the Application Server for the Semantic Web it
either needs to discover the required functional components or to deploy them
itself. In the first case, the client uses the registry to find a deployed functional
component fulfilling its prescriptions and is returned a reference. From then
on, the client can seamlessly work with the functional component by surro-
gates that handle the communication over the network. On the server side, the
counterpart to the surrogate is a connector component. It maps requests to the
Microkernel’s methods. All requests pass the Microkernel, which dispatches
them to the appropriate functional component. While dispatching, a request
can be modified by interceptors that may deal with auditing, for instance.
Finally, the response passes the Microkernel again and finds its way to the
client through the connector and the surrogate. The following paragraphs will
explain the architecture depicted in Figure 5.

Surrogates. Surrogates (not shown in Figure 5) are objects embedded in
the client application that relieve the developer of the communication details
similar to stubs in CORBA7 (cf. requirement “Ease of use”). They offer the same
API as a particular component and relay communication to any connector, which
in turn passes the request to the respective functional component through the
Microkernel.

Connectors. Connectors are system components. They send and receive re-
quests and responses over the network. Aside from the option to connect locally,

7Common Object Request Broker Architecture: Core Specification, http://www.omg.org/technology/
documents/formal/corbaiiop.htm.
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Fig. 5. Conceptual architecture.

further possibilities exist for remote connection: for example, ones that offer ac-
cess via Java Remote Method Invocation (RMI), or ones that offer asynchronous
communication. Connectors also enable publishing components’ methods as
separate web services with automatically generated DAML-S descriptions out
of the registry. Offering the functionality with peer or agent protocols is also
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possible (cf. requirement “Offering functionality via different communication
protocols”).

Management Core. The Management Core comprises the Microkernel (also
called management kernel or simply kernel in the following) as well as several
system components. It is necessary to deal with the discovery, allocation and
loading of components. The registry, a system component, manages descriptions
of the components and facilitates the discovery of a functional component for
a client, and the component loader facilitates the deployment process. It takes
a component description as argument, handles the deployment, enters the de-
scription in the registry and applies the association management if necessary.
The latter is another system component that puts ontological associations be-
tween components into action (cf. requirement “Implementation tasks”). For
example, event listeners can be put in charge so that a component A is noti-
fied when B issues an event, or a component may only be undeployed if others
don’t rely on it. System components can be deployed and undeployed ad hoc, so
extensibility is also given for the Management Core. Further components are
possible, for example, a cascading component that offers seamless access to the
components deployed in another Application Server.

Interceptors. Interceptors are software entities that monitor a request and
modify it before the request is sent to the component. A component can be
deployed with a stack of arbitrary interceptors. Security aspects are met by
interceptors that guarantee that operations offered by functional components
in the server are only available to appropriately authenticated and authorized
clients. Sharing generic functionality such as security, logging, or concurrency
control requires less work than developing individual component implementa-
tions. For example, when a component is being restarted, an interceptor can
block and queue incoming requests until the component is available again.
Transactions, modularization and evolution spanning several ontology stores
may also be realized by interceptors.

Functional Components. RDF stores, ontology stores and so on, are finally
deployed to the management kernel as functional components (cf. Section 4). In
combination with the component loader, the registry can start functional com-
ponents dynamically in response to client requests. Proxy components (which
are conceptually subsumed by functional components, cf. Section 5) can be de-
veloped for external modules, but also for web services, peers or agents. That
allows a developer to access them conveniently by surrogates instead of han-
dling several other protocols. In addition, interceptors can be applied on top, so
that, for example, a web service might be part of a transaction along operations
of a deployed ontology store.

Table I shows where the requirements put forward in Section 3 are reflected
in the architecture. Due to the Microkernel design pattern the architecture
basically consists of the Microkernel itself, components, interceptors and sur-
rogates. Components are conceptually specialized into system, functional, and
proxy components to facilitate the discovery for the application developer.
Table I only shows connectors as a subconcept of system component as well
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Table I. Dependencies between Requirements (cf. Section 3) and Architecture
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Connectivity ×
Ease of use ×
Offering functionality via protocols ×
Security ×
Extensibility × × × × × ×
Integrating functionality via protocols ×
Dependencies ×
Language Support ×
Semantic Interoperation × ×
Ontology Mapping ×
Ontology Modularization × ×
Finding, Accessing, Storing of ontologies ×
Transactions and Rollback × ×
Evolution and Versioning × ×
Monitoring × ×
Inferencing and Verification ×
Discovery of software modules ×
API discovery ×
Classification of software modules ×
Implementation tasks × × ×

as registry, component loader and association management, which are partic-
ular system components. Functional and proxy components are represented in
one column each.

For Semantic Interoperation, interceptors could translate between Semantic
Web ontology languages. For example, if a client wants to talk in DAML+OIL
to an OWL ontology store, an interceptor could be registered that automatically
translates the request. However, Semantic Interoperation could also be realized
by dedicated functional components. Ontology Modularization, Transactions
and Rollback, Evolution and Versioning as well as Monitoring are different in
that they can all be implemented within one functional component. A compre-
hensive ontology store might offer means for transactions, for instance. Inter-
ceptors, on the other hand, could realize those mechanisms on top of several
components. Akin to what a transaction monitor does with several database
systems, an interceptor would be capable of realizing transactions spanning
several ontology stores.

7. IMPLEMENTATION

This section presents our implementation of an Application Server for the
Semantic Web, called KAON SERVER, which is part of the KAON8 Tool suite

8Karlsruhe Ontology and Semantic Web Tool suite, http://kaon.semanticweb.org.
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Fig. 6. JMX Management architecture.

[Bozsak et al. 2002]. The latter includes software modules allowing easy ontol-
ogy creation and management, as well as building ontology-based applications
in Java. All of the modules have been made deployable.

The KAON SERVER architecture reflects the conceptual architecture pre-
sented in the previous section. In the following, an in-depth description is given.
We will start with the Management Core in 7.1 as it is necessary to understand
Connectors in 7.2, Interceptors in 7.3 and Functional Components in 7.4.

7.1 Management Core

The Management Core of an Application Server for the Semantic Web con-
sists of the management kernel, the component loader, registry and association
management system components. We will outline all of their implementations
in the subsections below.

7.1.1 Kernel. In the case of the KAON SERVER, we use the Java Manage-
ment Extensions (JMX [Lindfors and Fleury 2002]) as it is an open technology
and currently the state-of-the-art for component management.

Java Management Extensions represent a universal, open technology for
management and monitoring. By design, it is suitable for adapting legacy sys-
tems and implementing management solutions. Basically, JMX defines inter-
faces of managed beans, or MBeans for short, which are JavaBeans9 suited for
management purposes. MBeans are hosted by an MBeanServer, which allows
their manipulation. All management operations performed on the MBeans are
done through interfaces on the MBeanServer as depicted in Figure 6. We would
like to point out two important methods of the MBeanServer:

registerMBean(Object object, ObjectName name),

which, as the name suggests, registers an object as MBean to the MBeanServer;
the object has to fulfill a certain contract implementing a prescribed interface,
and

Object invoke(ObjectName name, String operationName,
Object[]params, String[] signature).

9http://java.sun.com/products/javabeans/.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.



P1: OJL
acmj054-02 ACM-TRANSACTION April 25, 2005 21:57

18 • D. Oberle et al.

All method invocations are tunnelled through the MBeanServer to the ac-
tual MBean by this method. The corresponding MBean is specified by name,
whereas operation-Name, params and signature provide the rest of the infor-
mation needed. Type checking has to be done by the developer and method
calls are centralized. Hence, the architecture responds flexibly to changing re-
quirements and evolving interfaces. Due to this technique, it becomes easy to
incorporate the mechanism of interceptors (cf. Subsection 7.3).

An MBean must be a concrete and public Java object with at least one public
constructor. An MBean must have a statically typed Java interface that explic-
itly declares the management attributes and operations. The naming conven-
tions used in the MBean interface closely follow the rules set by the JavaBeans
component model. To expose the management attributes, one has to declare get
and set methods, similar to JavaBean component properties. The MBeanServer
uses introspection on the MBean class to determine which interfaces the class
implements. In order to be recognized as a Standard MBean, a class x has to
implement an interface xMBean. Defining the methods getAttr() and setAttr()
will automatically make Attr a management attribute, in this case with read
and write access. Only management attributes can be accessed and modified
by a client. All the other public methods will be exposed as management opera-
tions. Each MBean is accessible by its identifying name, which follows a special
syntax.

JMX only provides a specification. There are several implementations avail-
able. For the KAON SERVER, we have chosen JBossMX, a JMX implementa-
tion that is part of the comprehensive Application Server JBoss.10 The reason
for this decision is that it perfectly fits KAON SERVER requirements and that
JBoss is open-source software.

In our setting, the MBeanServer implements the kernel and MBeans imple-
ment components. Speaking in terms of JMX, there is no difference between a
system component and a functional component. Both are MBeans that are only
distinguished by the registry.

7.1.2 Registry. The registry is simple main-memory based ontology store
containing component descriptions and constituting a database of components
that can be instantiated by the server. This information source is built around
a management ontology, which specifies the functional aspects of a component,
for example, the libraries required by a component, its name, the class that
implements the component itself and so forth (cf. Section 5).

Building on an ontology instead of a fixed data schema, allows us to re-
tain flexibility and extensibility. Component providers can locally extend the
ontology, for example by introducing a new subcategory “InferenceEngine” to
functional components. The use of expressive ontology languages allows one
to restrict globally defined component associations. For example, an RDFStore
may restrict a sendingEventsTo association to RDFEventListeners. The infer-
ence services offered by engines capable of dealing with expressive ontology
languages additionally allow subsumption reasoning. Thus, it is possible to

10http://www.jboss.org.
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integrate multiple local extensions to the management ontology into a concise
taxonomy.

We implemented the registry as MBean and reused one of the KAON mod-
ules, which have all been made deployable (cf. Subsection 7.4). The main-
memory implementation of the KAON Application Programmer’s Interface
(API) holds the management ontology. When a component is deployed, its de-
scription (usually stored in an XML file) is represented as an instance of a
concept. A client can use the registry’s surrogate to discover the component it
is in need of.

7.1.3 Association Management. The management ontology also allows one
to express associations among components. For example, dependencies that
state that a given component requires the existence of another component.
Therefore, the server has to load all required components and be aware of the
dependencies when unloading components. This essentially requires maintain-
ing the number of clients to a component. A component can only be unloaded if
it does not have any further clients.

The JMX specification does not define any type of association management
aspect for MBeans. That is the reason why we had to implement this func-
tionality separately as another MBean. Apart from dependencies, it is able to
register and manage event listeners between two MBeans A and B, so that B
is notified whenever A issues an event.

7.1.4 Component Loader. The MBeanServer offers methods to deploy
any MBean at runtime. However, the client application of an MBeanServer
must explicitly create the MBeans it needs, it must maintain the list of re-
quired libraries, and it must add newly created MBeans to the registry by
itself.

To lift these responsibilities from the individual client, we have developed
a special component loader MBean that facilitates the deployment process.
MBeans are described by XML documents that contain RDF(S) serializations
according to the management ontology mentioned in Section 5. The compo-
nent loader uses this description to deploy the MBean, to add the MBean in the
registry and to put associations into action by applying the association manage-
ment. For example, it deals with the transitive loading of required components.
The component loader is able to deploy an MBean from arbitrary URLs, hence
users of the server are not required to install any libraries on the server ma-
chine before instantiating a component. The component loader also ensures
that shared libraries that are part of the component implementation are only
loaded once if multiple components share the same library.

7.2 Connectors

The KAON SERVER comes with four MBeans that handle communication.
First, there is the HTTP Adapter from Sun, which exposes all of the kernel’s
methods to a Web frontend. Second and third, we have developed Web Service
(using the Simple Object Access Protocol) and RMI (Java Remote Method Invo-
cation) connector MBeans. Both export the kernel’s methods for remote access.

ACM Transactions on Internet Technology, Vol. 5, No. 2, May 2005.



P1: OJL
acmj054-02 ACM-TRANSACTION April 25, 2005 21:57

20 • D. Oberle et al.

Finally, the Local connector embeds the KAON SERVER locally into the client
application.

For the client there is a surrogate object called RemoteMBeanServer that
implements the MBeanServer interface. It is the counterpart to one of the four
connector MBeans mentioned above. Similar to stubs in CORBA, the appli-
cation uses this object to interact with the MBeanServer and is relieved of
all communication details. The developer can choose which of the four options
(HTTP, RMI, Web Service, Local) shall be used by RemoteMBeanServer.

To facilitate all of the above for the client, we have built a ConnectorFactory,
the methods of which return surrogate objects for the registry, association man-
agement, and component loader. In addition, we have also developed surrogate
objects for functional components. For example, there exists a RemoteRDF-
Server, relaying communication to one of the KAON tools (cf. Subsection 7.4).
Every surrogate has to be provided with the MBean’s identifying name, which
can be discovered in the registry.

7.3 Interceptors

As explained in Section 6, interceptors are software entities that monitor a
request and modify it before the request is sent to the component.

In the kernel, each MBean can be registered with an invoker and a stack of
interceptors. A request received from the client is then delegated to the invoker
first, before it is relayed to the MBean. The invoker object is responsible for
managing the interceptors and sending the requests down the chain of inter-
ceptors towards the MBean. For example, a logging interceptor can be activated
to implement auditing of operation requests. An authorization interceptor can
be used to check that the requesting client has sufficient access rights for the
MBean.

Invokers and interceptors are useful to achieve other goals apart from se-
curity. For example, when a component is being restarted, an invoker could
block and queue incoming requests until the component is available again or
the received requests time out. Alternatively, it could redirect the incoming re-
quests to another MBean, which is able to fulfill them. Interceptors may also
be used to meet the requirement of Semantic Interoperation. Client requests
in a particular Semantic Web language can be translated such that they can be
understood by a component that might talk another language.

7.4 Functional Components

KAON Tools. The KAON Tool suite defines two Semantic Web Data APIs
for updates and queries—an RDF API and an API for querying and updating
ontologies and instances (KAON API). There are different implementations
that have been made deployable, among them main-memory based and persis-
tent RDF stores as well as main-memory based and persistent KAON ontology
stores.

Ontology Repository. One optional component currently developed is an On-
tology Repository [Maedche et al. 2003], allowing access and reuse of ontologies
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that are used throughout the Semantic Web, such as WordNet [Miller et al.
1990] or foundational ontologies [Oltramari et al. 2002].

OntoLiFT. The OntoLiFT component leverages existing schema structures
as a starting point for developing ontologies for the Semantic Web [Stojanovic
et al. 2002b]. Methods have been developed for deriving ontology structures
for existing information systems, such as XML-DTD, XML-Schema, relational
database schemata, or UML specifications of object-oriented software systems.
The LiFT tool semi-automatically extracts ontologies from such legacy re-
sources.

External Modules. We have developed several proxy components in order
to adapt external modules: Sesame [Broekstra et al. 2002], Ontobroker [Decker
et al. 1998] as well as a proxy component for DL classifiers that conform to
the DIG interface,11 like FaCT [Horrocks 1998] or Racer [Haarslev and Moeller
2001]. Many more will follow in the future.

8. BUILDING A PORTAL FOR ACADEMIA AND RESEARCH

This section shows the usefulness of an Application Server for the Semantic
Web by a detailed scenario (cf. also Staab et al. [2000]). The scenario shows the
reader how the different parts of the Application Server, which so far have only
been described in isolation from each other, interact.

We refer to the scenario depicted in Figure 1, which involved concise mod-
elling of the research and academia domain in description logics. The ontology
thus created can be used in several research and academia applications. In
our scenario, we want to set up a comprehensive portal, which exploits a rule-
based system capable of handling large amounts of instances and deduction of
additional information by rules. Basically, there are three types of rules:

(1) Schema integration Rules that put concepts into a taxonomy, like Grad-
uate and AcademicStaff are specializations of Person. Such constraints are
resolved by subsumption reasoning in descriptions logics.

(2) Rules involving instances and one concept For example, If Person A co-
operatesWith Person B then B also cooperatesWith A. Description logics are
capable of handling such rules in theory. However, no performant reasoner
exists that can handle large amounts of instances.

(3) Rules that involve instances and several concepts For example, If a
Person A works in Project X and X’s topic is Z, then Person A is familiar with
the topic Z. Decidable description logics are not able to express such rules
[Schmidt-Schauß 1989].12

In the following subsections, we want to show how the scenario can be solved
with the KAON SERVER using existing clients and several components. The
modeling of a domain ontology is initially independent of a particular applica-
tion. It has to be as concise as possible and agreed upon by the community. The

11Description Logic Implementation Group, http://dl.kr.org/dig/.
12Also they don’t intend to, as they mostly focus on reasoning at the schema level.
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Fig. 7. An instance of KAON SERVER.

preferred choice for concise domain modeling are description logics, in our case
OWL DL (cf. Section 2). Therefore one may use OilEd [Bechhofer et al. 2001]
for the construction of a domain ontology that takes a DOLCE [Oltramari et al.
2002] top-level ontology as a starting point.

For the portal application, OntoEdit [Sure et al. 2002] and its corresponding
ontology store Ontobroker [Decker et al. 1998] are well-suited because they are
based on frame logics [Kifer et al. 1995] that, in contrast to OWL DL, allow the
definition of, and reasoning with, rules of type (2) and (3).

We assume that an instance of the KAON SERVER is up and running,
deployed with RMI and Web Service connectors, component loader, registry,
association management as well as semantic interoperation, ontology reposi-
tory functional components and proxy components for Ontobroker and FaCT
[Horrocks 1998] (cf. Figure 7). The RDF Server will later be deployed by one of
the editors.

OilEd’s and OntoEdit’s interactions with the server are discussed by UML-
like sequence diagrams [Booch et al. 1998] in the following. Note that these
diagrams do not show the exact Java method calls for the sake of brevity. For
the same reason, we have omitted all the details involving connectors.
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Fig. 8. Sequence diagram—OilEd with KAON SERVER.

8.1 Modelling the Ontology

For ontology engineering we use OilEd, an editor that supports the OWL DL
language among others. It connects to the KAON SERVER through Java Re-
mote Method Invocation (RMI). As depicted in Figure 8, OilEd uses the Connec-
torFactory to get surrogate objects for the MBeanServer itself, the component
loader, and the registry in the acquisition phase (1). What follows in step (2) is
a successful discovery of the ontology repository functional component.

Interactions from surrogate objects (Remotex) to the KAON SERVER are
not shown in the diagrams. Each surrogate has to be created on the client-side
and relay its method calls over the network to a connector’s invoke() method,
which eventually calls the MBeanServer’s invoke().
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A reference to the repository MBean is returned to OilEd, which in turn loads
a DOLCE top-level ontology as the starting point for the domain ontology. This
method invocation is directly routed through the MBeanServer without using
a surrogate object. This is achieved by the invoke() method, which takes an
MBean reference, the name of the operation, and its parameters as arguments
(cf. Section 7.1).

After that, the editor looks up the MBean reference for the semantic interop-
eration functional component. OilEd uses it to transform the DOLCE ontology
into the OWL DL language. This method invocation is also routed through the
MBeanServer without any surrogate objects. At this point, the user is able to
start editing the research and academia ontology (3). When finished, a veri-
fication on the ontology is usually done by applying the FaCT reasoner [Hor-
rocks 1998]. OilEd tries to find such an inference engine in the registry. In
our scenario, there is a proxy component deployed, and thus a reference is
returned. The editor creates a RemoteFaCT object, which hides the communi-
cation details. In our case, since the ontology is consistent, the user proceeds
with saving. For storing the ontology, an instance of KAON’s RDF Server along
an authentication interceptor is created by using the component loader (4).
OilEd is relieved from starting and initializing. It retrieves a reference to the
newly created MBean from the component loader. Only then is it able to create
an instance of RemoteRDFServer, which, like all other surrogates, hides the
communication details as well as handling possible interceptors. For the latter,
RemoteRDFServer has to be first provided with the credentials. After serializ-
ing the ontology into RDF, it is finally saved by the persistent RDF Server.

8.2 Definition of Rules

In the envisioned portal we want to apply reasoning based on logic programming
[Das 1992] in order to deduce additional information. OWL DL does not allow
the definition of rules, but we want to reuse the domain ontology. The semantic
interoperation functional component allows the translation from OWL DL into
frame logic and thus the usage of OntoEdit, which provides a graphical user
interface for editing ontologies and rules.

Figure 9 depicts the sequence diagram for OntoEdit’s communication with
the server. RemoteMBeanServer and RemoteRegistry objects are created in
phase (1), similar to OilEd’s interactions. We assume that the user is aware of
the RDF Server and the ontology just created. He/she can provide enough in-
formation to perform a successful discovery for the store as well as the required
credentials (2). An instance of RemoteRDFServer is responsible for communica-
tion and handling the authentication interceptor on the server side. Invocation
of getOntology(...) on RemoteRDFServer delivers an RDF-stream that is to be
transformed into frame logic, OntoEdit’s ontology language, by the semantic
interoperation functional component. OntoEdit discovers the latter and calls
the respective method directly, without creating any special surrogate object,
through RemoteMBeanServer. The user is now able to add rules, instances and
to perform adaptations on the ontology, as some information might have been
lost during the translation from OWL DL (3).
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Fig. 9. Sequence diagram—OntoEdit with KAON SERVER.

OntoEdit uses Ontobroker for ontology storage and reasoning as well as se-
mantic validation of the ontology (analogous to OilEd and FaCT). Ontobroker
exploits a relational database system for persistence. We have already assumed
that a proxy component for Ontobroker is deployed to the KAON SERVER. In-
stead of loading a new one, OntoEdit tries to discover such a component and
retrieves a reference to the respective MBean (4). Before loading the frame logic
ontology into Ontobroker, the editor ensures that the proxy component is not
unloaded by other clients, or due to server performance reasons. It therefore re-
trieves a reference to the association management via the registry and invokes
a corresponding method. Frame logic ontology, instances and rules can now be
loaded into Ontobroker.
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8.3 Setting up the Portal

After translation into frame logic, possible adaptations and addition of rules
with OntoEdit, the portal application just needs to reuse the deployed On-
tobroker residing within the KAON SERVER. It already holds the required
ontology together with the rules. The application has to connect to the KAON
SERVER, in this scenario by a Web Service connector, discover Ontobroker
and start displaying and changing the ontology’s instances by a web front-
end. Without the KAON SERVER, all of the above would lead to a one-off ef-
fort of combining software modules without the possibility for much reuse and
extensibility.

9. RELATED WORK

We consider four distinct topic areas as related work. First, RDF Data Man-
agement Systems approach some ideas relevant to an Application Server for
the Semantic Web. Other than that, Ontology Development Environments as
well as Knowledge Base Interoperation approaches share some similarities to
our approach. Finally, the huge field of middleware and also classical software
reuse systems are closely related to the Application Server for the Semantic
Web.

9.1 RDF Data Management Systems

All of the following data management systems focus on RDF(S) only. Hence, they
are not built with the aspect of extensibility in mind. However, they provide
more specialized components than our implementation does and offer more
extensive functionality with respect to RDF.

Sesame [Broekstra et al. 2002] is a scalable, modular architecture for persis-
tent storage and querying of RDF and RDF Schema. It supports two query
languages (RQL and SeRQL), and can use main memory or PostgreSQL,
MySQL and Oracle 9i databases for storage. The Sesame system has been suc-
cessfully made deployable by a proxy component for RDF support in KAON
SERVER.

RDFSuite [Alexaki et al. 2001] is a suite of tools for RDF management
provided by the ICS-Forth institute, Greece. Among those tools is an RDF
Schema specific Database (RSSDB) that allows querying RDF using the RQL
query language. The implementation of the system exploits the PostgreSQL
object-relational DBMS. It uses a storage scheme that has been optimized for
querying instances of RDFS-based ontologies. The database content itself can
only be updated in a batch manner (dropping a database and uploading a
file), hence it cannot cope with transactional updates, such as KAON’s RDF
Server.

Developed by Hewlett-Packard Research, UK, Jena [McBride 2001] is a col-
lection of Semantic Web tools including a persistent storage component, an RDF
query language (RDQL) and a DAML+OIL API. For persistence, the Berkley
DB embedded database or any JDBC-compliant database may be used. Jena
abstracts from storage in a similar way as the KAON APIs. However, no trans-
actional updating facilities are provided so far.
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9.2 Ontology Development Environments and Knowledge Base Interoperation

The Ontolingua ontology development environment [Fikes et al. 1997] provides
a suite of ontology authoring tools and a library of modular, reusable ontolo-
gies. The tools in Ontolingua are oriented towards the authoring of ontologies
by assembling and extending ontologies obtained from a library. However, On-
tolingua’s tools do not support the Semantic Web languages.

The same limitation holds for the Stanford Research Institute’s OKBC (Open
Knowledge Base Connectivity), which is a protocol for accessing knowledges
bases (KBs) stored in Knowledge Representation Systems (KRSs) [Chaudhri
et al. 1998]. The goal of OKBC is to serve as an interface to many different KRSs,
for example, an object-oriented database. OKBC provides a set of operations
for a generic interface to underlying KRSs. The interface layer separates an
application from the idiosyncrasies of specific KRS software and enables the
development of generic tools (e.g. graphical browsers and editors) that operate
on many KRSs.

9.3 Middleware

Middleware is a broadly used term nowadays and comes into play as soon as
one divides an application into several tiers. Generally speaking, middleware
(i.e. the middle-tier) is any software that is located between client front-end
and database back-end. Because of its generality, the term comprises simple
servlet engines, more comprehensive Application Servers, service-oriented ar-
chitectures, messaging products and even transaction monitors. Their common
feature is that they all attempt to facilitate multi-tier application development
in distributed infrastructures. We limit ourselves to Application Servers since
they are most related.

An Application Server is a component-based product that resides in the
middle-tier of a server centric architecture. It provides middleware services
for security and state maintenance, along with data access and persistence.13

A multitude of commercially available Application Servers exist that either
conform to J2EE (Java 2 Platform, Enterprise Edition) or Microsoft’s .NET
architecture. Both comprise means for handling components (Enterprise Jav-
aBeans, COM), remote access (RMI, DCOM), location services (JNDI, ActiveDi-
rectory), database connectivity (JDBC, DAO), transaction services (JTS, MTS),
asynchronous communication (JMS, MSMQ) and many more. The most popu-
lar Application Servers are BEA WebLogic, IBM WebSphere, Oracle 9i, JBoss
and Hewlett Packard’s Core Services Framework (CSF).

Our Application Server for the Semantic Web adopts the ideas and tech-
nologies of state-of-the-art Application Servers, but offers special features that
are of particular importance in the Semantic Web (as visible in the Semantic
Web specific requirements, cf. Subsection 3.2). In fact, we are reusing the very
core of the JBoss Application Server—its JMX implementation JBossMX—and
have built our own functionality around it. Connectors allow publishing com-
ponents’ methods as different Semantic Web software entities, for example,

13cf. http://www.service-architecture.com.
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peers or agents, and proxy components enable easy integration of existing ones.
Additionally, interceptors offer means for semantic interoperation between Se-
mantic Web data formats. Anther novelty is the usage of semantic technol-
ogy within the server itself (cf. requirements in Subsection 3.3). We offer an
ontology-based registry that is used for discovery, classification, connectivity
and implementation tasks. Common Application Servers use common directory-
services for discovery only. The association management component puts onto-
logical dependencies into action in conjunction with the component loader and
the registry. As a result, we consider our Application Server for the Semantic
Web as semantic middleware.

9.4 Software Reuse Systems

Classical Software Reuse Systems are comparable with our work in that they
also need to describe software modules appropriately for efficient and precise
retrieval. Techniques like faceted classification [Diaz 1991] represent features
of the providers rather than the goals they achieve. Techniques such as ana-
logical software reuse [Massonet and van Lamsweerde 1997] share a represen-
tation of modules that is based on goals achieved by the software, roles and
conditions. Zaremski and Wing [1997] describe a specification language and
matching mechanism for software modules. They allow for multiple degrees of
matching but consider only syntactic information. UPML, the Unified Problem-
solving Method Development Language [Fensel et al. 1999], has been developed
to describe and implement intelligent broker architectures and components to
facilitate semiautomatic reuse and adaptation. It is a framework for developing
knowledge-intensive reasoning systems based on libraries of generic problem-
solving components that are represented by inputs, outputs, preconditions and
effects of tasks. However, none of these approaches provides means for seman-
tic module and API discovery, semantic classification of modules or facilitation
of implementation tasks.

10. CONCLUSION

The article discussed the requirements, design and conceptual architecture of
an Application Server for the Semantic Web, and also presented a particular
implementation—the KAON SERVER.

The KAON SERVER is based on the design and development of existing
Application Servers, applying and augmenting their underlying concepts for use
in the Semantic Web. From our perspective, it is an important step in putting the
Semantic Web into practice. Based on our experiences with building Semantic
Web applications we conclude that such a server will be crucial to achieve reuse
and extensibility. This conclusion is substantiated by a detailed scenario that
shows how the KAON SERVER can be used to facilitate the development of
portal applications.

In contrast to existing Application Servers we also apply semantic
technology—an ontology is used for component and API discovery, classifica-
tion, connectivity and implementation tasks. All this makes life easier for the
developer and adds to the capabilities of the Application Server going beyond
state-of-the-art design and development.
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In the future we will investigate the automatic generation of web service and
peer descriptions out of the registry. The yet to be standardized upper layers
of the Semantic Web, for example, the Trust layer, will result in additional
requirements for our Application Server, which have to be met.
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