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ABSTRACT
Without the proliferation of formal semantic annotations, the Se-
mantic Web is certainly doomed to failure. In earlier work we pre-
sented a new paradigm to avoid this: the ’Self Annotating Web’, in
which globally available knowledge is used to annotate resources
such as web pages. In particular, we presented a concrete method
instantiating this paradigm, called PANKOW (Pattern-based AN-
notation through Knowledge On the Web). In PANKOW, a named
entity to be annotated is put into several linguistic patterns that con-
vey competing semantic meanings. The patterns that are matched
most often on the Web indicate the meaning of the named entity —
leading to automatic or semi-automatic annotation.

In this paper we present C-PANKOW (Context-driven PANKOW),
which alleviates several shortcomings of PANKOW. First, by down-
loading abstracts and processing them off-line, we avoid the gen-
eration of large number of linguistic patterns and correspondingly
large number of Google queries. Second, by linguistically ana-
lyzing and normalizing the downloaded abstracts, we increase the
coverage of our pattern matching mechanism and overcome sev-
eral limitations of the earlier pattern generation process. Third, we
use the annotation context in order to distinguish the significance
of a pattern match for the given annotation task. Our experiments
show that C-PANKOW inherits all the advantages of PANKOW
(no training required etc.), but in addition it is far more efficient
and effective.
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1. INTRODUCTION
The current situation of the Semantic Web is one of a vicious cy-

cle in which there is not much of a semantic web due to the lack of
annotated web pages, and there is such a lack because annotating
web pages currently does not provide much benefit. Thus, the ap-
plication of (semi-) automatic techniques in order to support web
page annotation is a key factor for the vision of the Semantic Web
to become true.

Several supervised machine learning based techniques have been
proposed to automate the information extraction as well as annota-
tion process of documents [4, 9, 20, 31]. However, these techniques
rely on assumptions that are not compatible with the vision of the
Semantic Web. First, machine learning approaches inducing ex-
traction rules for each concept from training data such as in [4, 9,
31] do typically not scale to large numbers of concepts as Semantic
Web ontologies consist of. Second, in order to annotate with re-
spect to a few hundred concepts, a training set in the magnitude of
thousands of examples needs to be provided1 , an effort that proba-
bly not many people are willing to make. Third, machine-learning
based approaches rely on the assumption that documents have a
similar structure as well as content, an assumption which seems
quite unrealistic considering the heterogeneity of the current web.

Thus, several researchers have started to look at unsupervised
approaches such as [15] as well as approaches performing a first
unsupervised step and then using the results of this first step to
induce new extraction rules in a bootstrapping manner [3, 10, 16].

Further, as a way out of the above mentioned vicious cycle, in [7]
we presented our vision of a ’Self-Annotating Web’ in which glob-
ally available syntactic resources are considered to support meta-
data creation. The main idea herein is to approximate semantics
by considering information about the statistical distribution of cer-
tain syntactic structures over the Web. Our concrete instantiation
of this paradigm is called PANKOW (Pattern-based ANnotation
through Knowledge On the Web). The core of PANKOW was a
pattern generation mechanism which creates pattern strings out of
a certain pattern schema conveying a specific semantic relation, an
instance to be annotated and all the concepts from a given onto-
logy. It counts the occurrences of these pattern strings on the Web
using the Google API. The ontological instance in question is then
annotated semantically according to a principle of maximal evi-
dence, i.e. with the concept having the largest number of hits. Our
approach is thus unsupervised as it relies on no hand labeled train-

1Our experiences with the Amilcare system in [9] showed that at
least ten examples for each concept to be extracted are necessary.



ing examples and does not assume that documents have a similar
structure, thus avoiding two main problems with which supervised
techniques are confronted.

Let’s for example assume that the string ’Niger’ appears in a
web page and we have no idea about how to annotate it. Figure 1
shows the Google hits for the following four expressions: Niger is
a country, Niger is a state, Niger is a river and Niger is a region.
Intuitively, given these figures we would naturally tend to annotate
Niger as a country as it seems to be its main meaning on the Web.
This illustrates the fact that formal (semantic) annotations can be
approximated to a certain extent by considering the statistical dis-
tribution of certain syntactic structures over the web. However, as
Niger can be a country or a river depending on the context in which
it appears, the example also shows that ambiguity is an important
problem we need to deal with in such an approach. This paper
presents C-PANKOW (Context-driven and Pattern-based Annota-
tion through Knowledge on the Web), which tackles the ambiguity
problem by taking into account the context the entity to be anno-
tated appears in.

The predecessor of C-PANKOW in fact suffered from a few
shortcomings. First, due to the restrictions of the pattern genera-
tion process, a lot of actual instances of the pattern schemes were
not found. In particular the approach exhibited problems generat-
ing the correct plural forms of concept labels as well as matching
more complex linguistic structures such as noun phrases includ-
ing determiners, noun modifiers etc. We overcome this problem
by actually downloading the pages, analyzing them linguistically,
and matching the patterns instead of merely generating them and
counting their Google hits. The results of the pattern-matching are
also linguistically normalized, i.e. words are mapped to their base
forms thus completely solving the problem with the generation of
plural forms.

At the same time we overcome the second problem in this way,
i.e. the large number of queries sent to the Google Web API. In fact,
by downloading the pages and processing them locally we reduce
network traffic. PANKOW issued a number of Google queries pro-
portional to the size of the ontology considered. Thus PANKOW
was difficult to scale to large ontologies. In C-PANKOW, we gen-
erate only a constant number of queries per instance that we anno-
tate. Thus, C-PANKOW is able to annotate using very large on-
tologies. Though PANKOW was already able to take into account
more concepts than standard named entity recognition systems, C-
PANKOW thus definitely overcomes the scalability problem with
which supervised techniques are faced.

Third and most important, we contextualize the pattern matching
by distinguishing between relevant and non-relevant pages. A pat-
tern matched in a relevant web page counts more than one matched
in a less relevant one. Hereby, relevance assessment boils down to
calculating the similarity of the involved pages. We present an eval-
uation of our system analyzing the impact of our notion of contex-
tual relevance as well as varying the number of pages downloaded.
Thereby, our experiments show that C-PANKOW outperforms its
competitors.

The remainder of this paper is structured as follows: Section 2
describes the process of C-PANKOW. Section 3 presents an eval-
uation of the approach. Section 4 describes the implementation of
the system as a freely accessible web service. Before concluding,
we discuss some related work in section 5.

2. THE PROCESS OF C-PANKOW
The process of C-PANKOW is schematically described by the

pseudocode in Figure 2 and is summarized in the following:

Figure 1: Statistical distribution of ’is a’-patterns for Niger

1. The web page to be annotated is scanned for candidate in-
stances. This process is described in detail in Section 2.1.

2. Then, for each instance � discovered and for each clue/pattern-
pair in our pattern library � (described in Section 2.4), we is-
sue an automatically generated exact query to GoogleTM and
download the abstracts of the � first hits (cf. Section 2.2).

3. We calculate the similarity between the document to be an-
notated and each of the downloaded abstracts. If the simi-
larity is above a given threshold � , the actual pattern found
in the abstract reveals a phrase, which may possibly describe
the concept that the instance may belong to. Section 2.3 de-
scribes how the similarity is calculated.

4. Then the results for instance � are updated according to the
similarity previously calculated, i.e. a pattern matched in an
abstract that is very similar to the page to be annotated counts
more than a pattern that is matched in a less similar abstract.

5. Finally, the instance � is annotated with that concept � having
the largest number as well as most contextually relevant hits.

In what follows, we describe in detail every important step of
the algorithm. The recognizeInstances() procedure is described
in Section 2.1. Section 2.2 describes the process of downloading
Google-abstracts, whereas Section 2.3 describes how the similarity
is computed. Finally, Section 2.4 describes our pattern library and
Section 2.5 discusses some complexity issues. The whole process
is illustrated with a running example. In fact, we describe the result
of each process step on the web page depicted in Figure 3.

2.1 Instance Recognition
In order to detect candidate instances in a web page we first elim-

inate the complete HTML markup and extract the text body of the
page. This step is necessary because we apply a part-of-speech
tagger to assign word categories to every token of the extracted
text and the tagger is not able to handle HTML markup.2 Then we
split the text into sentences and interpret as an instance every string
which matches the following pattern:

INSTANCE := ( � w+
�
DT � )? ([a-z]+

�
JJ � )? PRE (MID POST)?

PRE := POST := (([A-Z][a-z]*)
�
NNS �NNP �NN �NP � JJ �UH � )+

MID := the
�
DT ��� of

�
IN ���
	 � 	 ����� � POS ���

2We use the QTag part-of-speech tagger in
http://web.bham.ac.uk/O.Mason/software/tagger/. QTag’s
part-of-speech tagset can be found at http://www.ling.ohio-
state.edu/  ntyson/tagset/english-tagset.txt.



C-PANKOW(document d)�
/* recognize all the instances in input document */
I = recognizeInstances(d);
foreach ������

foreach (p,c) � P�
/* download the � first Google abstracts
matching the exact query ��� ��� */
Abstracts = downloadGoogleAbstracts(c(i),n);
foreach a in Abstracts�

/* calculate the similarity between the
document d and the Google abstract a */
sim = calculateSimilarity(a,d);
if (sim � t)�

if (p.matches(a))�
c = p.getConcept();
Res[c] = Res[c]+sim;

�
�

�
�

�
annotate(i,maxarg 	 Res[c]);

�

Figure 2: C-PANKOW’s process in pseudocode

(de � la � los � las � del)
�
FW � � [a-z]+

�
NP �NPS �NN �NNS �

These expressions are intended to be interpreted as standard reg-
ular expressions over words and their corresponding part-of-speech
tags, which are indicated in curly brackets. Paraphrasing, INSTANCE
matches each optional sequence of arbitrary characters ( � w+) tagged
as a determiner (DT), followed optionally by a sequence of small
letters ([a-z]+) tagged as an adjective (JJ), followed by an expres-
sion matching the regular expression denoted by PRE, which in
turn can be optionally followed by an expression matching the con-
catenation of MID and POST. Thereby, PRE and POST match a
sequence of tokens in which the first character is capitalized and
tagged either as a plural proper noun (NPS), a plural common noun
(NNS), a common noun (NN), a proper noun (NP), an adjective
(JJ) or an interjection UH3. MID matches a sequence of determin-
ers ’the’, prepositions ’of’, the possessive marker ’, a hyphen ’-’, a
foreign word FW such as ’de,del,las,los,las’ and lower case singu-
lar or plural proper and common nouns. For example, the tagged
sequence Pas

�
NP � de

�
FW � la

�
FW � Casa

�
NP � would be recog-

nized as an instance, whereby Pas would match the PRE, de la the
MIDDLE and Casa the POST part of the above regular expres-
sion. The instances discovered this way in our running example
web page are given in Table 1 as a cross ’X’ in the S(system) col-
umn.

2.2 Downloading Google Abstracts

3This is important for processing Asian names which sometimes
are tagged as ’UH’ by the part-of-speech tagger.

Figure 3: http://www.lonelyplanet.com/destinations/europe/
andorra/activities.htm

The patterns in our pattern library are actually tuples ��
� ��� where

 is a regular expression defined over part-of-speech tags as de-
scribed above, and � a function ����� ��� � ������� ��� � ��� called the
clue. Given an instance ����� and a clue � , the query ��� ��� is sent
to the GoogleTM API and we download the abstracts of the first �
documents matching this query and then process the abstracts to
find instances of pattern 
 . For example, given the clue ��� ���"!# �%$ �'&�()� #+* � and the instance Seville we would download � ab-
stracts matching the query f(Seville), i.e. ”such as Seville”.4 With
the use of such clues, we thus download a number of pages in which
a corresponding pattern will probably be matched thus restricting
the linguistic analysis to a few promising pages.

2.3 Similarity Assessment
As described in our pseudocode algorithm in Figure 2, we then

calculate the similarity between each downloaded abstract and the
web page in question. For this purpose, we first remove stopwords
from both documents and then adopt the bag-of-words model [30]
to create vectors representing the count for each word in the doc-
ument. Then we use the cosine measure to calculate the similarity
between the abstract and the document to be annotated. Thus, we
measure the similarity between the abstract and the document as
the cosine of the angle between their vectors, i.e.

,'-�. �0/1��23 � 2(4�5�+! 6798 6:; 67 ; 8 ; 6:
;

We only consider those pages as relevant for which this similarity
is over the threshold � . Further, we weight the contribution of the
pattern matched in that page with this value thus ’contextualizing’
the pattern-matching process with the result that a pattern matched
in a very similar page counts more than a pattern matched in a less
similar one. Thus, a certain instance can be annotated with a dif-
ferent concept in different contexts, i.e. web pages. In general,
4Here,

*
denotes the concatenation operator defined on two

strings.



the intuition behind this is to yield more accurate annotations and
to choose the contextually most appropriate sense or concept for
a given instance in case it is ambiguous. Additionally, by this we
only linguistically analyze Google abstracts which seem relevant.
After a few initial experiments we decided to use ’0.05’ as thresh-
old value. In section 3 we also present further experiments with
different threshold values.

2.4 The Pattern Library
In what follows we present the pattern library � we use and

briefly describe the intuition behind each pattern:

2.4.1 Hearst Patterns
These patterns have been applied by Marti Hearst ([23]) to dis-

cover sub-/superconcept relations. As we have argued several times
in [7] and [8] these patterns can however also be used to discover
instance/concept relations. The relations reused from Hearst are the
following:

HEARST1:= CONCEPT such
�
DT � as

�
IN � (INSTANCE ,?)+

((and � or)
�
CC � INSTANCE)?

HEARST2:= CONCEPT ,? especially
�
RB �

(INSTANCE ,?)+ ((and � or)
�
CC � INSTANCE)?

HEARST3:= CONCEPT ,? including
�
RB �

(INSTANCE ,?)+ ((and � or)
�
CC � INSTANCE)?

HEARST4:= INSTANCE ,?)+ and
�
CC � other

�
JJ � CONCEPT

HEARST5:= INSTANCE ,?)+ or
�
CC � other

�
JJ � CONCEPT

where CONCEPT := [a-z]+
�
NN(S)? � + and the corresponding

clues are:

clue ���������
	 � � � �+! �%$ �%& (4� * �
clue ���������
	 � � � �+!��9�5
� � � ( ����� * �
clue ���������
	 � � � �+! � � � � $ 3 � ��� * �
clue ���������
	��� � �+! � * ( � 3�� � &���
clue ���������
	�� � � �+! � *�� � � �5&�� �

An example for an expression matched by the HEARST1 pat-
terns is hotels such as the Ritz, the Hilton and the Holiday Inn, one
for HEARST3 is sights, including the Eiffel Tower, the Statue of
Liberty or the St. Peter’s Chapel, and one for HEARST4 is New
York, Tokyo, Rio de Janeiro and other big cities.

2.4.2 Definites
The next pattern involves a definite, i.e. a noun phrase introduced

by the definite determiner ‘the’. Frequently, definites actually re-
fer to some entity previously mentioned in the text. In this sense,
a phrase like ‘the hotel’ does not stand for itself, but it points as
a so-called anaphora to a unique hotel occurring in the preceding
text. Nevertheless, it has also been shown that in common texts
more than 50% of all definite expressions are non-referring ([29]),
i.e. they exhibit sufficient descriptive content to enable the reader
to uniquely determine the entity referred to from the global con-
text. For example, the definite description ‘the Hilton hotel’ has
sufficient descriptive power to uniquely pick-out the corresponding
real-world entity for most readers. One may deduce that ‘Hilton’ is
the name of the real-world entity of type Hotel to which the above

expression refers.

DEFINITE: the
�
DT � ( � w+

�
JJ � )? INSTANCE CONCEPT,

whereby the corresponding clue is clue � ����������	�� � � � ! �5&�� * � .

2.4.3 Copula
The probably most explicit way of expressing that a certain en-

tity is an instance of a certain concept is by the verb ‘to be’ in a
copula5 construction as for example in ‘The Excelsior is a nice ho-
tel in the center of Nancy’. Here’s the general pattern:

INSTANCE � w+
�
BE(D?)(Z �R) � CONCEPT,

where is, are, was and were are tagged by the part-of-speech tagger
as BEZ, BER, BEDZ and BEDR, respectively. The corresponding
clue is clue �� "!$#%&� � ����! � * ��� .

2.5 Run Time and Query Size Complexity
The runtime complexity of C-PANKOW is ' � � � �)( � � �)( �� , where

� � � is the total number of instances to be annotated, � � � the number
of patterns we use, and � the maximum number of pages down-
loaded. As � � � and � are constant and a document of size � * � con-
tains at most � * � instances, the overall complexity of C-PANKOW
is thus linear in the size of the document, i.e. ' � � * � � . As the
GoogleTM API does not allow to retrieve more than 10 documents
per query, the number of queries sent to the GoogleTM API is � � �+(
� � 3 �-,/.10 � per instance. In our special settings, � � � !32 , so that
we issue 2 � 3 �),/.40 queries per instance independently of how big
the ontology in use is. This is an important reduction of the num-
ber of queries compared to PANKOW in which we had to issue
� � � ��5 � 6 � queries per instance, where � 6 � indicate the number
of concepts the ontology had. For a small set of concepts with
� 6 �1!87:9 as well as � � � � !;.10 this meant 590 queries per in-
stance to be annotated. As C-PANKOW is independent of the
size of the ontology, we can thus consider even larger ontologies
than PANKOW, which already provided annotation based on much
larger ontologies than most other approaches.

3. EVALUATION
In order to evaluate our system, we have reused the dataset de-

scribed in [7]. In order to create this dataset, we asked two hu-
man subjects to annotate 30 texts with destination descriptions from
http://www.lonelyplanet.com/destinations. They used a pruned ver-
sion of the tourism ontology developed within the GETESS project
([32]). The original ontology consisted of 1043 concepts, while
the pruned one consisted of 682. The latter ones have been con-
sidered also in our evaluation. The subjects were told to annotate
instances in the text with the appropriate concept from the onto-
logy. In what follows, we will refer to these subjects as A and B.
Subject A actually produced 436 annotations and subject B pro-
duced 392. There were 277 instances that were annotated by both
subjects. For these 277 instances, they used 59 different concepts
and the categorial agreement on these 277 instances as measured
by the Kappa statistic was 63.50% (cf. [5]), which allows to con-
clude that the annotation task is overall well defined but that the
agreement between humans is far from perfect. In what follows,
we present results for the detection of instances as well as for the
actual automatic classification of these.

5A copula is an intransitive verb which links a subject to an object,
an adjective or a constituent denoting a property of the subject.



3.1 Instance Detection
In order to detect potential instances in a web page to be anno-

tated, we apply the method described in Section 2.1. We apply this
method to the dataset described above and compare the instances
discovered by our system with the instances annotated by the anno-
tators in terms of Precision, Recall and F-Measure. More formally,
let � � � 7 and ��� � 7 be the set of instances annotated by subjects A and
B in the document

3
, and let � � � 7 be the set of instances detected

by the system in the same document
3

, then Precision, Recall and
F-Measure are defined as follows:

� �� � 7 ! � � � � 7�� � � � 7 �
� � � � 7 �

� �� � 7 ! � � � � 7�� � � � 7 �
� � � � 7 �

� �� � 7 !
� 5 � �� � 7 5 � �� � 7
� �� � 7�	 � �� � 7

For these and all the other measures 
 � � � � � � � ��� � ������ �
considered in this section, we average over all the documents and
over both annotators, i.e.:


 7 ! 
 � � 7 	 
�� � 7�


 ! �7�� �

 7
� * �

In our running example web page, the system for example de-
tected 11 instances, while subject A found 9 and subject B 7 (com-
pare Table 1). The system coincided with subjects A and B in 6 and
5 instances, respectively. This leads to the following results for our
running example: � �� � 7 !��� � ! 7���� 7:7�� , � �� � 7 ! �� � !�� 7�� �
7�� ,� �� � 7 ! �� ! ���!� � 2�� ,

� �� � 7 ! �" ! 2
.�� �$#�� and thus
� �� � 7 !

�:0$� ,
� �� � 7 ! 7+7�� 7:7�� . Thus, � �7 ! 7:0$� ,

� �7 !%�+9!� 0+7�� and� �7 ! 7+2&� 2�'$� . For the whole dataset, the system achieved a preci-
sion of � � !(�$#!� 2:7�� , a recall of

� � ! 7+2�� � 0$� and a F-Measure
of
� � !)��'!� #+9�� . In order to get an upper limit on the task, we also

compared the precision, recall and F-measure of subject A against
subject B and vice versa and yielded

� �*,+�- :/. ! 2:0!� � .�� as a hu-
man baseline on the task. While we are still quite far away from
the human performance on the task, the results are as desired in the
sense that we have a higher recall at the cost of a lower precision.
This is useful as some of the spurious instances will be filtered out
by the instance classification step due to the fact that if no patterns
are found, the instance will not be assigned to any concept. Thus,
the precision can be increased by the instance classification step,
while the recall needs to be reasonably high as it can not be in-
creased later.

3.2 Instance Classification
The annotations by the subjects A,B as well as by the system for

a document
3

are modeled by the functions � � � 7 , ��� � 7 and � � � 7 , re-
spectively. The actual classification of the detected instances is also
evaluated in terms of Precision, Recall and F-measure with respect
to both reference sets � and 0 . For this purpose we introduce a set
C of instance/concept pairs as follows:

6 � � 7 ! � � �5� �%� � ��� 3
��1 �0� � � 7 � ( � 3 � � � 7 � ���+! ��� �
Precision, Recall and F-Measure are defined as follows:

� �� � 7 ! � 6 � � 7 � 6 � � 7 �
� 6 � � 7 �

Instance A B S
Andorra X X X
Andorra Activities Andorra X
Atlantic X X X
Canillo X X X
GR11 X X
Lonely Planet World X
Major Andorran X
Mediterranean X X
Ordino X X X
Pas de la Casa X
Pyrenees X X X
Roig X
Soldeu X
Soldeu-El Tarter X
Traveler X

Table 1: Results of the instance detection algorithm

� �� � 7 !2� � � � � 7 ! � 6 � � 7�� 6 � � 7 �
� 6 � � 7 �

� �� � 7 !
� 5 � �� � 7 5 � �� � 7
� �� � 73	 � �� � 7

It is important to mention that our recall corresponds to the accu-
racy used in other approaches (compare [2] or [22]), such that we
can compare with these using this value. As above these measures
are averaged over both annotators and over the 30 documents. In
our running example for instance, the system produced 6 annota-
tions, while subject A and B produced the above mentioned 9 and 7
annotations, respectively. The system agrees with A and B in 2 an-
notations, respectively (compare Table 2). This leads to the follow-
ing precision, recall and F-Measure values: � �� � 7 ! �

� !�#�#�� #�#$� ,� �� � 7 ! �� ! ��� � ��� � ,
� �� � 7 ! � �!� ����� and � �� � 7 ! �

� !2#�#�� #�#$� ,� �� � 7 ! �" ! � '�� 7:2�� ,
� �� � 7 !4#:0!� 2+2�� . Thus, � �7 !5#�#�� #�#$� ,� �7 ! � 7�� � 0�� ,

� �7 ! � '!� 2 � � .
Furthermore, to assess how good the actual classification is, we

also consider the Accuracy of the system which abstracts from the
actual instance recognition task. For this, we present two further
measures of accuracy. The first one ( � � � � ) considers the instances
annotated by the system as well as by the human thus not penalizing
the system for not giving answers for instances it didn’t discover.
The second one, � � � � � , considers the 277 common instances an-
notated by both subjects in order to compare our results with our
earlier system presented in [7]. Here follow the formal definitions:

� � � �� � 7 ! � 6 � � 7�� 6 � � 7 �
� 3
��1 �0� � � 7 � � 3
��1 �0� � � 7 � �

� � � � �� � 7 ! � � � �5� ��� � ��� 3
��1 �0� � � 7 � � 3
��1 �0��� � 7 �76�� � � 7 ! � � � 6 � � 7 �
� 3
��1 �0� � � 7 � � 3
��1 �0��� � 7 � �

Thus we get for our running example: � � � � � � 7 !8� � � � � � 7 !
� � � �7 ! �

� !9�+0$� and � � � � �� � 7 !:� � � � �� � 7 !:� � � � �7 ! �
� !

#�#�� #�#$� .
Finally, as instances can be tagged at different levels of detail

and there is certainly not only one correct assignment of a concept,
we also consider how close the assignment of the system is with
respect to the assignment of the annotator by using the Learning
Accuracy originally introduced by Hahn et al. [22]. However, we
consider a slightly different formulation of the Learning Accuracy



in line with the measures defined in [26]. Both measures are in
fact equivalent, the only difference is that we measure the distance
between nodes in terms of edges – in contrast to nodes in Hahn’s
version – and we do not need any case distinction taking into ac-
count if the classification was correct or not. First of all we need
the notion of the least common superconcept � of two concepts (
and � which is defined in line with [26]:

� ��� � (������ � ! ����$ �%& �5&4( ���4� (�� ��� 	 � ����� �%� 	 � � � � 
�� �%� is minimal

Now the taxonomic similarity ���	� - between two concepts is de-
fined as:

� �	� - � ( �	��� � ! � � � � 
�� ��� 	 .
� � � � 
�� ��� 	 � � (�� ��� 	 � ����� ��� 	 .

where � ! � �%� � ( �	��� .
The Learning Accuracy is now defined as follows:

�� � � 7 ! �
� ��7�
 -���	��� ����� 7�
�-�������� ���

���	� - �0� � � 7 � ��� � � � � 7 � ���5�
� 3
��1 �0� � � 7 � � 3
��1 �0� � � 7 � �

Here we also average over both annotators and over the documents
in the collection.

3.2.1 Threshold
In a first series of experiments, we examined the effect of vary-

ing the threshold, but without taking into account the similarity for
weighting the patterns. As the results in Table 3 show, the best re-
sults were in fact achieved when using a threshold of 0.05. When
increasing the threshold, the precision of the annotations certainly
increases, but the recall is drastically reduced. In general, all val-
ues except for the precision decrease when increasing the threshold
such that we conclude that the best threshold lies somewhere be-
tween 0 and 0.1. Thus a threshold of 0.05 seems reasonable.

3.2.2 Similarity
Table 4 shows the results for the baseline experiment with no

threshold, i.e. considering all the pages returned by Google up to
a maximum of 100 (labeled with ’no threshold’ in the table). It
also shows the results of the experiment using a threshold of 0.05
as well as one in which the patterns were weighted according to
the corresponding similarity. The results already show that taking
into account the similarity and considering only those pages with a
similarity over the threshold � indeed yields better results. Further,
the version weighting the patterns yields a higher precision at the
cost of a slightly lower recall, but increases the Learning Accuracy
by more than 3 points. Thus, we conclude that using the version of
our system weighting the patterns according to the similarity of the
involved pages indeed yields better results.

3.2.3 Number of Pages
Finally, we also varied the maximum number of abstracts down-

loaded. The results are given in Table 5. Interestingly, using a
lower or higher number of maximum pages also decreased the re-
sults independently if the contribution of each pattern was weighted
according to the similarity between the page to be annotated and the
corresponding Google abstract or not. In general, we conclude that
using maximally the first 100 hits returned by Google for the clue
patterns is enough.

3.2.4 A posteriori evaluation
In order to apply our approach to a larger set of web pages, we se-

lected a set of 307 news stories from http://news.kmi.open.ac.uk/rostra/.
These 307 news stories were automatically annotated using our

C-PANKOW web service using the first 100 pages returned by
Google, a threshold of 0.05 and taking into account the similar-
ity of the abstract in which the pattern was matched. In this way
1270 annotations were produced, i.e. 4.1 annotations on average
per document. One of our annotators manually analyzed the an-
notations a posteriori and evaluated each annotation by assigning
a value from 0 (incorrect) to 3 (totally) correct. We are thus only
able to give results for the precision of our system on this dataset.
We measure three types of Precision: � � , � � and � � considering
an answer as correct if it was assigned at least 3, 2 and 1 points,
respectively. On average, the annotations produced by the sys-
tem received 1.81 points by the annotator. The precisions were:
� � ! 7���� '�'$� , � � ! 7+2&� 9+7�� and � � ! ��'!� ����� . In order to com-
pare these results with the results on the Lonely Planet dataset, we
also performed this a posteriori evaluation on that dataset yielding
2.1 points per annotation on average and the following precisions:
� � ! 7�'�� ./�&� , � � ! 2 .�� .�� and � � ! 2���� 0�'$� . These results
corroborate the fact that the annotations produced by C-PANKOW
are indeed very accurate.

3.2.5 WordNet as Ontology
As a final experiment, instead of annotating with respect to a

domain-specific ontology, we used a general purpose ontology, i.e.
WordNet [18]. An additional complication here is that words can
have different meanings or senses – as they are called in WordNet
terminology – and thus the correct meaning needs to be chosen on
the basis of contextual evidence. For this purpose we implemented
a simple word sense disambiguation algorithm in line with the one
presented in [25]. In fact, in our approach we choose that sense
whose gloss maximizes the overlap – in the number of words – with
the web page in question. In order to evaluate the annotations with
respect to WordNet, we conducted again a posteriori evaluation on
the 307 news stories as mentioned above. The human subject was
asked to evaluate the appropriateness of the annotation on the basis
of the synset’s gloss, i.e. a natural language description of its inten-
tion. For this task, the results were actually poorer with precisions
of � � ! � 2�� 9&.,� , � � ! #�#!� �
2�� and � � ! ��#!� �$#�� . Further we
identified two main reasons why the results are lower with respect
to using domain-specific ontology. First, in some cases the term
with maximal evidence, i.e. with the largest number of Google hits,
is not specific to the domain in question, but as WordNet is so large,
a corresponding concept or synset is almost always found and the
named entity in question thus annotated with it. Second, in other
cases the term with maximal evidence is contextually appropriate,
but our simple word sense disambiguation approach fails in select-
ing the correct sense. We thus conclude that in order to accurately
annotate with respect to WordNet we would need a mechanism to
consider only relevant terms for the domain in question as well as
to improve our word sense disambiguation algorithm.

3.2.6 Discussion & Comparison
We have presented results showing that the use of the similar-

ity as an indicator of the relevance of a certain Google abstract for
the page in question indeed improves the quality of the annota-
tions produced by the system. Further, we have also examined two
parameters: the similarity threshold and the maximum number of
result pages considered. The results show that a similarity thresh-
old of 0.05 seems reasonable. Furthermore, an interesting result is
that increasing the number of pages considered does not improve
the quality of the annotations. This is a very important result from
a practical point of view as it shows that we can get good results
while maintaining efficiency at the same time.

In order to assess the performance of our system we compare it



Instance A B S
Andorra country country country
Atlantic sea sea fish
Canillo town area hotel
GR11 walking trail
Mediterranean sea sea
Ordino region area valley
Pas de la Casa town
Pyrenees mountain mountain mountain
Roig family
Soldeu town
Traveler person

Table 2: Annotations by subjects A, B and the system (S)

Threshold
� � � � � � =Acc Acc’ Acc” LA

no threshold 19.64% 23.27% 17.83% 41.34% 27.91% 68.03%
0.05 22.31% 29.15% 18.96% 46.19% 29.32% 71.31%
0.1 15.19% 36.18% 10.58% 50.44% 19.21% 76.82%
0.3 1.41% 60.83% 0.79% 79.17% 7.22% 89.92%
0.5 1.41% 60.83% 0.79% 79.17% 7.22% 89.92%
0.7 1.41% 60.83% 0.79% 79.17% 7.22% 89.92%
0.9 1.41% 60.83% 0.79% 79.17% 7.22% 89.92%

Table 3: Results of varying the threshold (no weighting,n=100)

Threshold
� � � � � � =Acc Acc’ Acc” LA

no threshold 19.64% 23.27% 17.83% 41.34% 27.91% 68.03%
t=0.05 22.31% 29.15% 18.96% 46.19% 29.32% 71.31%
t=0.05 + sim 22.27% 29.29% 18.92% 46.79% 29.35% 74.37%

Table 4: Impact of using the similarity measure (n=100)

No Weighting
No. pages

� � � � � � =Acc Acc’ Acc” LA
10 17.38% 29.47% 13.73% 42.54% 23.57% 69.92%
50 20.72% 31.03% 17.40% 43.49% 27.43% 71.65%
100 22.31% 29.15% 18.96% 46.19% 29.32% 71.31%
200 18.27% 19.89% 17.70% 43.86% 28.13% 70.71%
300 17.78% 19.03% 17.47% 41.15% 27.58% 70.09%

Weighting
No. pages

� � � � � � =Acc Acc’ Acc” LA
10 16.26% 30.38% 12.27% 43.58% 21.59% 72.28%
50 20.76% 31.53% 17.33% 45.45% 27.43% 73.47%
100 22.27% 29.29% 18.92% 46.79% 29.35% 74.37%
200 19.62% 21.39% 18.97% 45.97% 29.50% 71.49%
300 18.47% 19.88% 18.09% 43.54% 28.30% 72.17%

Table 5: Results of varying the number of pages (t=0.05)



to state-of-the-art systems performing the same task, i.e. assign-
ing instances appearing in texts to their corresponding concept in a
given ontology. The approaches we directly compare with are the
ones in [2] and [22] as they consider a similar scenario. However,
we also situate our approach in the context of other named entity
recognition and classification approaches. In particular, we discuss
other systems with a special emphasis on the number of concepts
considered, which renders a classification easier or more difficult.
Table 6 shows the results of different systems ordered according to
number of concepts considered for the assignment. The systems
are described in more detail in Section 5.

4. IMPLEMENTATION
C-PANKOW has been implemented in Java and is accessible as

a Web Service using Axis6, an open implementation of the Sim-
ple Object Access Protocol (SOAP)7, as well as a Servlet on top
of Tomcat8 with a web frontend. Thus, C-PANKOW can be either
accessed in a programmatic way or alternatively through the web
frontend at http://km.aifb.uni-karlsruhe.de/pankow/annotation/. In
C-PANKOW, KAON [14], an open source ontology management
infrastructure developed at our institute is used to represent on-
tologies and perform ontology validation. The Google index is
searched using the Google API, which is available from Google.
Our implementation uses the free-of-charge Google API, which
only yields ten results per search. For efficiency reasons, this queries
to Google are multi-threaded with up to ten simultaneous searches.
Furthremore, as the default timeout of the Google API is relatively
high, time limits are imposed on each thread after which the thread
will be restarted. Because annotating one page can take up to 20
minutes, the server has a dedicated worker thread that does the ac-
tual annotation using the methods put forth in this paper. Both the
Servlet and the Axis interface enter the user’s request into a queue
which is then emptied by the worker thread. The results are then
dispatched to the user via email, although other methods of notifi-
cation are possible. Currently, C-PANKOW is integrated with the
semantic web browser MagPie [13] with the purpose of providing
additional named entities to be highlighted.

5. RELATED WORK
As many others, our work is based on the seminal work of Hearst

on applying hand-crafted patterns denoting a certain relation to find
instances of these relations in a text corpus. Hearst applied such
relations to discover is-a relations in text. Hearst’s idea has been
reapplied by different researchers with either slight variations in the
patterns used [24], in very specific domains [1], to acquire know-
ledge for anaphora resolution [28], or to discover other kinds of se-
mantic relations such as part-of relations [6] or causation relations
[21]. Instead of matching these patterns in a large text collection,
some researchers have recently turned to the Web to match these
patterns such as in [7], [15], [27]. Especially interesting in our con-
text is the work in [15] which aim is to acquire instances for a given
concept. In particular, Etzioni et al. present results on the task of
acquiring instances of cities, countries, US states, films and actors.
They make use of a Bayesian classifier in order to decide weather
an instance belongs to a certain concept or not. Recently, they have
also considered learning new patterns by a rule learning process
[16]. Though their work is quite similar to ours, the aims of both
approaches are quite orthogonal, i.e. while we are concerned with

6http://ws.apache.org/axis
7http://www.w3.org/TR/soap/
8http://jakarta.apache.org/tomcat/

annotating the instances in a given document with the correspond-
ing concept, Etzioni et al. aim at learning the complete extension of
a certain concept in order to build a search engine ’knowing it all’.
Thus a crucial aspect of the approach presented in this paper is to
account for the context in which a certain instance appears in order
to annotate it with the contextually most appropriate concept. This
is an aspect totally neglected by the approach of Etzioni et al., such
that it is doubtful if their approach could be used for an annotation
task as we consider here. Furthermore, as their aim is to learn the
extension of certain concepts such as actors, cities etc. and thus
their task quite different to ours, we do not give any quantitative
comparison.

Another interesting system is SemTag [12] which also automati-
cally annotates web pages. Though its results are certainly impres-
sive, it is important to note that SemTag actually only performs the
task of disambiguating entities appearing in a web page as it re-
lies on the TAP lexicon to list all the possible concepts, senses or
meanings of a given entity. Our approach does not rely on such a
handcrafted lexicon and in fact automatically discovers all the pos-
sible concepts for a given entity from the Web and then suggests
the contextually most appropriate concept for it thus performing
two tasks in one: induction of possible concepts and context-based
disambiguation. Thus, as the tasks are not comparable, we also do
not provide any quantitative comparison of results.
Brin [3] presents a bootstrapping approach in which the system
starts with a few patterns, and then tries to induce new patterns
using the results of the application of the seed patterns as train-
ing dataset. This is also the general idea underlying the Armadillo
system [10], which exploits redundancy in the World Wide Web to
induce such extraction rules. The work of [11] is also concerned
with inducing certain patterns to extract information, but does this
by learning ’soft patterns’ and relying on a similarity criterion when
matching these. This is quite different from the ’hard patterns’ that
are considered in the approaches such as the one presented in this
paper as well as [9] or [15].

Concerning the task of learning the correct class or ontological
concept for an unknown entity, there is some related work, espe-
cially in the computational linguistics community. In the context
of the Message Understanding Conferences (MUC), systems typi-
cally achieved accuracies of well above 90% in the task of tagging
named entities with respect to three classes: organization, person
and location. However, this task is quite moderate compared to the
task of using 682 concepts as considered in our approach. Other
systems have also considered more categories such as Hovy et al.
[19] which considered 7 or Evans [17] which considered from 2-
8 categories varying form document to document as well as Hahn
et al. [22] and Alfonseca et al. [2] who consider 325 and 1200
concepts, respectively.

Hahn and Schnattinger [22] create a hypothesis space when en-
countering an unknown word in a text for each concept that the
word could belong to. These initial hypothesis spaces are then iter-
atively refined on the basis of evidence extracted from the linguistic
context the unknown word appears in. In their approach, evidence
is formalized in the form of quality labels attached to each hypoth-
esis space. At the end the hypothesis space with maximal evidence
with regard to the qualification calculus used is chosen as the cor-
rect ontological concept for the word in question. The results of the
different version of Hahn et al.’s system (compare [22]) in terms of
accuracy can be found in Table 6. Their approach is very related
to ours and in fact they use similar patterns to identify instances
from the text. However, the approaches cannot be directly com-
pared. The reason is that they evaluate their approach under clean
room conditions as they assume accurately identified syntactic and



System No. Concepts Preprocessing Accuracy/Recall Learning Accuracy
MUC 3 various � 90% n.a
Evans 2-8 typology derivation (clustering) 41.41% n.a.
Fleischman et al. 8 N-gram frequency extraction 70.4% n.a.
PANKOW 59 none 24.9% 58.91%
Hahn et al. (Baseline) 325 perfect syntactic and semantic analysis required 21% 67%
Hahn et al. (TH) 325 perfect syntactic and semantic analysis 26% 73%
Hahn et al. (CB) 325 perfect syntactic and semantic analysis 31% 76%
C-PANKOW 682 POS tagging & pattern-matching 29.35% 74.37%
Alfonseca et al. (Object) 1200 syntactic analysis 17.39% 44%

Table 6: Comparison of results

semantic relationships and an elaborate ontology structure, while
our evaluation is based on very noisy real-world input — rendering
our task harder than theirs. Furthermore, while our evaluation was
conducted with respect to a reference standard, it is not clear how
they evaluated their system.

Alfonseca and Manandhar [2] have also addressed the problem
of assigning the correct ontological class to unknown words. Their
system is based on the distributional hypothesis, i.e. that words are
similar to the extent to which they share linguistic contexts. In this
line, they adopt a vector-space model and exploit certain syntactic
dependencies as features of the vector representing a certain word.
The unknown word is then assigned to the category corresponding
to the most similar vector. The best result measured against a refer-
ence standard (strict evaluation mode as they call it) was achieved
using only verb/object dependencies as features (compare Table 6).
Fleischmann and Hovy [19] address the classification of named en-
tities into fine-grained categories. In particular, they categorize
named entities denoting persons into the following 8 categories:
athlete, politician/government, clergy, businessperson, entertainer/
artist, lawyer, doctor/scientist, police. Given this categorization
task, they present an experiment in which they examine 5 differ-
ent Machine Learning algorithms: C4.5, a feed-forward neural net-
work, k-nearest Neighbors, a Support Vector Machine and a Naive
Bayes classifier. As features for the classifiers they make use of
the frequencies of certain N-grams preceding and following the
instance in question as well as topic signature features which are
complemented with synonymy and hyperonymy information from
WordNet. They report a best result of an accuracy of 70.4% when
using the C4.5 decision tree classifer. Fleischman and Hovy’s re-
sults are certainly very high in comparison to ours – and also to the
ones of Hahn et al. [22] and Alfonseca et al. [2] – but on the other
hand though they address a harder task than the MUC Named En-
tity Task, they are still quite far away from the number of categories
we consider here.

Evans [17] derives similar statistical fingerprints as considered
in our approach by querying GoogleTM and then clusters named en-
tities on the basis of these fingerprints as features in order to derive
a class topology from the document in question. He uses a bottom-
up hierarchical clustering algorithm for this purpose. His approach
differs from the others discussed here in that it is totally unsuper-
vised without even the set of categories being given. Thus, the
entities are classified with respect to different sets of categories de-
pending on the document considered. Overall, he reports 41.41%
of correctly classified entities, considering from 2 to 8 classes.

6. CONCLUSION
We have presented an enhancement of our original PANKOW

approach called C-PANKOW. With C-PANKOW we have over-
come several shortcomings of the earlier system. In fact, C-PANKOW
has outperformed PANKOW as well as some of its closest com-
petitors. First, by downloading a certain number of pages, linguis-
tically analyzing and normalizing them, we overcome problems of
our earlier pattern generation method and increase the recall of the
pattern matching process by being able to consider structures with a
more complex linguistic structure such as noun phrases containing
determiners, adjectives or other noun modifiers. At the same time
we reduce the number of queries sent to the Google API which was
originally proportional to the size of the ontology. Instead of gen-
erating patterns for all the concepts in the ontology, we match the
patterns in the downloaded Google abstracts and map the results to
the ontology in question such that the approach is independent of
the ontology’s size, thus being scalable to arbitrarily large ontolo-
gies. In fact, the complexity of our approach is now linear in the
number of instances and hence in the size of the document. The
number of queries sent to the Google API is now constant for each
instance to be annotated. Finally and most important, by consider-
ing the similarity between the page to be annotated and the Google
abstract in which the pattern was matched we have contextualized
our approach to provide provably more accurate annotations in the
context of the document to be annotated and to choose the contex-
tually most appropriate concept for a possibly ambiguous instance.
Our results have shown that considering such a similarity indeed
improves the quality of the results of our system, thus being one
step closer towards the ’Self-Annotating Web’.

Our work has been so far restricted to learning annotations for in-
stances. Further work will extend this to also learning to annotate
conceptual relations between discovered instances. A very inter-
esting direction for further research would be to learn new patterns
indicating a certain relation by a certain rule induction process such
as in [3, 9, 11, 16]. The named entity recognition in Web sites could
also be improved.
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