
A Proactive Inferencing Agent for Desk Support

Hans-Peter Schnurr & Ste�en Staab
University of Karlsruhe, Institute AIFB, 76128 Karlsruhe, Germany

http://www.aifb.uni-karlsruhe.de/WBS/

fschnurr,staabg@aifb.uni-karlsruhe.de
Tel.: +49-721-608 7363 Fax: +49-721-693717

Abstract

We describe an approach towards integrating the
semantics of semi-structured documents with task-
support for (weakly-structured) business processes
and proactive inferencing capabilities of a desk sup-
port agent. The proactive assistance of the intelli-
gent agent is motivated by the requirements posed
in (weakly-structured) business processes performed
by a typical knowledge worker. First, we introduce
a reactive agent that provides knowledge out of an
organizational memory for the business task at hand.
The building of the reactive agent requires rather rigid
query structures that do not �t nicely with varying
precision of knowledge found in the organizational
memory. Thus, we propose an enhanced agent that
reasons proactively about what might be interesting
to you and what might be due in your next step.

Introduction

Intelligent information agents are often compared
against their human counterparts, such as secretaries
or other colleagues. The comparisons usually �nd that
human assistants

� observe what you do,

� think about what you do,

� have expectations about what you do next,

� thus cope with incomplete information, and still if
you ask them they

� respond quickly to your questions.

Though all of these properties are highly desirable for
your personal information agent, in order that they
answer you fastly and that you save tedious working
schemes, nowaday's agents lack most of these proper-
ties. We here present an architecture and techniques
that (partially) implement these properties within a re-
alistic setting, providing information agents that

� reason proactively about what you might be doing,

� take into account what information you have pro-
vided so far,

Copyright c
 1999, American Association for Arti�cial In-
telligence (www.aaai.org). All rights reserved.

� build up reasonable models about what information
you might deserve next, thus

� narrow down choices for potential answers, even if
information is missing, and, hence,

� respond to you much faster and much more precisely.

Subsequently, we will �rst describe our motivation for
building proactive information agents and describe the
Scenario into which they are integrated. Then, we de-
scribe our starting point, viz. a Reactive Agent Sup-
port, that includes knowledge from an organizational
memory created through the usual work tasks of the
knowledge worker. On this basis we build our enhanced
agent that improves the rather rigid scheme of requir-
ing information from the user and querying the infer-
ence engine. Our Proactive Inferencing Agent builds on
just the same basic modules, however it employs a re-
�ned inferencing strategy that allows for earlier, faster
and still more frequent support than the reactive ap-
proach. Moreover, it reduces the burden on the human
who models the information agent for a particular ap-
plication and, thereby, balances automatically between
the need of speci�c answers and the requirement to pro-
duce an helpful answer for a broad variety of possible
input data. Some examples will elucidate what we pur-
sue with and how we achieve this modeling balance.

Scenario

Our approach is embedded in a typical knowledge man-
agement setting. In such work desk settings, proactive
information agents have often been devised as useful
helpers that may facilitate the task at hand the knowl-
edge worker tries to complete on her computer. For
instance, project management involves the compilation
of a project plan, allocating resources and people in an
appropriate way. Naturally, the project manager has to
compile a team from within a large company where she
is hardly able to know everyone with his capabilities
and experiences. Thereby, she must meet the following
planning requirements:

� Participants must be available for the project,

� participants should have particular technical knowl-
edge that is needed for the project, and

� they should have some knowledge about the client in
this project or at least about a client with a similar
industry background.

Currently, there are several approaches to handle this
problem. First, the team might be compiled from a
set of people the manager knows by chance. Second,
project listings might circle in the company. Third,
all the information might be maintained by a human
resource department, e.g. in a central database. How-
ever, all these possibilities come with personnel over-
head, time lags or a lack of quality.
Hence, for our scenario we have the following | re-

alistic | assumptions. First assumption, the project
manager compiles a project plan that she uses to es-
timate the man power and expertise she needs for the
project, e.g. with a project planning software that sup-
ports the creation of network plans, common spread-
sheet, or text processing software. What is important
at this point is that persons who execute this task on
a regular basis usually hold on to a particular tool
and a particular way of executing this task with this
tool. For instance, it is quite common that a project
manager creates a template (or uses a template that
is provided by her company) in order to execute and
document the planning task. Second assumption, the
information that she relies on is drawn from her per-
sonal knowledge, from the knowledge of people she asks,
and from the knowledge available in other project doc-
uments and in the intranet. Naturally, only the third
type of knowledge available digitally is the one that can
always be accessed electronically and, thus, it is the one
we want to exploit for our knowledge support mecha-
nisms. A common document of this kind would be a
project page describing the name, the goal, the partic-
ipants and techniques used in the project.
Let us now assume that a groupware platform ex-

ists that handles scheduling tasks. The knowledge
that is necessary in order to ful�ll the three require-
ments mentioned at the beginning of this section can be
found as follows: Availabilities may be retrieved from
the scheduling database, and technical knowledge may
be inferred from employees' participations in projects
at project web pages. Obviously, it is very tedious,
sometimes nearly impossible for the project manager
to gather the information she needs from these di�er-
ent sources. In the next section, we will show how the
knowledge for the project planning task may be pro-
vided automatically via Reactive Agent Support, once
the project planning task has been analyzed and an
appropriate methodology and IT support has been in-
troduced to the enterprise.
The objective for our Proactive Inferencing Agent,

sketched thereafter, is more akin to having a compe-
tent person around you who tutors your project plan-
ning. For this purpose, the agent is supposed to reason
about what you might ask him next, while you keep
on typing (or speaking) into your computer. For in-
stance, you start your project plan with an abstract,
noting title, client and time interval. Then you might

want to search for people who might participate in the
project. Thus, you might pose a question like \Who
has experience with XML?" to the agent and you ex-
pect an answer almost before you actually pose your
question | because Joe Doe is the only one who has
experience with XML at all and you noted at the very
beginning that you require this type of knowledge |
maybe regardless of schedule con
icts.

Reactive Agent Support

In order to provide a concise picture of our approach, we
give an overview of the main modules (cf. Figure 1) and
capabilities, before we integrate these di�erent building
blocks into our Reactive Agent Support Framework. A
detailed description of the main modules is given in
(Staab & Schnurr, 1999).

Annotated Document
Templates

MS ppt

Adobe
Frame-

maker

MS

Word

Lotus

Notes

Work Document

XML

Structure
partially

filled

Smart Task Control

Views

ONTOLOGY

Archive

of Annotated
Documents

MS ppt

Adobe
Frame-
maker

MS
Word

Lotus
NotesO

n
to

b
ro

k
e
r

Crawler Facts in
Database

Inference
Engine

Figure 1: Reactive Agent-Support Framework

Ontobroker as Intranet Environment

Typical intranet environments comprise at least two
technical services. First, they o�er means to store docu-
ments. In particular, current technology tends to make
the boundary between �le servers and intra-/internet
servers, on the one hand, and web pages and �les, on
the other hand, disappear. Hence, we may assume that
all documents are available in the intranet. Second, in-
tranet environments o�er technology for navigating the
intranet environment and �nding information.
Our KM methodology builds on the framework given

through the Ontobroker approach as described in (Ben-
jamins, Fensel, & P�erez, 1998) and (Decker et al., 1999).
The main components of Ontobroker from a functional
view point are, (i), the underlying ontology, that de�nes
concepts, attributes, relations and rules about a do-
main; (ii), the annotated document sources, providing
facts structured by annotations related to the under-
lying ontology; (iii), a crawler that gathers facts from
the documents and stores them into a database, and,

(iv), the inference and query engine that reasons on the
database to derive answers.

Annotated Document Templates

Current business documents come in many di�erent
guises, such as letters, faxes, order forms, noti�cations,
receipts, memos, private home pages, or project home
pages. Nevertheless, it is quite common that these dif-
ferent forms are not chosen arbitrarily, but rather these
forms are often standardized up to a certain point, in-
deed they often come with a particular semantics, such
as the short notes that allow the reader to determine
sender, reader, urgency, and further actions that need
to be taken with a very short glimpse (e.g. check boxes
for \please answer"). Similarly, letters are usually not
allowed to come in a completely free form, but they are
usually composed with a particular corporate identity
in mind. This corporate identity de�nes fonts, but it
also pervades the way a company presents itself to the
outside world.
With our approach we go even one step further,

since we also link these documents with corporate iden-
tity styles to the enterprise's ontology (or ontologies).
This leads us to annotated document templates, and,
thus, makes the contents of common business docu-
ments available for an explicit knowledge repository.
SGML (Standard Generalized Markup Language)

and a subset of it, XML (eXtensible Markup Language),
are standardization e�orts that aim at a general scheme
for exchanging documents. Given the widespread sup-
port among major computer software providers that
XML has found recently, it is reasonable to assume that
the structure of any business document will be accessi-
ble by way of XML annotation and query tools in the
very near future.
In our scenario, this is also of particular interest, be-

cause SGML/XML gives us the power to reason about
document structures and contents. For instance, the
XML-tags in the pseudo document from Table 1, i.e. a
document without actual facts, might serve as a tem-
plate for project descriptions in general. The (XML)
annotations describe the semantics (and, possibly, some
layout) of the document structures. When the user �lls
in parts of the document (cf. Table 2) in order to com-
plete her business task, then she connects the informa-
tion she provides with corresponding metainformation.
Thereby, XML structures may either be derived directly
from the ontology (cf. Erdmann & Studer (1999)), or
they may be manually speci�ed and mapped onto the
ontology.

Business Processes

The controlled interaction between the contribution to
document contents and the performance of business
tasks is of particular concern to an information agent
that aims at the delivery of relevant information at the
right time. Hence, we build on a special version of Petri
nets, viz. so-called SGML nets by Weitz (1998), that
allow to formulate the progress of the business process

Table 1: The XML structure for a project plan.
<project>
<author> </author>
<plandate> </plandate>
<participants>

<member> </member>
</participants>
<Ganttchart> </Ganttchart>
<tasks>

<task> </task>
</tasks>
</project>

in terms of the document contents. Weitz's approach
mostly aims at mechanisms that cover the compara-
tively rigid parts of the work
ow, therefore his approach
is not adequate to model all the | typically unordered
| actions of a knowledge worker. Nevertheless, the
scheme is most suitable to distinguish between di�er-
ent high-level, well-ordered business tasks, and, thus,
to capture their speci�c business contexts and the views
that are relevant during their execution by the worker
(also cf. Staab & Schnurr (1999)).
For example, the high-level goal of project planning

may be separated into several, distinct, well-ordered
tasks (cf. Figure 2). Each of the tasks requires par-
ticular knowledge | and, hence, speci�c help from the
intelligent assistant. The SGML-net mechanism allows
to capture prerequisites for changing from one task to
the other and to de�ne task-speci�c views onto the or-
ganizational memory. Thereby, the current work docu-
ment(s) re
ect the task(s) that must be performed next,
e.g. a project team needs to be compiled. This work in-
volves communicating with prospective project partic-
ipants. The problem often lies in identifying appropri-
ate participants and in establishing the communication
link. As for the �rst, our methodology allows the es-
tablishment of blueprint questions like \Which person
in the company knows about X and has capacity for
projects as of Y?" As for the second, given that a per-

Collect participant

agreement

Deliver

plan
Compile

plan

• Search for people with competence:

• methods and tools

• client experience

• industry experience

• Check availability

• Get address

• Check interest of possible participant

Rigid

workflow

part

Weak

task

support

part

Figure 2: Integrating work
ow and context-based views

Table 2: Filled template.
<project>
<author> Jill Dole </author>
<plandate> October 18th, 1999 </plandate>
<participants>

<member> Jill Dole </member>
<member> Hans-Peter Schnurr </member>
<member> Ste�en Staab </member>

</participants>
<Ganttchart> here goes the table </Ganttchart>
<tasks>

<task> Analysis of Nordic Life Business Processes </task>
<task> Analysis of Nordic Life Organigram </task>

</tasks>
</project>

son is identi�ed, the fax number(s) or e-mail adresses
may be retrieved simply by giving the name informa-
tion. Thereby, it is not required that the fax number
is stated in a corresponding database entry. Rather it
may only be given in the signature of a mail in the
general accessible mail archives, or on a home page or
only indirectly: via the group that this person belongs
to and a rule that states an implication. Hence, via
this context-speci�c questions the intelligent assistant
supports the manager in planning her project.
To integrate the Context-based Views and SGML

nets, we annotate transitions with logic predicates that
de�ne when a transition may be executed. In addition,
we de�ne logic predicates at transitions and at places
that de�ne context-based views. Thus, we allow to de-
scribe what major steps may follow subsequently and
what views may be required to enable the completion
of a particular step.

Example for Reactive Processing

Considering a concrete example aligned to our scenario,
our tool has to support a project manager who com-
piles a team to implement some Knowledge Manage-
ment Tool at an insurance company in May 2000. The
�rst step for her is to �nd people in the company who
know about the clients ERP Tool A, and have experi-
ence with XML, are available at that date, ideally have
experience in the insurance industry and want to par-
ticipate at that project. To ask the prospective team
members about their interest in her project, she decides
to send a fax. Therefore she starts the word processing
software, opens the fax template "Contacting prospec-
tive team members and �lls in the right column of the
template form (cf. Figure 3).
The template serves as an input interface for the in-

ference and query engine of the Ontobroker system.
Several queries are modelled that depend on which tem-
plate �elds are �lled (e.g., cf. left column in Figure 3).
A click to the menu bar yields a list of possible queries
and a click to to the corresponding query starts the
inference engine. In our example, the project manager
selects the query \get people with knowhow XML". The

inference engine combines the available database infor-
mation (gathered from annotated project web pages,
project plans and home pages of employees; cf. Tables 3
and 4) and derives the answer: XML was used in the
project \X�les". A rule in the ontology concludes that
all the participants of a project have experience with
methods of that projects. The person who �ts that de-
scription (\Joe Doe") is placed in the header of the fax
cover page.
The example shows also the drawbacks of the reac-

tive agent support. Fortunately in the �rst example,
the user �nds exactly one answer. This would not be
the case, if a user would ask for people with knowhow
about ERP Tool A. This latter search would require
more detailed modelling of a re�ned query. However ap-
plying a more speci�c query to the task at hand causes
new problems in general, e.g., with the �rst example,
since the corresponding, more speci�c, query for "XML
and availability would not result in any answer at all.
The careful balance between speci�city and generality
of queries is currently achieved by the user who selects
from a list of queries. As one may easily see in Figure 3,
this strategy puts too much burden on the user since
she must choose from a long menu list of diÆcult and
steadily changing queries. A more suitable and user
friendly support would be to give hints about possible
answers in a proactive manner. In addition, this reac-
tive agent scheme requires time consuming modelling
of a large number of queries. In our speci�c exam-
ple, the engineer has to consider three interesting in-
put �elds (client, schedule, requirements) which lead to
seven queries that may be of interest - more possibil-
ities for input may even amplify the problem. In the
following, we show an approach how to solve these two
problems together.

Proactive Inferencing Agents

The application that we have just outlined provides
additional assistance in your daily business processes.
However, it is still very far from your favorite secretary
some capabilities of whom we have listed in the intro-
duction. In this chapter, we want to push the edge a

Figure 3: Fax template \Contacting prospective team
members"

little further by adding a proactive component to our
application. For this application, we �rst describe the
inference engine that is employed in a little more detail,
before we go on to extend its capabilities.

Inference Engine

The reasoning of the inference engine involves the fol-
lowing stages (cf. (Fensel, Angele, & Studer, 1998) for
an elaboration):

1. The high-level modeling of ontology, facts and
queries, which is all done in F-Logic, is translated
into a set of horn clauses.1

2. The horn clauses are processed using a strategy
called dynamic �ltering (Fensel, Angele, & Studer,
1998). The implemented strategy may very well
be conceptualized by a dynamic programming ap-
proach with an agenda as its central data structure
(cf. Boddy (1991)). This means that inferencing sub-
tasks are put onto the agenda, ordered according to

1F-Logic is a frame-logic representation language con-
ceived by Kifer, Lausen, & Wu (1995). In the imple-
mentation by Angele and Decker that we use, F-Logic
is a proper subset of �rst-order predicate logic. Con-
cepts and relations are rei�ed and, hence, may be treated
as �rst-order objects over which quanti�cation is possi-
ble. For eÆcient processing, F-Logic is translated into
a datalog-style representation (cf. Lloyd & Topor (1984),
Decker (1998)).

a particular strategy, and then retrieved from this
agenda for actual processing.

3. The inference engine | in contrast to simple Pro-
log interpreters | allows to store the facts that have
once been derived in the database. Hence, if the
same or similar queries are posed repeatedly, the
computational load may be much lower than if the
derivation must be started from scratch.

4. The variable bindings that were open in the query
are returned by the inference engine, thus, yielding
a set of tuples corresponding to all the facts in the
semantic model that match the query.

Thus, the F-Logic inference engine by Angele and
Decker combines ordering-independent reasoning in a
high-level logical language with a well-founded seman-
tics and a very
exible mechanism for modifying rea-
soning strategies that we will exploit in the following.

Proactive Inferencing

Let us now reconsider the example setting described in
the reactive framework. From the inferencing point of
view the key components were, (i), an application that
provides facts concerning the content and the context
of a query, (ii), precompiled queries, which will be ex-
ecuted if all the related facts are given, and, (iii), a
deductive database that may yield answers to queries.
Now, in order to proceed from a reactive to a proac-

tive approach we must cope with, (i), an application
that de�nes the context only partially, and with, (ii),
semi-de�ned queries, where not all facts related to a
query have been given yet, and, (iii), we must pro-
vide a deductive database that takes advantage of pre-
computations in order to react quickly.
As we have found these are not requirements that

contradict each other, but indeed with the proper in-
ferencing strategy they complement each other quite
nicely. The high level view onto the interaction of these
needs is depicted in Figure 4: At the beginning we are
given a set of facts and an ontology describing a set of
concepts, relations, and rules. The facts that might be
derived by applying all the rules in a forward-chaining
manner would most often cause an over
ow of data in
the data storage | in fact the semantic model could
even be an in�nite one, as it may easily occur when
functions are used in the representation language. On
the other hand, we �nd that there is a small set of
facts that is actually needed as background information
for the knowledge worker. For instance, in one situa-
tion the knowledge sought from the database might be
sketched in the form of a small rectangle (cf. \First an-
swer sought"). Since neither the context nor the actual
background knowledge is completely speci�ed, the best
one can hope from the inference engine is a set of facts
that contain the knowledge required at this point of
work, but that is not minimal with regard to the actual
task the knowledge worker has to solve.
However, this need not even be a disadvantage. In

fact, we have described above that formerly derived

Table 3: Knowledge about Projects
Project Participant Purpose Methods Client

1. "X�les" Joe Doe Knowledge Management Support
with Ontobroker

XML, Ontobroker Southern Insurance

2. "Yawn" Fred Bloggs,
Walter Moe

Yet another accounting scheme ERP Tool A Kwik Fit

: : : : : : : : : : : : : : : : : :

8. "Guru" Jane Smith Great user utility through nothing ERP Tool A WonderTool

Table 4: Knowledge about Employees
Employee Telefone Fax eMail availability in 2000
Fred Bloggs 234567 991234 fred@onto.de July - October
Joe Doe 345678 992345 joe@onto.de August - December
Walter Moe 987654 993456 walter@onto.de July - November
Jane Smith 456789 994667 jane@onto.de April - November
: : : : : : : : : : : :

facts need not be recomputed by the inference engine,
thus, the pre-computation of a set of facts may even
be useful when one moves on to another setting and
another, similar, task. Just think of a task where you
must contact several people that are related to a partic-
ular topic, e.g. knowledge management. Their actual
relationship to knowledge management may be com-
puted from facts like \person A has written a paper
about knowledge management", \person B has written
a mail to me about knowledge management", etc. In a
particular context you might wish to contact person B,
because you are co-authoring a paper | and of course,
it is much more likely that you co-author a paper with a
person with whom you have contact than with a person
whom you might not know at all. The inference engine
will probably fail to employ this rationale, since its con-
textual knowledge is very limited. But when you try to
contact person A later on anyway (say in order to or-
ganize a workshop) then the inference engine may take
full advantage of previous computations | the second
answer you seek is already contained in the �rst set of
facts that have been computed before (cf. Figure 4).

Facts from first
pro-inferencing step

Second answer sought

Given facts

All derivable facts

First answer sought

Facts from second
pro-inferencing step

Figure 4: Model precomputation through pre-
inferencing

Now the question remains open as to how the strat-
egy just explained is realized in the actual application.
The realization must take into account that model pre-

computation is expensive and that the user may pose
an explicit query at any point in time. Hence, one needs
to avoid that model pre-computations over
ow the data
storage with useless facts and that the pre-computation
actually prevents eÆcient query answering. To account
for these stipulations we apply the following scheme:

1. The application queries the system when it deter-
mines that enough facts that belong to a query are
known to the agent. In our setting this currently
means that at least one open variable must be bound
to a concrete fact, but in other settings more restric-
tive strategies might be necessary.

2. We distinguish between three di�erent query prior-
ities, viz. explicit queries by the user (priority 1),
queries the variable of which are completely bound
by the application (priority 2), and queries with un-
bound variables (termed \underspeci�ed queries";
priority 3). Underspeci�ed queries receive the low-
est priority, they are preempted by the other two
types of queries and they are terminated when their
computation reaches a time limit. Explicit queries
by the user receive the highest priority. They pre-
empt priority 2 queries such that the computation of
the latter may be continued after the completion of
explicit query.

3. To allow for preemption and (if necessary) continua-
tion of a query, the agenda strategy is modi�ed. En-
tries on the agenda that are of priority 3 are cleared
from the queue when a query of priority 1 or 2 arrives
or when the deadline for a query expires. Entries on
the agenda that are of priority 1 are put at the begin-
ning of the agenda such that they are handled �rst,
but such that the processing of entries of priority 2
may be resumed after their completion. By this way,
the inference engine is adapted to yield an anytime
algorithm (Boddy, 1991).

4. Queries with several unbound variables easily lead
to an abundance of possible results, thus, deterio-

rating the speci�city that one might gain from our
approach compared to information retrieval-based
schemes. Hence, it is important to restrict actual
output to results that can be easily grasped by the
user. This means we only provide hints proactively,
if the result is de�nite, i.e. if in spite of the under-
de�ned context and background knowledge only one
possible answer may be found for a particular en-
try. Furthermore, we provide a selection of up to 7
possible choices, if we expect the user to continue
with just the information that we computed in our
approach.

All in all, this scheme allows the provision of power
that we sketched above: it takes full advantage of
pro-active inferencing through a multiple-priority ap-
proach. Pre-computation comes with an internal time
limit, such that we gain a careful balance between the
derivation of de�nite results from a weakly-de�ned con-
text, the pre-computation of facts queried later, and the
computational loads for processing and storage required
from the system.

Example for Proactive Processing

As mentioned in Section 3.4, it is nearly impossible to
model both, enough queries such that you get the an-
swer that you are looking for and not too many queries
such that the user and the modeler can both deal with
the number of queries that are required for a particular
task.

In contrast, an intelligent assistant adapts to the par-
ticular facts it �nds in its knowledge base. It employs
speci�c queries when it is appropriate to �nd out about
who of your colleagues �ts best into your work plan and
it employs general queries when a too speci�c one would
lead you into a dead end road | our proactive scheme is
appropriate to realize just that. For instance, resuming
our running example, a project manager may want to
include someone with XML expertise. Assuming a con-
tent in the knowledge base like given through Table 3,
the necessity to include someone with XML expertise
requires that Joe Doe is contacted for a fruitful project.
The problems in the reactive framework come from the
fact that a speci�cation like "an expert in XML who is
available from Mai to June 2000" is so speci�c that in
many, many cases an empty set of corresponding facts
may be derived.
In the proactive framework the situation is some-

what di�erent. Let us assume that the project man-
ager wants to contact two persons. One who knows
about XML and one who is an expert with ERP Tool
A. Furthermore, let us assume that the project manager
deals with a template that queries for people depend-
ing on their expertise and availability during a sched-
uled time frame. When the manager �rst plans for the
position requiring XML knowledge, she mentions this
in her planning template. In the reactive framework
she would have to enter the time schedule, too - and
�nd out that no such person exists or she would have

to choose from a possibly long menu of queries. In the
proactive framework, the inference engine starts with a
low priority query. Since only one expert for XML may
be retrieved at all, the corresponding instance | pos-
sibly with some explanation | may be returned even
before the project manager may start to plan more de-
tails. Thus, the agent uses possible idle times of the
user and the user gets an early feedback on her plans
that is collected from the organizational memory, the
axioms in the ontology and the proactive inferencing
scheme.
When the project manager plans for someone with

expertise in \ERP Tool A", there are two possibilities.
If the number of experts is low, the agent returns the
selection of experts in the �eld. Otherwise it does not
react until the time schedule is speci�ed such carefully
that the choice is narrow enough to present it to the
user. Hence, the careful balancing between overly spe-
ci�c and overly general questions is delegated to the
agent and need not be hand-crafted. In the reactive
framework, an overly speci�c question might result in
no information at all | yielding no information about
Joe Doe, while an overly general question might eas-
ily plague the user with an abundance of query lists
that she does not want to cope with when she has only
described a few speci�cations yet.

Related Work
Our work is an approach for proactive support for the
knowledge worker with the help of intelligent agents. In
the research �eld of information agents, numerous sys-
tems for very speci�c domains and tasks exist and also
several publications classify and describe those systems
(cf. Klusch (1998), Weiss (1999)). For example, Lieber-
mann (1998) gives an overview of approaches to design
intelligent information agents (Letizia, Remembrance
Agent, LetsBrowse, Fire
y, Butter
y, ExpertFinder,
Tet-a-Tete, Footprints System) that provide active as-
sistance in the process of �nding and organizing in-
formation. These agents learn from interaction with
the user and anticipate the users needs. This is sup-
ported with the analyses of statistical information of
web pages and user pro�les. In contrast, we embed our
agent support in speci�c tasks of a work
ow, de�ned
by document stuctures that are related to ontological
knowledge. So we mainly di�er from those information
agents in that we use semantic, and not only statistical
information.
In the knowledge management area related to our

approach, the distinction is not so clear cut and the
surveys are not so numerous. Hence, we here give a
more detailed roadmap of these: Our starting point has
been a common intranet environment, in which all doc-
uments are put such that they are widely available for
reuse and general information. The next step has been
an integration of distributed factual knowledge with an
ontology as its conceptual backbone. Thereby, we relied
on the system Ontobroker. Indeed, Benjamins, Fensel,
& P�erez (1998) already outlined how Ontobroker could

be used for knowledge management. However, in their
approach the user had to bear all the burden of doing
the right things at the right time, while our approach
goes in the direction of telling the user what might be
useful for him in his very next task. A central point
in our approach is reasoning about document structure
and contents. Here we take over W. Weitz's view of
SGML documents in a work
ow process (Weitz, 1998),
but extend his approach to include the knowledge man-
agement side and the weakly structured parts of pro-
cesses.
Nearest to our integration of work
ow and knowl-

edge management aspects are works by Huber (1998),
Reimer et al. (1999), Ackerman & Mandel (1999), and
Mahling & King (1999). Huber (1998) builds on a Lo-
tus Notes intranet environment that lets the user de-
�ne a simple ontology and small work
ows. However,
his approach is less principled and does not lend itself
easily for modeling and process planing goals. In par-
ticular, he cannot query facts, not to speak of implicit
knowledge, but only documents. Reimer et al. (1999)
supports the user with particular tasks. For this pur-
pose, they use rather rigid process structures that are
build from declarative business rules. We, in contrast,
leave all the decision with the user and try to provide
him with information that might facilitate his problem
solving.
Ackerman & Mandel (1999) describe an approach

that hierarchically structures tasks and abstracts from
di�erent types of data collections in order to support
the users in their purpose of analyzing astronomical
data. Thus, they pursue a goal that is comparable to
ours. However, their application is much more dedi-
cated to their particular goal. With our approach we
intend to reach a higher degree of
exibility as far as
the task goals are concerned.
Mahling & King (1999) describe an intelligent plan-

ning system that supports goal-based work
ow similar
as in our approach. For this purpose, they also devise an
elaborate agent architecture such that electronic or hu-
man work
ow participants may easily cooperate. Their
approach however lacks an adequate level of description
for the knowledge in the documents. Hence, the knowl-
edge base of their system does not grow with its use,
such as we require for the typical knowledge worker.
We share many of the convictions we build on with

Leake et al. (1999). In their approach, they also aim at
seamless interaction in task-based knowledge manage-
ment. They provide an integration of various knowl-
edge sources and some \proactive" support. We put
proactive between quotation marks, since they use an
approach that is more like our Reactive Agent Sup-
port where queries, rather than appropriate answers,
are compiled proactively. Also in contrast to our ap-
proach, they use information retrieval and case-based
reasoning techniques. This may appear advantageous,
because their system may perhaps degrade somewhat
more gracefully when its is given over- or underspeci�c
queries when compared to our reactive agent support.

However, the drawback they incur is that their scheme
is not semantically based and, hence, may not provide
similar semantic rigorosity, semantic derivations, and
semantic-based compilation of appropriate answers.
Our approach builds heavily on considerations by

Abecker et al. (1998) who establish a common ground-
ing for documents, organization and knowledge (re-

ected by their information, enterprise and domain on-
tologies, respectively), but they do not go as far in draw-
ing inferences and using this knowledge for a push tech-
nology and a tight integration of work
ow and knowl-
edge management, such as we do. We di�er from com-
mon work
ow management and oÆce information sup-
port system by considering the document semantics in
detail. In particular, we model document structures in
order to provide better process support through infer-
encing on document knowledge. This support is not
restricted to rigidly-structured processes, but it may
easily be exploited for weakly-structured processes, too,
where only parts of the overal order of task decomposi-
tion is known.

Conclusion
We have here presented an approach for intelligent,
proactive inferencing agents that subsumes our earlier
work on desk support that combined an organizational
memory with business process modeling (cf. Staab &
Schnurr (1999)). The reasons for the extension of the
earlier approach stem from a comparison of the agent
with a (very roughly) corresponding human assistant.
We have made the experience that our �rst approach
exhibited a lack of
exibility and proactivity in adding
help to the project management setting or compara-
ble tasks, while in the improved scheme presented here,
the modeling of interesting queries is facilitated. This
is due to the fact that careful balancing between overly
speci�c and overly general questions may be delegated
to the agent and need not be hand-crafted as before.
In this paper, we have again focused on the problem

of project management. However, this does not mean
that we are restricted to this scenario. As one may
easily see, the | possibly digital | travel agent that
supports you in your booking of your next vacation trip
has to deal with the very same problems. It requires a
complex memory with an ontological structure for all
di�erent types of housing and transport. An intelli-
gent, supportive agent would proactively think about
what you are doing. If you try to get a
ight during
Christmas season it might proactively determine that
no matter what airline or exact date you choose, there
are just no
ights available for the cheapest airfare any-
more. Current systems badly lack this type of proactive
reasoning, as one of the others had to experience re-
cently. The importance of such an approach may then
be derived by the time a particular project manager
saves in executing such a task, the more impressive and
important consequences, however, will be derived from
customer satisfaction as one of the key factors in enter-
prise services.

Acknowledgements

The research presented in this paper has been partially
funded by the German Bundesministerium f�ur Bildung,
Wissenschaft, Forschung und Technologie (BMBF)
under grant number 01IN901C0 (project \GETESS;
http://www.getess.de).

References
Abecker, A.; Bernardi, A.; Hinkelmann, K.; K�uhn, O.; and

Sintek, M. 1998. Toward a technology for organiza-
tional memories. IEEE Intelligent Systems 13(3):40{
48.

Ackerman, M., and Mandel, E. 1999. Memory in the small:
Combining collective memory and task support for a
scienti�c community. Journal of Organizational Com-
puting and Electronic Commerce. accepted for publi-
cation in 1999.

Benjamins, V. R.; Fensel, D.; and P�erez, A. G. 1998.
Knowledge management through ontologies. In Reimer
(1998), 5.1{5.12.

Boddy, M. S. 1991. Anytime problem solving using dynamic
programming. In AAAI-91 | Proceedings of the Na-
tional Conference on Arti�cial Intelligence, volume 2,
738{743.

Decker, S.; Erdmann, M.; Fensel, D.; and Studer, R. 1999.
Ontobroker: Ontology based access to distributed and
semi-structured information. In Database Semantics,
Semantic Issues in Multimedia Systems. Boston, MA:
Kluwer. 351{369.

Decker, S. 1998. On domain-speci�c declarative knowledge
representation and database languages. In Borgida,
A.; Chaudri, V.; and Staudt, M., eds., KRDB-98 |
Proceedings of the 5th Workshop Knowledge Represen-
tation meets DataBases, Seattle, WA, 31-May-1998.

Erdmann, M., and Studer, R. 1999. Ontologies as con-
ceptual models for XML documents. In Proceedings of
the 12th Knowledge Acquisition for Knowledge-Based
Systems Workshop (KAW'99), Ban�, Canada, Octo-
ber 1999.

Fensel, D.; Angele, J.; and Studer, R. 1998. The knowl-
edge acquisition and representation language KARL.
IEEE Transcactions on Knowledge and Data Engineer-
ing 10(4):527{550.

Huber, H. 1998. Document research based on collaborative
provided structure knowledge. In Reimer (1998), 11.1{
11.9.

Kifer, M.; Lausen, G.; and Wu, J. 1995. Logical foundations
of object-oriented and frame-based languages. Journal
of the ACM 42.

Klusch, M., ed. 1998. Intelligent Information Agents |
Agent-Based Information Discovery and Management
on the Internet. Berlin, Heidelberg: Springer.

Leake, D.; Birnbaum, L.; Hammond, K.; Marlow, C.; and
Yang, H. 1999. Task-based knowledge management.
In Exploring Synergies of Knowledge Management and
Case-Based Reasoning. Proceedings of the AAAI-99
Workshop, 35{39. AAAI.

Liebermann, H. 1998. Personal assistants for the web: An
MIT perspective. In Klusch (1998). 279{292.

Lloyd, J. W., and Topor, R. W. 1984. Making Prolog more
expressive. Journal of Logic Programming 1(3).

Mahling, D. E., and King, R. C. 1999. A goal-based work-

ow system for multiagent task coordination. Journal
of Organizational Computing and Electronic Commerce
9(1):57{82.

Reimer, U.; Margelisch, A.; Novotny, B.; and Vetterli, T.
1999. Eule2: A knowledge-based system for support-
ing oÆce work. In CoopIS-99: Proceedings of the 4th
International Conference on Cooperative Information
Systems, Edinburgh, UK, September, 1999.

Reimer, U., ed. 1998. Proceedings of the 2nd International
Conference on Practical Aspects of Knowledge Man-
agement, Basel, Switzerland, October 29-30, 1998.

Staab, S., and Schnurr, H.-P. 1999. Knowledge and business
processes: Approaching an integration. In Dieng, R.;
Decker, S.; Matta, N.; and Reimer, U., eds., Proceed-
ings of the IJCAI-99 Workshop on Knowledge Manage-
ment and Organizational Memory, Stockholm, July 31
- August 6, 1999.

Weiss, G. 1999. Multiagent Systems | a Modern Approach
to Distributed Arti�cial Intelligence. Cambridge, MA:
MIT Press.

Weitz, W. 1998. Combining structured documents with
high-level petri-nets for work
ow modeling in internet-
based commerce. Journal of Cooperative Information
Systems 7(4):275{296.

