FONTE - Factorizing ONTology Engineering complexity

Jorge Santos
GECAD - Knowledge Engineering and
Decision Support Research Group
Instituto Superior de Engenharia do Porto
Departamento de Engenharia Informatica
4200-072 Porto - Portugal
http://www.dei.isep.ipp.pt/~jsantos

ABSTRACT

Because it is difficult to engineer a complex ontology with
time, we here consider a method that allows for factorizing
the complexity of the engineering process, FONTE (Factor-
izing ONTology Engineering complexity). FONTE divides
the engineering task into building a time-less domain ontol-
ogy and a temporal theory independently from each other.
FONTE provides an operator ® that assembles the two inde-
pendently developed ontologies into the targeted ontology.
We investigate the quality of the proposed operator ® by ap-
plying it to a practical case study, viz. the engineering of an
ontology about researchers including temporal interactions.
Categories and Subject Descriptors: 1.2.4 Knowledge Rep-
resentation Formalisms and Methods

1. INTRODUCTION

In recent years, we have seen a surge of ontologies and on-

tology technology with many ontologies now being avail-

able on the Web. At the same time one could observe that

most ontologies (e.g., consider the DAML ontology library

athttp://www.daml.org/ontologies/)engineered
exhibit

only rather simple structures, viz. taxonomies and frame-like

links between concepts.

This observation might indicate that such — comparatively
— simple structures are sufficient for the large majority of
ontology-based systems. According to our own experiences
about ontologies for knowledge portals [22] and power sys-
tems [18], however, one frequently needs intricate concept
descriptions and interactions — in particular ones about time
and space.

Because of intense (and fruitfully ongoing) research, many

K-CAP’03, October 23-25, 2003, Sanibel Island,Florida, USA.

Steffen Staab
Universitdt Karlsruhe (TH)
Institut AIFB
D-76128 Karlsruhe - Germany
http://www.aifb.uni-karlsruhe.de/ sst

practical theories about time are now well understood. While
the same can be said about the engineering of concept hi-
erarchies and concept frames, the issue of how to engineer
complex ontologies with intricate interactions based on time
has not been researched very deeply, yet, rendering the engi-
neering of a new complex domain ontology with time a labor
intensive, one-off experience with little methodology.

In this paper, we present our ontology engineering method-
ology, FONTE (Factorizing ONTology Engineering complex-
ity), that pursues a ‘divide-and-conquer’ strategy for engi-
neering complex ontologies with time. FONTE divides a tar-
geted ontology that is complex and includes time into two
building blocks, a temporal theory and a time-less domain
ontology. Each one of the two subontologies can be built in-
dependently allowing for a factorization of complexity. The
targeted ontology is then assembled from the time-less do-
main ontology and the temporal theory by the operator ®.

Thereby, the assembling operator ® is very different from
existing operators for merging or aligning ontologies [15,
17]. Merging ontologies is a process that intends to join
different ontologies about overlapping domains into a new
one and most of its problems and techniques are related to
the identification of similar concepts through structure anal-
ysis (e.g. graph analysis, path length, common nodes or/and
edges and lexical analysis). For instance, car from ontology
1, Ol.car, and auto from ontology 2 O2.auto may be defined
to be identical in the merging process because of results of
the structure analysis. To formalize the merging and aligning
process, Wiederhold proposed a general algebra for compos-
ing large applications through merging ontologies of related
domains [26] and actually, the operations proposed (Inter-
section, Union and Difference) are about the similarities and
differences of two ontologies.

In contrast, the result of ® needs rather to be seen in rough
analogy to the Cartesian product of two entities. For in-
stance, car from ontology 1, O1.car, with its frame
Ol.licensedInState is assembled by ® with ontology 2 and
its O2.timelnterval in a way such that every car in the result
ontology has a lifetime as well as multiple O1.licensedInState-
frames with different, mutually exclusive life spans.

® is a non-deterministic operator. It does not have a closed
definition!, but it is operationalized by an iterative, inter-
active process. It starts off with a human assembly — in
the sense just explained — between an ontology O1, the
time-less domain ontology, and an ontology O2, the tem-
poral theory. It is then propelled by a set of rules and a set
of constraints. The set of rules drives a semi-automatic pro-
cess proposing combinations. The set of constraints narrows
down the set of plausible proposals to valid ones.

We have applied the methodology FONTE with its operator
® to two case studies. In case study A O1 is a time-less on-
tology about a semantic web research community and O2 is
a temporal ontology. In case study B we have used the same
temporal theory, but a time-less ontology about the soccer
domain. Both times we have investigated how many assem-
bling steps were proposed and we have evaluated their ad-
equacy. The study results suggest that indeed FONTE pro-
vides a way to factorize the complexity of building large on-
tologies with time leading to more reliable and cheaper final
products.

The rest of the paper is organized as follows. We first sketch
the temporal ontology and the time-less domain ontologies
we have used for our case studies. Then we describe the
semi-automatic process of assembling two ontologies by ®,
with some emphasis on the tool support developed to drive
the process. Then we give an evaluation of our sample cases,
before we relate to other work and conclude with how our
approach fits into the larger objectives of having an ontology
algebra as proposed by Wiederhold [26].

2. TEMPORAL ONTOLOGY

The temporal ontology used in our case study (see Fig.1 for
the UML-like depiction of an excerpt) embodies many con-
cepts like Instant or Period often found in ‘standard’ on-
tologies like Time-DAML [9] or SUMO [14] and assumes a
standard interpretation by interpreting time points and time
intervals as real numbers and intervals on the real line.

As argued by [24] a temporal representation requires the
characterization of time itself and temporal incidence, which
are represented in our temporal ontology by TemporalEntity
and Eventuality, respectively. We defined a further notion,
TimedThing, that bridges between temporal concepts and
the domain concepts that will be used during the assemble
process. In particular, we have included the notion of Role
as a core concept. While there are concepts that give iden-
tity to their instances (i.e. they are semantically rigid), e.g.
while the identity of a particular person depends on being
an instance of Person, the identity of the same person does
not change when it ends being a student and starts being a
professor. Thus, the notion of Role is important when con-
necting a temporal theory, e.g. Allen’s interval calculus, with
a concrete domain, e.g. an ontology about researchers (cf.,
e.g., [11, 20, 7, 23]).

1We discuss the (dis-)advantages of this formulation of ® in the

TemporalEntity
A

Period
begin:Instant
end:Instant

Eventuality

Process
starts:Event
finishes:Event
duringAt:Period

Event
atTime:Instant

L TimedThing
duringAt:Period

Role

roleOf:Role
roleOf: TimedConcept

TimedConcept
TimedRelation

Figure 1: Excerpt of Temporal Ontology Depicted in
UML Style

Some of the choices for the temporal ontology that we made
were driven by modelling objectives particular to the knowl-
edge portal application that we had in mind when perform-
ing the case study. For instance, our objective was to have
a 3-dimensional model of the world with time as an extra
variable. For future applications an ontology engineer may
prefer a 4-dimensional view, leading to a somewhat different
temporal ontology and, thus, to an overall different target on-
tology in the end (cf. [8]).

In our case studies we have not directly exploited Time-
DAML or SUMO because both lack the explicit notion of
role. We consider this notion crucial for ontologies embody-
ing a common three dimensional world model with time
[23]. Also it allows us to show some complex re-structuring
initiated by ® that we deem of high interest to common ap-
plications like knowledge portals.

Nevertheless, this paper shows a factorization of complexity
into two subontologies and a re-assembly into a target ontol-
ogy in a way that is independent of such concrete assump-
tions. Hence, we may conjecture with high plausibility that
our experimental results presented later are also applicable
to other theories, such as the slightly different Time-DAML
theory or a tremendously different 4-dimensional conceptu-
alization of the world.

Temporal Entities In the temporal ontology we used for
the case study there are two subclasses of TemporalEntity:
Instant and Period. The relations before, after and equality
can hold between Instants, respectively represented by the

conclusion.

symbols:<, =, =, allowing to define an algebra based on
points [25]. It is assumed that the before and after are strict
linear, namely irreflexive, asymmetric, transitive and linear.
The thirteen binary relations proposed in the Allen’s interval
algebra [1] can be defined in a straightforward way based
on the previous three relations [6]. begin and end are rela-
tions from TemporalEntity to Instant. Also, there are no null
duration periods and each period is unique.

Processes and Events. There are two subclasses of Eventuality,

Process and Event, in order to be possible to express con-
tinuous and instantaneous eventualities, respectively. Event
has a relation atTime to Instant while Process has a relation
duringAt to Period. The relations starts and finishes allows
to state what can start or finish a process.

Roles. A role can have roles but can not be role of itself
(R1) and the roleOf relation is transitive (R2). Guarino dis-
tinguishes roles from natural types based on the lack of se-
mantic rigidity of the first. The lifespan of a role is timewise
contained by the lifespan of the concept or role from which
it is a subrole and from which it possibly inherits identity
(R3).

Vo : L « roleOf (z, x). (R1)
Va,y, z : roleOf (x, z) «
roleOf (z, y) A roleOf (y, 2). (R2)

Yo, z,y,pl,p2 : containedBy(pl, p2) «—
(isa(y, Role) Vv isa(y, TimedConcept)) A
isa(z, Role) A roleOf (z,y) A
hasRoleDuringAt(o, z, p1) A
hasRoleDuringAt(o, y, p2). (R3)

3. CASE STUDY A— THE SWRC ONTOL-

oGY

The assemble process may be used either for development of
ontologies with time from scratch as well as for re-engineering
existing ones in order to include time. For our case study
we have used the time-less SWRC (Semantic Web Research
Community) ontology (nttp://ontobroker.semanticweb.
org/ontos/swrc.html) that served as a seed ontology for
the knowledge portal of OntoWeb.

SWRC comprises 55 concepts, 151 relations and 25 axioms.

The results presented in the section 6 are based on re-engineering

the complete SWRC. Here we present an excerpt that is also
used in order to elucidate the assembling process with ®.

4. CASE STUDY B — THE SOCCER ON-

TOLOGY
This soccer ontology mostly describes concepts that are spe-
cific to soccer, like players, rules, field, supporters, actions.
It is used to annotate videos in order to produce personal-
ized summary of soccer matches (http://www.lgi2p.

ema.fr/ “ranwezs/ontologies/soccerVv2.0.daml).

SWRC_Root
0

isAbout: Topic

Person

isa(Student, Person)
isa(Employee, Person)
isa(Male, Person)
isa(Graduate, Student)
studiesAt(Student, University)
member (Person, Project)
isAbout(Project, Topic)

member:Project

Student
studiesAt:University

Employee

Vp, t : isAbout(p, t) < dealsWithIn(¢, p) (11.2)

(11.1 means “isAbout is inverse to dealsWithlIn)

Vpers, top : worksOn(pers, top) «— (AL1.1)
Jproj : instOf (pers, Person) A (AL.2)
instOf (proj, Project) A (A1.3)
instOf (top, Topic) A (Al1.4)
isAbout(proj, top) A (A1.5)
member (pers, proj) (A1.6)

(Al1.1to A1.6 means “A Person who works in a Project
that is dealing with a Topic, worksOn this topic.”)

Figure 2: Excerpt of SWRC ontology

The version we have used for our experiment comprises 199
concepts and 32 relations.

5. THE ASSEMBLY PROCESS

The assembly process comprises two main building blocks.
First, the specification of temporal aspects for a time-less do-
main ontology remains dependent on the conceptualization
of the ontology engineer. In fact, the example used for il-
lustrating the assembly of general axioms below shows that
there are ontological decisions to be made that can not be
derived from the structure analysis of the two ontologies and
therefore require human interaction. Second, in order to fa-
cilitate and accelerate the assembly of time-less domain con-
cepts with temporal notions, the interactive process is sup-
ported by heuristics asking and pointing the engineer.

The assembly process runs as depicted in Figure 3: It starts
by an Initial Setup. Some basic operations are performed,
namely loading the ontologies to be assembled, loading a
set of rules to drive the process and initializing some pro-
cess parameters. The rules and parameters are defined sep-
arately from the tool in order to allow for adaptations to the
particular needs of different temporal ontologies. However
the rules and parameters do not change when a new domain
ontology is to be assembled. The Target Ontology initially
corresponds to the union of the time-less domain ontology,
01, and the temporal theory, O2.

Initially, the user may re-structure some part of the domain
ontology to include temporal aspects by defining and ex-
ecuting (what we call) task instances. When performing

Rules for
Assemble

Ontology 1

7
el Ny Load [—)
Setup == Ontology 2
Y
N
\
\\
.Y N
N
SER? \\
Create or N
accep I N
| AN Cr\ez\ate
| A \
\ Read \
‘ Tasks \
Create Accept | \ \
new proposed G‘"%W \ \
task task ndo !

Process Flow
—_—

USER:
lterate

Conclude
Process

Figure 3: Assembly main process

Data Flow

such re-structuring task instances, a structure analysis finds
possibly implicated task instances and proposes them onto
the Task List. In subsequent iterations the engineer decides
whether to accept an automatically proposed task instance
from the Task List. Alternatively, the user may take new
initiatives and define and execute a new task instance from
scratch.

For manually defined task instances, a set of logical tests
(Validate) are performed in order to detect the existence of
any knowledge anomalies (e.g. circularity or redundancy
[16]). In contrast, the acceptance of a proposed task instance
does not require further checks as the checks are tested for
validity before the user sees them.

By the Execute Task step the corresponding changes are made
to the target ontology. Thereafter, the user decides either to
pursue another iteration or to go to Conclude Process and
accept the current Target Ontology as the final version.

5.1 Data Structures

Having outlined the principal procedure that operationalizes
® and, hence, defines the result of assembling the time-less
domain ontology with the temporal theory, we elaborate on
the detail process in three subsections for assembling con-
cepts (“Assembly of Concepts”) , frame-like relations (“As-

sembly of Relations”) and general axioms (“Assembly of
General Axioms”), respectively. Before we can do so, we
need to define the principal data structures we use to actu-
ally operationalize ®.

Task. We have already informally used the notion of task in
order to refer to an action template (i.e. a generic task) that
may be instantiated and executed in order to modify a current
target ontology. A task is defined by its task code and a task
question. The task code uses a set of keywords with the com-
monly expected semantics of structured programming (e.g.
if, then, else) and some special keywords, do and propose,
the semantics of which we provide subsequently.

Task instance. A task instance is fully identified by its head
(i.e. by its task name and some instantiated arguments). A
task instance is either proposed by the structure analysis or
by instantiation of a generic task by the ontology engineer.
For instance, consider the task instance

create-role-of(Student,Person),
which defines the concept Student to become a role of Person.

Task question. Before the execution of a task, the system
asks a task question in natural language to the engineer in
order to determine if the proposal should really be accepted
or not and in order to ask for additional constraints that the
user might want to add. The task question is defined by a
List of words and parameters used to compose a sentence in
natural language.

For instance, the following task question exists for the pre-
vious example

create-role-of (#argl, #arg2) :

['Define’, #argl, ‘as role of’, #arg2,'?’]
It implies that the question ’Define Student as role of Per-
son?”” would be posed before executing the example task
instance.

In order to manage various task instances, the assembling
algorithm uses the following data structures:

Task List. This is a list of tuples

(TasklInstance, ListOfTriggers, Weight)

storing proposed task instances together with the triggers
that raised their proposal and their weight according to which
they are ranked on the task list. Thereby, TaskiInstance has
been defined before;

ListOfTriggers denotes the list of items that have triggered
the proposal. A trigger is a pair (TriggerType, Triggerld)
where TriggerType has one of the values concept, relation
or axiom and the Triggerld is the item identifier. For in-
stance, the pair (concept, Person) is a valid trigger. The list
is useful to query for proposals raised by a specific item or
TriggerType.

Weight. Since competing task instances may be proposed,

Weight is used to reflect the strength of the proposal on the
TaskList.

Task History is the list of all tasks that were previously per-
formed. This list is useful to allow the undo operation and to
provide statistics about the assembly process.

Task Constraints List. This is a list of tuples
(TasklInstance,Expression)

storing logical constraints about previously performed task
instances. For instance:

constraint (

create-role-of (S,C),

NOT (
performed (delete-relation(roleOf (S,C)))
OR performed(create-relation(isa(S,C))))

)

means that the task create-role-of(S,C) should only be al-
lowed, if neither such a role had been deleted before nor
a competing subclass relationship (isa) had been created.

The corresponding task assemble-concepts creates a new isa
relation between the Person and TimedConcept and then
proposes further assembling tasks for related concepts, re-
lations and axioms. Tracing the changes that may be pro-
posed to related concepts in assemble-related-concepts?, we
find that it proposes the definition of Employee, Student and
Male as possible roles of Person.

task assemble-related-concepts (C)
foreach S do
%check if S is a sub-concept of C
if (isa(s,C))
$T is the trigger for this proposal
T= (concept, C)
% W is the weight foreseen
% for this specific task
propose (create-role-of (S,C), T, W)
end-if
end-do
end-task

Later, if definition of Student as role becomes accepted, re-
cursively Graduate will be proposed to become a role of

Thereby, performed() acts as a lookup function into the Task Historg, ,qent utilizing create-role-of:

here. One may note that not all possible violations need to be
stated here, as conventional KB validation mechanisms can
be applied in order to detect undesirable task instances (e.g.,
ones that create isa-cycles although the ontology modelling
policy forbids them).

do(TasklInstance). The function do performs logical tests
over existing task constraints about Tasklnstance. If there
is no impediment it executes the task instance and creates a
corresponding entry on the Task History.

propose(Tasklnstance, Trigger,Weight). The function propose

creates a proposal by asserting the corresponding tuple in the
Task List.

5.2 Assembly of Concepts

As mentioned before, system proposals are generated based
on rules and constraints. In the initial phase, the engineer
takes the initiative. From the initial modifications, some first
proposals may be generated automatically, and from these
new proposals are spawned. Furthermore, the assembly of
concepts with temporal attributes needs to fulfill fewer con-
straints than the assembly of relations and far less than the
assembly of axioms. Thus, proposals for modifications with
concepts are typically made first — and elaborated in this
subsection.

For the running example here, we assume that a user defines
and executes a task instance of assemble-concepts that sub-

classes a concept C1, viz. person, from a C2, viz. TimedConcept:

task assemble-concepts (Cl,C2)
if (C2='TimedConcept’ or C2='Role’)
do (create-relation(isa(C1l,C2)))
assemble-related-concepts (C1l)
assemble-related-relations (C1l)
assemble-related-axioms (C1)
end-if
end-task

task create-role-of (S,C)
%$delete isa(S,C) if true; if not, no effect
do(delete-relation(isa(s,C)))
do (create-relation(roleOf (S,C)))
assert (temporal-role-constraint (S, C))
do (assemble-concepts (S, 'Role’))
end-task

with temporal-role-constraint(.S,C) defined by

Yo, pl,p2 : contained By(pl, p2) «—
instO f During At (o, S, pl) A

instO f During At (o, C, p2). (C1.1)

Assuming that Male were not accepted as role of Person in
the further course of assembly, the result depicted in Figure 4
would be obtained.

The reader may note that this result crucially depends on our
temporal theory, but that rules could be easily modified to
accommodate other theories (e.g., ones without roles).

5.3 Assembly of Relations

From the assembly of concepts there follow proposals for
the modification of relations. For instance, when we assume
that Person and Project were previously modified to become
subconcepts of TimedConcept and Process respectively, it
becomes plausible that also the relation that links them, viz.
member (Person, Project), should incur changes.

The changes occur in analogy to the tasks defined for the
assembly of concepts. In addition however, there arise fur-
ther possibilities in order to constrain the life-time of the
actual relationship by the life-time of the participating con-
cept instances. Thus, member(Person, Project) is replaced
by member(Person, Project, Period) and — maybe — fur-
ther constraints on the time period as added by the engineer.

2The character ‘%’ indicates a line remark.

TimedThing

TimedConcept

A

Person
A

isa(Person, TimedConcept)
isa(Male, Person)
isa(Student, Role)
isa(Employee, Role)
isa(Graduate, Role)

roleOf (Student, Person)
roleOf (Employee, Person)
roleOf (Graduate, Student)

Role
roleOf:Role
roleOf:TimedConcept

Student
roleOf:Person

Employee

roleOf:Person

roleOf:Student

Yo, pl,p2 : containedBy(pl,p2) «—
instO f During At(o, Graduate, p1) A
instO f During At (o, Student, p2).

Figure 4: Excerpt of Result of Assembly of Concepts with
Time

In the running example, the proposed temporal modification
of relation member is accepted while the one for isAbout
isn’t (e.g., because the engineer wanted to abstract from in-
tricacies at this point). One may note that the rejected pro-
posal appears to be conceptually “nicer’ than what the engi-
neer decided to have in the end.

Q

TimedThing
TimedConcept
A

Person
member(Period):Project

Eventuality
A

Project
isAbout: Topic

Figure 5: Excerpt of Result of Assembling Relations

5.4 Assembly of General Axioms

The temporal constraints on concepts, relations and their in-
stances also requires the corresponding consistent modifica-
tions of general axioms. With general axioms we here refer
to general propositions in first-order horn logics with func-
tion symbols.

For instance, let us consider the axiom defined in Figure 2 by
lines Al.1 through A1.6 and let us name it axiomWorksOn.
axiomWorksOn defines that a Person who works in a Project
that is dealing with a Topic, worksOn this topic.

In order to assemble time into the axiom representation we
must consider the constraints available for the instances of
participating concepts and, furthermore, the ontology engi-
neer must define which one of these constraints is used in
which way. For instance, for the relation worksOn it may
be adequate to say that the Person worksOn the Topic as
long as he is a member of the Project and as long as the
Project isAbout the Topic, i.e. intersecting the lifetimes of
relations in lines A1.5 and A1.6. For an analogous structure
where knowsAbout(pers,top) appears in the head instead of
worksOn(pers,top), however, the conclusion might be that
a Person knowsAbout a Topic ever after he has encountered
it in a Project until he dies, i.e. restraining the knowsAbout-
relation only to the earliest time-point of the encounter and
the life-time of the Person.

Since, the only difference between the two example struc-
tures lies in the naming of the relations and the intentions
associated with their names, it is necessary to involve the
user for defining additional temporal constraints.

The task assemble-axiom (cf. Figure 6) asserts an additional
temporal precondition for each concept that is temporally
quantified. In our running example, this affects the instances
of Person (A1.2) and Project (A1.3). Furthermore, it also
updates the preconditions of the axiom involving relations
that need to be temporally modified. In the running exam-
ple, this affects, e.g., member (A1.6). Finally, the user is
asked to define one (or several) constraint(s) that relates all
the timed variables (intervals or instants) for the pre- or the
postconditions of the axiom.

Then the updated axiom includes previously existing, but
partially modified, preconditions and a further purely tem-
poral one (A2.6). The modified axiom looks as follows:

Vpers, top,t : worksOn(pers, top, t)
«— dpryj, t1,12,t3 :

instOfDuringAt(pers, Person,t1) A (A2.1)
instOfDuringAt(prj, Project, t2) A (A2.2)
instOf (top, Topic) A (A2.3)
isAbout(prj, top) A (A2.4)
member (pers, prj, t3) A (A2.5)
tempRelation([t1,t2, t3],) (A2.6)

with tempRelation being confirmed by the user to conform
to the standard proposal:

tempRelation =t C t; (A2.7)

1=1...3

6. USER INTERACTION

FONTE uses an approach that relies on iterative interaction
with the user. All the assemble operations as well as inter-
actions with the Task List and the History List can be per-
formed using a command line interface 2.

3For further information on user interface please refer: http://
www.del.isep.ipp.pt/~jsantos/FONTE

task assemble-axiom(Axiom)

an Axiom have an Head (single tuple)
and a Body (list of constraints)

LV is a list of timed variables

o\° o\ o

$Process timed concepts of Body
foreach instOf (C,T) partOf Body
$non-instantaneous concepts
if isa(T,'Process’) or
isa (T, 'TimedThing’)
then add-constraint (during(C, TimeVar))
LV=concat (LV, TimeVar)

end-1if
$instantaneous concepts
if isa(T,’'Event’) or

then add-constraint (atTime (C, TimeVar))
LV=concat (LV, TimeVar)
end-1if
end-do

$Process timed relations of Body
foreach R(C1,C2) partOf Body
if isa(R,’'TimedRelation’)
then replace-constraint (R(C1l,C2,TimeVar))
LV=concat (LV, TimeVar)
end-1if
end-do

$select a temporal constraint over

% all the timed variables and

if LV not empty

then add-temporal-constraint (A,LV)
$update axiom head
replace-head ()

end-if

end-task

Figure 6: The Task Definition for ‘assemble-axiom’

In order to evaluate the effectiveness of FONTE, we have
numerically evaluated the assembly tasks proposed and exe-
cuted for the two case studies presented before. An ontology
engineer interactively assembled the SWRC and the tempo-
ral ontology as well as the soccer ontology and the temporal
ontology. Through our process log we could count the num-
ber of tasks proposed by the engineer and by the system as
well as the number of tasks accepted by the engineer. The
corresponding numbers are listed in Tables 1 and 2, respec-
tively:

User-initiated tasks 10
Tasks proposed on Task List 135
Proposed tasks accepted 78
Proposed tasks postponed for later inspection | 10
Proposed tasks rejected 47

Table 1: Summary for SWRC assemble

With regard to the SWRC assembly task, the engineer initi-
ated only very few tasks (10). From this initial structure a
large number of tasks were proposed (135). Many of these
(58%) were accepted (78), 7.4% (10) were postponed for
later inspection and the rest was ignored. l.e. only 34.8%
were considered inadequate indicating a high success rate
for our interactive approach.

User-initiated tasks 11
Tasks proposed on Task List 85
Proposed tasks accepted 67
Proposed tasks postponed for later inspection | 10
Proposed tasks rejected 8

Table 2: Summary for Soccer assemble

This does not only seem to be true for simple structures
(where it might have been expected), but also for modifi-
cations of horn-logic axioms. Originally SWRC contained
25 axioms. 20 of them were updated automatically the rest
needed some more careful inspection.

For the second case study, achieved results were even some-
what better as only 9.4% (8) of 85 proposed tasks were re-
jected and 78.8% of proposed tasks were immediately ac-
cepted by the ontology engineer. The soccer ontology came
without general horn logic axioms, thus we cannot make
a statement about the performance of our method on these
more intricate structures.

7. RELATED WORK

In the past a variety of approaches were proposed for reduc-
ing the complexity of engineering a rule-based system, e.g.
by task analysis [19], or an ontology-based system, e.g. by
developing with patterns [5, 21, 10] or developing subon-
tologies and merging them [15, 17]. As different as these
methods are, they may be characterized by subdividing the
task of building a large ontology by engineering, re-using
and then connecting smaller parts of the overall ontology.

Though FONTE shares its goal with these methodologies is
its rather different in its operationalization. FONTE does not
aim at a partitioning and re-union (by merge or align with
recognition of similarities) of the problem space, but rather
by a factorization into primordial concepts and a subsequent
combination ® that is more akin to a Cartesian product than
a union of ontologies. Despite the difference, one may note
that FONTE implements an iterative and interactive approach
which was previously successfully adopted in sophisticated
tools for merging ontologies [15, 13, 12]. Also, FONTE
does not substitute these other methodologies, rather we en-
vision that one wants to separate the target ontology to be
built into different (possibly overlapping) domains as well
as into time-less and temporal subontologies. The two ways
of carving up the engineering task need different, comple-
mentary methodologies.

There is a rich set of languages and systems that deal with
intricate reasoning over time and objects (cf., e.g., temporal
Description Logics [2], temporal databases [3], or event cal-
culus [4]). To our knowledge, however, there has not been
a methodology that helped the ontology engineer to build
ontologies that included temporal theories.

8. DISCUSSIONS AND FUTURE WORK

We have proposed a method, named FONTE, for engineer-
ing complex ontologies with time by assembling them from

time-less domain ontologies and a temporal theory. FONTE pro-

vides an operator ® that operationalizes the assembly in an
interactive way. ® combines two independently developed
ontologies into a target ontology.

Finally, we here want to weigh advantages and disadvan-
tages of the way we have presented the assembly operator
®. Certainly, the disadvantage of stating the assembly prob-
lem in this way is that the reader might expect a more formal
and closed definition of the problem than one can give, as ®
is essentially based on heuristics and human conceptualiza-
tions. We see this as a small disadvantage as it “just’ con-
cerns the management of expectations, what ® can perform
NOW.

For the future, however, we see the fruitful possibility in
progressing the analysis that Wiederhold [26] has initiated.
Wiederhold considered the problem of composing ontolo-
gies, the solution of which is similarly based on concept
names, human intuition, and heuristics. He stated the so-
lution of the problem in terms of operators (i.e. intersection
‘01 N Oy’ subtraction ‘O; \ O2’, and union ‘O, U O7’) that
may fulfill all the conditions for an algebra. Thus, one might
harvest all the benefits of an algebra. In our case, this means
our methodology might be complemented by projection op-
erators m, o to invert the way of assembly (71 (01 ® O3) =
01), by operators to add spatial theories ((O; ® O2) ® Os),
or by interactions with Wiederholds operators to juggle with
different ontologies at will (e.g., compute O; ® (O U O3)).

To sum up, we have only studied the assembly of time into a
given ontology so far, but we have reason to conjecture, (i),
that FONTE may also be applied to integrate other impor-
tant concepts like space, trust, or user access rights — con-
cepts that pervade a given ontology in intricate ways and ne-
cessitate management of engineering complexity; and, (ii),
building on Wiederhold’s idea of an ontology algebra, the
proposed operator @ might perhaps be further utilized for
having ontologies interoperate in manifold ways.

Acknowledgments
This work was partially supported by a Marie-Curie Fellowship and by
FCT (Portuguese Science and Technology Foundation) with programs ON-
TOMAPPER (POSI-41818) and SANSKI (POCTI-41830). We are also in
indebted to our colleagues in LS3, particulary to Gerd Stumme and Julien
Tane and Nuno Silva in ISEP.

9. REFERENCES

[1] J. Allen. Maintaining knowledge about temporal intervals.
Communication ACM, 26(11):832-843, 1983.

[2] A. Artale and E. Franconi. A temporal description logic for reasoning
about actions and plans. Journal of Artificial Intelligence Research,
9:463-506, 1998.

[3] C. Bettini, X. S. Wang, and S. Jajodia. Temporal semantic
assumptions and their use in databases. IEEE Transactions on
Knowledge and Data Engineering, 10(2):277-296, 1998.

[4] L. Chittaro and A. Montanari. Efficient temporal reasoning in the
cached event calculus. Computational Intelligence, 12:359-382,
1996.

[5] P.Clark, J. Thompson, and B. Porter. Knowledge patterns. In
KR2000, pages 591-600, 2000.

C. Freksa. Temporal reasoning based on semi-intervals. Artificial
Intelligence, 54(1):199-227, 1992.

[7] N. Guarino and C. Welty. A formal ontology of properties. In
Knowledge Acquisition, Modeling and Management, pages 97-112,
2000.

P. Hayes, F. Lehmann, and C. Welty. Endurantism and perdurantism:
An ongoing debate.
http://ontology.teknowledge.com:8080/rsigma/dialog-3d-4d.html,
2002.

J. Hobbs. Towards an ontology for time for the semantic web. In
Proc. Workshop on Annotation Standards for Temporal Information
in Natural Language,LREC2002, Las Palmas, Spain, May 2002.

[10] C.-S.J. Hou, N. F. Noy, and M. A. Musen. A template-based
approach toward acquisition of logical sentences. In Procs.Intelligent
Information Processing 2002 - World Computer Congress, Montreal,
Canada, 2002.

[11] F. Lehmann. Big posets of participants and thematic roles. In
Conceptual Structures: Knowledge Representation as Interlingua,
pages 50-74. Springer-Verlag, 1996.

[12] D. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for
merging and testing large ontologies. In Procs.KR2000, 2000.

[13] P. Mitra and G. Wiederhold. An algebra for semantic interoperability
of information sources. In Proc.2nd.IEEE Symp. on Biolnformatics
and Bioengineering, BIBE 2001, pages 174-182, Bethesda, MD,
2001.

[14] 1. Niles and A. Pease. Toward a standard upper ontology. In Procs of
the 2nd International Conference on Formal Ontology in Information
Systems (FOIS-2001), 2001.

[15] N. Noy and M. Musen. Prompt: Algorithm and tool for automated
ontology merging and alignment. In Procs.AAAI-2000, 2000.

[6

—_

[8

—_

[9

—

[16] A. Preece and R. Shinghal. Foundation and application of knowledge
base verification. International Journal of Intelligent Systems,
9(8):683-702, 1994.

[17] E. Rahmand P. A. Bernstein. A survey of approaches to automatic
schema matching. VLDB Journal, 10(4):334-350, 2001.

[18] J. Santos, C. Ramos, Z. Vale, and A. Marques. Verification &
validation of power systems control centres kbs. In Procs.IASTED
Artificial Intelligence and Applications (AIA2001), pages 324-329,
Marbella, Spain, September 2001.

[19] G. Schreiber, A. H., A. A., R. Hoog, N. Shadbolt, W. Van de Velde,
and B. Wielinga. Knowledge engineering and management. The
CommonKADS Methodology. MIT Press, 1999.

[20] J. Sowa. Processes and participants. In Conceptual Structures:
Knowledge Representation as Interlingua, pages 1-22.
Springer-Verlag, 1996.

[21] S. Staab, M. Erdmann, and A. Maedche. Engineering ontologies
using semantic patterns. In Procs. IJCAI-01 Workshop on E-Business
& the Intelligent Web, 2001.

[22] S. Staab and A. Maedche. Knowledge portals: Ontologies at work. Al
Magazine, 22(2):63-75, 2001.

[23] F. Steimann. On the representation of roles in object-oriented and
conceptual modelling. Data & Knowledge Engineering,
35(1):83-106, 2000.

[24] L. Vilaand E. Schwalb. A theory of time and temporal incidence
based on instants and periods. Proc. Int. Workshop on Temporal
Representation and Reasoning, pages 21-28, 1996.

[25] M. Vilain and H. Kautz. Constraint propagation algorithms for
temporal reasoning. In Proc. of AAAI-86, pages 377-382,
Philadelphia, PA, 1986.

[26] G. Wiederhold. An algebra for ontology composition. In
Proc.Workshop on Formal Methods, pages 56-61, Monterey, 1994,

