
Views for light-weight web ontologies

Raphael Volz
Institute AIFB

University of Karlsruhe
D-76128 Karlsruhe, Germany

volz@aifb.uni-
karlsruhe.de

Daniel Oberle
Institute AIFB

University of Karlsruhe
D-76128 Karlsruhe, Germany

oberle@aifb.uni-
karlsruhe.de

Rudi Studer
Institute AIFB

University of Karlsruhe
D-76128 Karlsruhe, Germany

studer@aifb.uni-
karlsruhe.de

ABSTRACT
The Semantic Web aims at easy integration and usage of content by
building on a semi-structured data model where data semantics are
explicitly specified through ontologies. However, ontologies and
thereby ontology-based applications themselves suffer from hetero-
geneity. Therefore a new level of data independence is required to
allow the customization of information, e.g. towards the needs of
other agents, which can be achieved by exploiting database view
principles. This paper addresses this issue and presents a new view
mechanism for the data models underlying the Semantic Web, RDF
and RDFS.

1. INTRODUCTION
The vision of the Semantic Web incorporates distributed con-

tent that is accessible through a standardized semi-structured data
model (RDF) and at an explicit conceptual level. The conceptual
level is not given by a fixed schema, but rather by an ontology that
specifies the formal semantics of content. For this purpose, RDF
Schema (RDFS) has been devised as a particular vocabulary within
RDF and serves as a light-weight ontology language.

The use of ontologies in real-world applications such as com-
munity portals has shown that they can enhance interoperability
between heterogeneous information resources and systems on a
semantic level. However, what has also become clear is that on-
tologies and thereby ontology-based applications themselves suffer
from heterogeneity. This leads to difficulties when several commu-
nities try to establish a way of communication while using diverse
ontologies. On the one hand, not all information that is accessible
within one community (i.e. a department) might be intended to be
accessible to other communities. On the other hand, overlapping
content might be represented in different ways.

Therefore a new level of data independence is required to allow
customization of information towards the needs of other agents,
which can be achieved by exploiting database view principles.

Views on RDF(S) data constitute an unexplored terrain. In par-
ticular, existing view mechanisms for relational or semi-structured
data lack the explicit conceptual model germane to RDF(S), such
as inheritance semantics. Existing view mechanisms for object-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC 2003 Melbourne, Florida, USA
Copyright 2003 ACM 1-58113-624-2/03/03 ...$5.00.

oriented data lack the flexibility required in an open world, such as
lack of typing or partially available attributes.

In this paper we pick up the unique situation of data in the Se-
mantic Web and propose an OO-like view mechanism that allows
easy selection, customization and integration of Semantic Web con-
tent.

The central objective of our approach is to acknowledge the un-
derlying intention of Semantic Web, i.e. adding explicit formal
semantics to Web content. Therefore views are classified in the
semantically appropriate location in RDFS inheritance hierarchies.
Autonomous agents are thereby enabled to discover the semantics
of the view wrt. to the set-inclusion semantics of inheritance.

Second, compose-ability and querying of views is ensured by
maintaining the underlying distinction between classes and proper-
ties taken in the ontology representation. This leads to a distinction
of views on classes and views on properties.

The paper is structured as follows. Section 2 introduces the as-
sociated data models as well as the RDFS ontology representation.
Section 3 sketches the query language RQL [3], on which our view
mechanism is based. Section 4 describes the ideas underlying our
approach to views. Section 5 details views on classes and views
on properties and addresses the issue of classification of views into
the proper position of the inheritance hierarchies. Section 6 reports
briefly on our implementation effort. In section 7 we take posi-
tion to related work. We conclude summarizing our approach and
giving future directions.

2. THE SEMANTIC WEB

2.1 RDF — Semi-structured Data
Initially, the Resource Description Framework (RDF) [10] was

intended to enable encoding, exchange and reuse of structured meta-
data describing Web-accessible resources. Data is encoded us-
ing so-called resource-property-value triples, which are also called
statements.

Individual information objects are represented in RDF using a
set of statements describing the same resource. Object identity can
be given via an uniform resource identifier (URI) that labels the
resource. This object identifier is globally unique.

A set of statements, i.e. a RDF model, constitutes a partially
labelled directed pseudograph. The fact that properties can have
multiple values, e.g. ’x:email’ for the resource ’x:Rudi’ in figure 1,
allows to combine statements from different RDF models very eas-
ily.

The data model distinguishes between two types of values: re-
sources leading to object associations or literals establishing object
attributes. In figure 1 ’x:Raphael’ is a resource, whereas the name
’Volz’ is a literal.

x:Raphaelx:Rudi

x:Daniel

Volz@aifb.uni-karlsruhe.de

Oberle@aifb.uni-karlsruhe.de

x:advises

x:email

x:email

x:supervises

Raphael

Volz

x:name

x:firstn

x:lastn

Studer@fzi.de

x:email

x:AIFB

x:works
x:directs

studer@aifb.uni-karlsruhe.de

x:email

x:works

Figure 1: A simple, exemplary RDF model

2.2 RDFS – Light-weight ontologies
Ontologies provide a formal and shared conceptualization of a

particular domain of interest. In the Semantic Web a light-weight
(in comparison to classical knowledge representation languages)
approach is currently in use. Ontologies are constructed from classes
and properties that are embedded in a class and a property inheri-
tance hierarchy, respectively. The proposed standard for the Se-
mantic Web is RDF Schema (RDFS)[7]

x:Professor

x:Employee

x:PhD-Student

x:Student

x:Tutor

rdfs:Class

x:Rudi x:Danielx:Raphael x:AIFB

x:Organization

Figure 2: Class hierarchy in RDFS for a simple ontology.
Dashed lines denote instantiation, solid lines denote subsump-
tion.

RDFS incorporates a unique notion of object orientation. It in-
troduces classes and a subsumption hierarchy on classes (compare
Figure 2). In RDFS subsumption allows for multiple inheritance
and has set-inclusion semantics. As the subsumption establishes a
partial order, class equivalence can be expressed via a cyclic class
hierarchy. The extension of a class is defined by explicit assign-
ment of resources to (possibly multiple) classes.

Unlike in commonly-known object-orientated data models at-
tributes and associations are not defined with the class specification
itself. Instead, class properties are first-class primitives themselves.
The specification of a property, namely the definition of domain and
range constraints, defines the context, i.e. the resource-value-pairs,
in which a property may be validly used. in a RDF statement.

RDFS also allows to build a partial-order on properties, e.g. in
figure 3 the property ’x:advises’ is a specialization of the property
’x:responsible for’.

3. QUERY LANGUAGE
RQL [3] is the query language used within our approach and is

the only RDF query language that takes the semantics of RDFS
ontologies into account. The need to be aware of these semantics
is the main reason why query languages operating on the syntactic
XML-serialization (e.g. XQuery [9]) fail to meet our goals. Due to
lack of space, we can only give a short introduction to RQL in this

x:Employee

x:PhD-Student

x:email

x:supervises

x:advises

x:Employee x:Employee

rdf:Literal

x:Student

rdfs:domain

rdfs:domain

rdfs:domain

rdfs:range

rdfs:range

rdfs:range

x:responsible_for

rdfs:subPropertyOf

rdfs:subPropertyOf

x:worksx:Employee x:Organization

rdfs:domain rdfs:range

x:directs x:Organization

rdfs:range

Figure 3: Properties in RDFS for a simple ontology

section. The interested reader may refer to [3] for a more in-depth
description.

RQL follows a functional approach. Its basic building blocks are
generalized path expressions which offer navigation in the RDF
graph. The graph itself is viewed as a collection of elements which
can be accessed in generalized path expressions. For example, the
following query would return the collection of all pairs of nodes
which are related via the property email:

SELECT X,Y FROM {X} x:email {Y}

RQL queries follow the basic select-from-where construct known
from SQL. The construct {X}x:email{Y} is called a basic data path
expression, the atom of all path expressions. The variables X and
Y, introduced via the {} notation, are bound to the resources and
values of those RDF statements that use the property x:email.

RQL permits the interpretation of the superimposed semantic de-
scriptions offered by one or more ontologies. For instance, the
inheritance hierarchy is considered when accessing class extents.
Also path expressions can be concatenated by a ”.”, which is just a
syntactic shortcut for an implicit join condition.

SELECT Y FROM Student{X}.x:advises{Y}

This query returns the identifiers of all students advised by other
students. Since class subsumption is taken into account, the result
would contain the PhD-Student ”x:Raphael” from the RDF model
depicted in Figure 1.

Furthermore, RQL supports set operators, such as union, inter-
section and difference and means for pattern matching in where-
clauses.

4. VIEW LANGUAGE DESIGN
From the perspective of relational and object-oriented databases

it is natural to consider views as arbitrary stored queries. This is
not apt for RDF due to several reasons:

1. Such views are not related to the semantic description pro-
vided by an ontology. Especially the fact that queries are
given a name does not say anything about semantics of the
query result.

2. Query results might be n-ary relations. This does not fit in
the structure of an RDF model, which is a graph.

For those reasons we cannot rely on previous work about views for
other semi-structured data models. The views of [17] consist of
object collections only, associations between objects - which are

fundamental to RDF - are not considered. [2] does consider such
edges, but does not meet the first issue. Our approach addresses
those issues in its fundamental design.

The first issue results in the distinction between views on classes
and views on properties. The creation of views extends the ontol-
ogy as new (although virtual) classes or properties are created.

The semantics of these extensions can only be understood if
these newly defined resources are related to established (possibly
view) classes and properties by declaration of the subproperty and
subclass relation. This can happen in two ways: As the seman-
tics of an operation that defines a view should be properly repre-
sented, this relation should be established automatically. For im-
portant cases this can be done at the time of view creation by apply-
ing description-logic ideas to the analysis of the query definition.
This feature is briefly discussed in section 5 along with consistency
issues. On the other hand this information cannot be deduced in
many cases due to undecidability [14, 4]. It may therefore be done
via explicit assignment of these relations by the user. Here, the
implementation can only guarantee basic consistency such as com-
patibility of domain and range classes in properties.

The latter issue results in the limitation that the definition of
views can only involve queries which return either unary (views
on classes) or binary (views on properties) tuples. This ensures that
views are functional such that they can be used within queries and
composed into other views. The user can choose arbitrary (previ-
ously unused) identifiers for his views.1.

A B

A � B

A � B

A \ B

� (A)

C

A B

A B

A B

A \ B

� (A)

C

Figure 4: Placement of views in the hierarchy

Automatic classification
Figure 4 provides an overview about the classification which is se-
mantically correct for each algebraic operator. This classification
is independent of the type of views.

The illustrated classifications in Figure 4 are motivated by the
set-inclusion semantics of inheritance in RDF: Selection always re-
duces the initial set and creates subsets. Therefore the class which
is subject of the selection subsumes the view.

The difference operator can always be rewritten into an equiva-
lent selection (involving negation) on the minuend. Therefore the
minuend subsumes the view.

For union the extentions of the unified entities are subsets of
the view consequently the view subsumes the unified entities. The
view itself is subsumed by the least common superentity of all uni-
fied entities. For the intersection operator the opposite fact hold.
The intersection is a subset of the extents of all intersected entities.
Therefore every intersected entity subsumes a view based on the
intersection operation.

For class views, several additional premises hold. Since class

1Note, that this automatically excludes all identifiers used within
the specifications of RDF and RDFS

views can only be defined via queries that give unary results, oper-
ators like joins or the cartesian product are not relevant here. Joins
in a query automatically decompose to a selection wrt. the unary
result of the query. 2 The cartesian product creates at least binary
results. Duplicates are automatically removed in the interpretation
of the result since we regard the result as a set of instances.

5. VIEWS IN DETAIL
As mentioned in the previous section we make the basic distinc-

tion between views on properties and views on classes which is
also made in the underlying representation of RDF Schema. Due
to lack of space, we can only give examples here. A more detailed
technical report that also presents the BNF-syntax of the language
can be found at http://kaon.semanticweb.org/views/.

5.1 Views on classes
The definition of views on classes involves two components:

First, users must define an arbitrary RQL query which returns unary
tuples of resources. These tuples constitute the instances that are in
the extent of the view. Second, the view must be properly classi-
fied in the class hierarchy. This enables the understandability of the
view by using the semantics of the subclass relationship.

CREATE CLASS VIEW <URI>
{ SUBCLASSOF <SUPER_URI_i> }
USE
SELECT INSTANCE
FROM ...
[WHERE ...]

Figure 5: Definition framework for views on classes

For example, one could characterize the class of all ”Wis. Mi-
tarbeiter”, which is the job title PhD-Students usually have in Ger-
many since they are employed and advise other students:

CREATE CLASS VIEW x:WisMitarbeiter
SUBCLASSOF x:Employee
USE
(SELECT X
FROM x:Employee{X})
INTERSECT
(SELECT X
FROM x:PhD-Student{X},
{Y} x:advises {Z}
WHERE X = Y)

The fact that users can use arbitrary unary RQL queries within
this syntax has two main consequences.

1. Restricted Updatability as it is impossible to propagate in-
serts towards classes defined in such a way. Nevertheless
modifications and deletions are possible since object identi-
fiers are known. This kind of updates is propagated directly
to the underlying base data. Of course, instances might dis-
appear from the view if they do not meet the query conditions
anymore.

2. Manual Classification As users can combine arbitrary alge-
braic operations in the view3 the semantic characterization of

2Since joins can be rewritten to a selection on the cartesian product.
As we can only regard one row of the relation the results of the
cartesian product vanish leaving the selection behind.
3except for the final projection that fixes the arity

the view can not be given automatically since this problem is
undecidable [14, 4].

The latter fact leads to the introduction of additional possibilities
to define views on classes conveniently where the classification can
automatically be determined from query semantics.

Convenience definitions
Consequently we ammend our syntax by convenience definitions
which allow to define views via selection and set operations and
generate the standard class view definition automatically by trans-
formation. Especially the classification of the view via the subclas-
sof clause is automatically generated.

Selection views. The convenience operation provided by the
system views on classes is selection, where a subset of the members
of a certain class is selected. The user is still able to pose arbitrary
RQL queries. The system ensures that the result of the query is a
selection on the base class (via a mandatory ON clause). Techni-
cally, this is done by translating the ON clause into the generated
query by appending the following expressions to the where-clause
of the query itself:

AND INSTANCE IN
(SELECT M FROM BASE_URI{M})

This expression provides a kind of type casting which ensures that
the variable INSTANCE can only take members of the base class
as a value.

The following definition creates a new class ”x:Supervisors”,
which is populated with those employees who supervise someone.

CREATE CLASS VIEW x:Supervisors
ON x:Employee

USE
SELECT INSTANCE
FROM {INSTANCE} x:supervises

The following standard class view definition (cf. 5) is compiled
from the provided view specification:

CREATE CLASS VIEW x:Supervisors
SUBCLASSOF x:Employee
USE

SELECT INSTANCE
FROM {INSTANCE} x:supervises
WHERE INSTANCE IN
(SELECT M FROM x:Employee{M})

Following the discussion in section 4 the view is made a subclass
of x:Employee. Additionally the above mentioned type casting ex-
pression was appended to the where clause.

Difference views. A second convenience syntax is defined for
the difference operator. For example, the creation of virtual class
”x:Unemployed-Students” which is populated with all students that
have no job, can be stated as follows:

CREATE CLASS VIEW x:Unemployed-Students
ON x:Student
MINUS x:Employee

Again, the translation of the convenience syntax to the standard
view definition involves generation of the subpropertyof statement
which corresponds to the minuend. Additionally the appropriate
RQL query must be generated.4

4For M \S : (SELECT X FROM M{X}) MINUS (SELECT X
FROM S{X})

Union view. Another convience syntax allow to define class views
via the union of classes. For example a class view ”x:Scientists”
which consist of professors as well as PhD-Students is created by
the following definition:

CREATE CLASS VIEW x:Scientists
ON x:Professor
UNION x:PhDStudent

The translation of this definition into the standard form involves the
computation of the least common super class of the unified classes.

With respect to our ontology example in figure 2 no common su-
perclass of ”x:Professor” and ”x:PhD-Student” can be found. There-
fore the view has no super class and the subclassof statement is om-
mitted in the translation. The generation of the RQL query which
is used in the translated definition is straightforward.5

Intersection view. The intersection operator conceptually fol-
lows the principles used for Union View, but here the translation of
the convenience syntax to a standard definition involves the genera-
tion of at least two subclassof statements as well as the appropriate
RQL query.6

5.2 Views on Properties
Views on properties can be defined using arbitrary queries which

return binary tuples7. Besides the query itself, several additional in-
formation is required to define a view on properties. This involves
(a) the definition the domains and ranges of the view, (b) embed-
ding the view into the property hierarchy and (c) forcing the query
to return binary tuples.

CREATE PROPERTY VIEW <URI>
{ SET DOMAIN <DOMAIN_URI_i> }
{ SET RANGE <RANGE_URI_i> }
{ SUBPROPERTYOF <SUPER_URI_i> }
USE
SELECT DOMAIN, RANGE
FROM ...
[WHERE ...]

Figure 6: Definition framework for views on properties

Since the query can involve arbitrary joins and aggregation the
update-ability of views based on arbitrary queries cannot be auto-
matically ensured. Additionally, the consistency of the view defi-
nition with respect to constraints and property inheritance must be
ensured at compile time.

View consistency

Consistency of domain and ranges. First, it must be ensured
that only tuples are returned that meet the constraints specified by
the domain and range definition. Technically, this is implemented
similarly to the type casting used for selection views on classes.

5For M ∩ S : (SELECT X FROM M{X}) UNION (SELECT
X FROM S{X})
6For M ∩ S : (SELECT X FROM M{X}) INTERSECT
(SELECT X FROM S{X})
7Each tuple must be either (resource × resource) or (resource ×
literal) to reflect that literals cannot be in the domain of RDF prop-
erties

Consistency of the property hierarchy. The domain and
range definitions of the view must be compatible, i.e. connected
in the class hierarchy, to the domain and range definitions of the
super properties. We can check this at compile time via appropriate
consistency rules (cf. [13]).

An example. The following definition creates a new property
view which relates all PhD-Students with email addresses of the
advised students.

CREATE PROPERTY VIEW x:mails_of_advised
SET DOMAIN x:PhD-Student
SET RANGE rdf:Literal
SUBPROPERTYOF x:email
USE
SELECT DOMAIN, RANGE
FROM x:PhD-Student{DOMAIN}.
x:advises{Y}. x:email{RANGE}

The definition is consistent. This is due to the fact that no domain
constraints have been specified for the super property x:email. No
conflicts arise for the range since it is the same. The query is mod-
ified to the following form to ensure domain and range compatibil-
ity:

SELECT DOMAIN, RANGE
FROM x:PhD-Student{DOMAIN}.

x:advises{Y}. x:email{RANGE}
WHERE DOMAIN IN
(SELECT M FROM x:PhD-Student{M})

Here an exception for casting the range applies since the range is a
literal. The domain is ensured to be in the extent of x:PhD-Student
by an appended where clause.

Convenience definitions
As we can see the definition of views on properties involves quite
a lot of information from the user. Again, a set of short hand nota-
tions simplifies the construction of property views by users.

Renaming properties. The following definition creates a new
property view that is populated with the extension of a base prop-
erty :

CREATE PROPERTY VIEW <VIEW_URI> ON <BASE_URI>

Domain and range constraints as well as subproperty relationships
are taken from the base property by copying the definitions made
there. The required RQL query is automatically generated.8 Such
views are updateable since no joins or aggregations are involved.

Refining properties. A special definition selects only those in-
stances from the underlying property extent that match the extents
of the specified domains and ranges. Here the consistency of do-
mains and ranges must be ensured again and can rely on the previ-
ously mentioned means. The generation of the query is straightfor-
ward since it only involves appending the above mentioned type-
casting expressions to the where-clause of the query.

The view is a specialization of the base property since it is de-
fined via a selection on the extent of the base property. Therefore
the base property subsumes the view. Additionally the view can be
updated.
8That is: SELECT DOMAIN, RANGE FROM {DOMAIN}
base uri {RANGE}

For example, the following definition refines the property ”x:email”
from Figure 1 to carry only email addresses of Students.

CREATE PROPERTY VIEW x:student-mail
SET DOMAIN x:Student
ON x:email

Applying the above-mentioned arguments leads to the transla-
tion of the convenience definition to the following standard prop-
erty view definition:

CREATE PROPERTY VIEW x:student-mail
SET DOMAIN x:Student
SET RANGE rdf:Literal
SUBPROPERTYOF x:email
USE
SELECT DOMAIN, RANGE
FROM {DOMAIN} x:email {RANGE}
WHERE DOMAIN IN

(SELECT M FROM x:Student{M})

Other selections and set operations. Several other conve-
nience definitions for the algebraic operations of selection and set
operations are defined, which are not presented here due to lack of
space. They are conceptually similar to the convenience operations
for classes and follow the same pattern of automatic definition of
domains and ranges, automatic classification in the property hier-
archy and query generation which was shown for the above conve-
nience definition for property views.

6. IMPLEMENTATION
We give a brief survey about our ongoing implementation effort.

The first prototype of the view mechanism is already implemented
within KAON Server, a multi-user capable, transactional web on-
tology repository. KAON Server is part of the open-source KAON
tool suite [6].9 Clients are able to use the object-oriented KAON-
API built upon the W3C’s RDF-API to access ontologies and corre-
sponding RDF data. The KAON-API offers the transparent access
to views which is also constituted in the query language.

View definitions are stored in RDF syntax. This approach allows
to reuse the data structures provided to store data for managing
schematic information as it is done for the specification of ontolo-
gies.

As soon as a view is created by the user consistency checks are
performed. For this purpose, we defined a set of axioms expressing
consistency. This involves some inference processes are started as
we use a logic programming system, namely SiLRI [8], to check
the axioms.

SiLRI is also used to implement the query engine. Therefore
the agreggation functions which were specified for RQL are not
implemented yet. Our prototype does not support updates yet, thus
views remain read-only.

7. RELATED WORK
There is a large body of work on views for the relational data

model. These results are already incorporated in many database
textbooks. Our approach differs substantially from relational world.
Few research has actually focused on views for semi-structured
data. The approach presented in [17] consist of object collections
only and does not allow object links. [2] reflects the importance of

9http://kaon.semanticweb.org/

such links. Nevertheless our proposal is the only one that takes a su-
perimposed conceptual model into account, viz. the ontology. Ad-
ditionally consistency constraints such as situated by the RDF(S)
data model are not considered in those approaches.

There is a large amount of work done on views for object-oriented
data (e.g. [5, 1, 14, 15]). Generally those approaches do not fit the
Semantic Web despite the conceptual similarity of object-oriented
data models to web ontologies. This is mainly due to the explicit
typing of classes and local assignment of properties to classes. Ad-
ditionally web criteria such as the ability to base views on multiple
data sources are not met. Also property hierarchies are not known
to object-oriented models.

Nevertheless we have combined many aspects presented there.
The idea to classifiy views in the hierarchy was first proposed in
[15]. Other approaches, i.e. [5], do not mix view and class hier-
archies. Like the majority of object-oriented approaches to views
we mainly support object-preserving views, although not discussed
here. Many object-oriented allow to support other forms of view
population such as set-tuples (akin to the relational world) and of
object-generation. The latter was first presented in [5] which present
arguments such as its usefulness for simulated schema evolution.
Some formation of external schemata proposed in [1, 15] however
views can only be introduced in this context and not be added to
the base database.

8. DISCUSSION
We have presented a view mechanism that picks up the unique

situation of data in the Semantic Web. We propose a view mech-
anism that allows easy selection, customization and integration of
Semantic Web content. Our approach acknowledges the underlying
intention of the Semantic Web - to add explicit formal semantics to
Web content - and exploits the semantics of view definitions as far
as possible to classify views into the semantically appropriate posi-
tion in the entity hierarchies provided by RDFS. This allows agents
to understand the semantics of the views autonomously. If the vo-
cabulary of another ontology is used in the view definitions other-
wise disparate ontologies are integrated by establishing is-a links
between the classes and properties of both vocabularies leading to
a proper articulation of both ontologies [12].

From our perspective, a view mechanism is an important step in
putting the idea of the Semantic Web into practice. Based on our
own experiences with building Semantic Web based community
portals [11, 16] and knowledge management frameworks [6] we
devise that view mechanisms for ontology-based semi-structured
data will be a crucial cornerstone to achieve many different, excit-
ing objectives.

Examples for such objectives will be personalized access to meta-
data bases in community portals, authorization and the improved
integration of ontologically disparate information sources — to name
but a few.

For the future much remains to be done. We are currently in-
vestigating how updates can be consistently integrated. Addition-
ally the materialization of views is of great importance in Web sce-
narios, we are therefore also investigating how such materialized
views can be incrementally maintained in presence of updates. We
also plan to adapt the implicit classification approach to allow full
description-logic style subsumption which might have benefits for
using views in query rewriting.

Acknowledgement:. This work was funded through the Won-
derWeb programm (EU-IST-2001-33052). We thank our colleague
Steffen Staab for his contributions to the paper.

9. REFERENCES
[1] Serge Abiteboul and Anthony Bonner. Objects and Views. In Proc.

Intl. Conf. on Management of Data, pages 238–247. ACM SIGMOD,
May 1991.

[2] Serge Abiteboul, Roy Goldman, Jason McHugh, Vasilis Vassalos,
and Yue Zhuge. Views for semistructured data. In Proceedings of the
Workshop on Management of Semistructured Data, Tucson, Arizona,
May 1997.

[3] S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis,
K. Tolle, Bernd Amann, Irini Fundulaki, Michel Scholl, and
Anne-Marie Vercoustre. Managing RDF metadata for community
webs. In (WCM’00), Salt Lake City, Utah, pages 140–151, October
2000.

[4] C. Beeri. Formal Models for object oriented databases. In Proc. 1st
Intl. Conf. on Deductive and object-oriented databases, pages
370–396, 1989.

[5] Elisa Bertino. A View Mechanism for Object-Oriented Databases. In
Advances in DB-Technology, Proc. Intl. Conf. on Extending Database
Technology (EDBT), number 580 in Lecture Notes in Computer
Science, pages 136–151, Vienna, Austria, March 1992. Springer.

[6] Erol Bozsak and al. Kaon — towards a large scale semantic web. In
Proc. of 3rd Int’l Conference on Electronic Commerce and Web
Technologies (EC-WEB 2002), Aix-en-Provence, France, September
2002.

[7] Dan Brickley and R. V. Guha. Resource description framework
(RDF) schema specification 1.0. Internet:
http://www.w3.org/TR/2000/CR-rdf-schema-20000372/, 2000.

[8] S. Decker, D. Brickley, J. Saarela, and J. Angele. A query and
inference service for RDF. In QL98 - Query Languages Workshop,
December 1998.

[9] S.J. DeRose. Xquery: A unified syntax for linking and querying
general xml documents. Query Languages 1998, 1998.

[10] O. Lassila and R. Swick. Resource description framework (RDF)
model and syntax specification. Internet:
http://www.w3.org/TR/REC-rdf-syntax/, 1999.

[11] Alexander Maedche, Steffen Staab, Rudi Studer, York Sure, and
Raphael Volz. Seal tying up information integration and web site
management by ontologies. In IEEE Data Engineering Bulletin,
volume 25, March 2002.

[12] Prasenjit Mitra, Gio Wiederhold, and Martin L. Kersten. A
graph-oriented model for articulation of ontology interdependencies.
In Proc. of Extending Database Technology (EDBT) 2000, pages
86–100, 2000.

[13] Daniel Oberle and Raphael Volz. Implementation of an view
mechanism for ontology-based metadata. Technical Report 422,
Institute AIFB, University of Karlsruhe (TH), 2002.

[14] Elke A. Rundensteiner. MultiView: A Methodology for Supporting
Multiple Views in Object-Oriented Databases. In Proc. 18th Intl.
Conf. on Very Large Data Bases (VLDB), pages 187–198, Vancouver,
Canada, 1992. ACM SIGMOD.

[15] Marc H. Scholl, Christian Laasch, and Markus Tresch. Views in
Object-Oriented Databases. In Proc. 2nd Workshop on Foundations
of Models and Languages of Data and Objects, pages 37–58,
September 1990.

[16] S. Staab, J. Angele, S. Decker, M. Erdmann, A. Hotho, A. Maedche,
H.-P. Schnurr, R. Studer, and Y. Sure. Semantic community web
portals. In WWW9 - Proceedings of the 9th International World Wide
Web Conference, Amsterdam, The Netherlands, May, 15-19, 2000.
Elsevier, 2000.

[17] Y. Zhuge and H. Garcia-Molina. Graph structured views and their
incremental maintenance. In Proc. 14th Int. Conf. on Data
Engineering, 1998.

