
Formal Specification of Web Service Contracts for
Automated Negotiations and Compliance Checking

Abstract

Service-oriented computing as a concept for providing
interoperability and flexibility within heterogeneous
environments has gained much attention within last
years. Dynamically integrating external Web services
into enterprise applications requires automatic
contracting between service requestors and providers
and automatic contract monitoring. This paper
suggests semi-automatic approach since in the current
legal environment full automation is not feasible. We
elaborate on the content of Web service contracts from
a legal perspective and derive a set of legal
requirements. Based on these requirements we propose
an ontology-based representation of contract clauses
as well as monitoring information. We can thus
automatically evaluate whether a service execution
meets the requirements expressed in a contract.

1. Introduction

Information systems of the future will be

combinations of loosely-coupled services. In service-
oriented architectures (SOA), application systems are
assembled as required by pulling together various
services. In this context, a service is a software
component which can be used by means of standard
internet technologies. The implementation of services
is encapsulated and numerous service providers may
provide the same functionality. Hence, a customer may
choose from a variety of implementations depending
on his preferences. So as to make sure that a service
meets the requirements, customers and providers have
to agree on terms of a contract.

The area of electronic contracting received
considerable attention in recent years [1]. The work
can be structured according to the contracting lifecycle
[2]: First, in the Information Phase information about
the product, other parties, etc. is gathered. Then, terms
and conditions of an agreement are determined in the
Agreement Phase. Finally, in the Settlement Phase
contracts are executed and the fulfillment of the
contractual clauses is monitored.

In order to support automation of the entire
contracting life cycle formal machine-understandable
representation of contract information is required.
Since this is hardly achievable in an inter-
organizational setting, we focus on semi-automatic
contracting where an umbrella contract is manually
closed with different service providers and only some
of the terms are negotiated for each service invocation
dynamically. In order to support the settlement phase
monitoring information as well as knowledge how to
interpret the contract is required. Usually, the latter is
available only as tacit knowledge of legally educated
persons and thus has to be externalised into a machine
readable and executable form.

Our paper is structured according to the typical
ontology engineering process [3]. In section 2 we
introduce a scenario which provides a use case for the
subsequent sections. Then in section 3 requirements for
representing Web service contracts are discussed from
a legal perspective. After presenting general design
considerations of our ontology framework in section 4,
we demonstrate how a Web service contract (section 5)
and monitoring information (section 6) are represented.
In addition, we show in section 7 how to evaluate
whether services are delivered as specified in the
contract. Finally, we discuss related work in section 8
and conclude in section 9.

2. Scenario

In order to reduce credit risk and to select profitable

customers, many companies have always relied on
credit information. The latest legal developments
around risk management such as Sarbanes Oxley or
related legal regulation have forced the companies to
have a closer look at the management of financial risk.
Financial information relating to the creditworthiness
of companies, the profitability of their business or the
quality of their senior management helps companies to
assess the risk of doing business with each other and
respond to increased or decreased risk. Companies as
Dun & Bradstreet or Creditreform collect and sell
credit information. Based on credit information,

companies will decide whether to start business with
another company or determine and adapt lines of
credit.

In the past, such lines of credit have often been
adapted too late as buying of credit information was
done manually and not always on a continuous basis.
Thus, integrating critical credit information into
existing enterprise applications allows for risk
decisions based on externally provided and
permanently updated data. Standard internet
technologies such as Web services can be used to
retrieve this credit information.

We distinguish between three degrees of
automation of the contracting lifecycle, namely a
manual, semi-automatic and automatic approach. In the
manual case human beings are involved in all steps of
the contract lifecycle. Full automation is the situation
in which the complete contract lifecycle can be
supported by software agents - a scenario which has
been investigated only for very simple contracts. For
reasons illustrated in the following, a semi-automatic
approach is more appropriate.

3. Legal Perspective

In this section, we discuss the legal concept of

semi-automatic contracting and monitoring. Finally,
we explain the possible contents of a contract
negotiated and concluded by software agents based on
these considerations.

3.1. Semi-automatic contracting of credit
information services

Semi-automatic contracting can be seen as an

interim solution, where contracts made based on a
manually negotiated umbrella agreement are being
negotiated by software agents. The ‘umbrella
agreement’ is directly negotiated by human beings.
The contract negotiated by the software agents is
referred to as ‘individual contract’.

The umbrella agreement is presently necessary to
define the legal conditions under which software
agents can enter into binding agreements as not all
jurisdictions acknowledge negotiating and contracting
by software agents. In our scenario we assume that the
umbrella agreement provides for German law to be
applicable to the umbrella agreement, the individual
contract and any action of the parties via its software
agents. Under German law, declarations of software
agents are deemed to be human declarations under a
legal concept called “declaration of a blank form” [4].

In our scenario, the service requestors agree on an
umbrella agreement with several credit information
companies. The umbrella agreement will therefore
define the framework for several software agents to

negotiate the individual contracts. The umbrella
agreement specifies the beginning of the contractual
relations between all parties, how long the umbrella
agreement is valid and how and when it can be
terminated. The credit information services to be
negotiated as well as the timeframe for negotiations
(preferably 24/7) are agreed on in the umbrella
agreement. The umbrella agreement will also define
those credit information services which the software
agents are entitled to negotiate and to contract for. For
a better understanding, such a clause is included in this
paper:

“Scope of this umbrella agreement is the provision of
the following Credit Information Service, hereinafter
referred to as Credit Information and Credit
Information Services on the basis of individual
contracts negotiated by either party’s software agents.
For the purposes of this umbrella agreement and the
individual contracts, Credit Information means
(a) Information about ownership, history and
principals of a company, and the operations and
location of the company, hereinafter, referred to as
Business Background Information.
(b) In-depth information about the business of a
company, the situation of the company in the market
and the senior management of the company, referred to
as Quality of Company Information.
(c) Scoring information about the likelihood that a
company becomes insolvent within the next 12 months.
The scores are based on a scale of 1 to 100, any 10
point increase relates to a doubling of the risk,
referred to as Credit Score Calculation.
(d) Calculation of the credit limit for a company based
on the risk level agreed on between the parties, either a
conservative limit or an aggressive limit, referred to as
Credit Limit Calculation.”

The umbrella agreement also provides for auxiliary
duties of the parties such as the obligation to treat
customer information confidentially or maintenance
and service duties. These clauses lay the ground for the
later provision of credit information services and form
the continuous contractual relations between the
parties. As their content spans more than one provision
of credit information, they are not negotiated every
time an individual credit information service is needed.

The individual credit information service, the
license type, how up-to-date credit information is,
which guarantees for the accuracy are given as well as
the price and the payments terms are negotiated
whenever there is a need for a service.

This wide array of terms that are negotiated
distinguishes the semi-automatic contracting from a
simple call-off order. A call-off order is placed against
an umbrella agreement which defines all the conditions
except delivery time and amount and, in some cases,

prices. The option to negotiate not only these basic
terms allows the parties to flexibly adapt the services
as well as the price to changing conditions.

After closing a contract in the settlement phase the
participants monitor whether the contractual duties are
fulfilled. However, full automation of the monitoring
step is impossible since assessing the quality of a credit
information service can only be done by taking
external and not quantifiable factors into account.
Nevertheless some monitoring tasks can be done by the
system automatically. For instance, it can be assured
that an individually contracted service is provided at all
and in the negotiated timeframe. For this purpose, all
clauses that are relevant to evaluate whether the
contract is met also have to be represented in our
formal representation language.

3.2. Content of the individual contract on
provision of Credit Information Services

The individual contract is negotiated by the

software agents. In such an individual contract the
software agents will negotiate which credit information
service should be delivered and paid.
Credit Information Service (§ 1). In our scenario we
distinguish between so called ‘Business Background
Information’, ‘Quality of Company Information’,
‘Credit Score Calculation’, ‘Warning Information’ and
‘Credit Limit Calculation’. In a physical contract
between human beings such content would be covered
in a clause ‘§ 1 Scope of Agreement’.
Update Periods (§ 2). Usually, it is price relevant how
old the credit information is. The software agents
therefore negotiate the update periods of credit
information. For example, Business Background
Information is updated either every month or once a
quarter. An example of a contract clause (§ 2) is given
in the section contract representation.
Use of Information and Licenses (§ 3). The
individual contract will specify how the customer may
use the information. In our scenario the service
provider grants a license. A contract clause specifying
such use may grant a transferable license to use the
information or a non-transferable license and define
further to what extent the customer may use the credit
information within its company or towards third
parties. The extent of the usage can be negotiated by
the software agents.
Warranties (§ 4). The software agents will negotiate
which warranties the service provider gives for the
individual credit information service. Negotiating
warranties is a legally very complex task even when
human beings are involved. Standard terms and
conditions, used by companies to facilitate negotiations
and transactions in routine business, to a large extent

consist of clauses to limit/extend liability and to
describe warranties. This shows that there is a need to
negotiate warranties while it is not efficient to
negotiate them for small or routine transactions.
However, warranties are price relevant. We let the
software agents negotiate about the warranty level but
not about the legal obligations resulting from a breach
of warranty. The legal complexity, including the
restrictions by law to contract out certain statutory
warranties and liabilities, does not allow negotiating
the legal obligations by software agents at present.
When negotiating a warranty we work with the
following scheme: (1) The service provider does not
give any warranty as to the accuracy of the
information. (2) The service provider does not warrant
the accuracy of the information, but warrants that it has
put the information together with utmost care and
state-of-the-art-methods (3) The service provider
guarantees that the information is 100% correct.
Delivery Time (§ 5). The delivery of credit
information service can be negotiated by the software
agents in a way that the service has to be provided
immediately after the individual contract is concluded
or at a later, negotiated time. The legal consequences
of non- or late delivery however are set forth in the
umbrella agreement for the same reasons as specified
above under warranties.
Prices and Payment Terms (§ 6). Finally, the
software agents will negotiate the prices and payment
terms. While the parties defined the details of invoicing
in the umbrella agreement, the software agents may
negotiate the price for the individual credit information
service as well as the due date of the payment.

4. General Ontology Framework

In order to be able to pass down the contract

negotiation and execution to the system level
knowledge about the contracts and their interpretation
has to be expressed in a machine interpretable way.
Thus, a well-defined, formal representation is required
that allows heterogeneous systems to understand,
close, and enforce the contracts.

In recent years, ontologies emerged as state of the
art for knowledge sharing in distributed, heterogeneous
environments. An ontology is a set of logical axioms
that formally define a shared vocabulary [5]. By
committing to a common ontology agents can make
assertions or ask queries that are understood by the
other agents. By featuring logic-based representation
languages ontologies provide executable calculi that
allow querying and reasoning during run-time, which
is required for automatic contract enforcement.
Furthermore, by using a standardized ontology
language the maximal degree of interoperability

between different heterogeneous systems can be
ensured. This is crucial when dealing with open
environments as in the case of Web services.

In the remainder of this section we briefly introduce
the formalism as well as the ontology framework used
to define the contract ontology.

Core Ontology
(specific domain independent)

Top-Level Ontology
(domain-independent)

Domain Ontology
(domain dependent)

Credit Information
Ontology

Contract Ontology

Core Policy
Ontology (CPO)

Ontology of Information
Objects (OIO)

inherits from

Core Software
Ontology (CSO)

Ontology of Plans
(OoP)

Ontology of Descriptions
and Situations (DnS)

Dolce

Figure 1 Ontology framework

4.1. Ontology Formalism

In order to guarantee that the formal definitions are

understood by other parties in the web, the underlying
logic has to be standardized. The Web Ontology
Language (OWL) standardized by the World Wide
Web Consortium (W3C) is a first effort in this
direction. OWL-DL is a decidable fragment of OWL
and is based on a family of frame-based knowledge
representation formalisms called Description Logics
(DL) [6]. The meaning of the modeling constructs
(such as concepts, data types, individuals and data
values) provided by OWL-DL [7] is formally defined
via a model-theoretic semantics, i.e. it is defined by
relating the language syntax to a model consisting of a
set of objects, denoted by a domain, and an
interpretation function, which maps entities of the
ontology to concrete entities in the domain [7].

In order to define the contract ontology, we require
additional modeling primitives not provided by OWL
(e.g. triangle relations between concepts). The
Semantic Web Rule Language (SWRL) [8] allows us
to combine rule approaches with OWL and thus model
such knowledge. Since reasoning with knowledge
bases that contain arbitrary SWRL expression usually
become undecidable [9], we restrict ourselves to DL-
safe rules [10]. A rule is DL-safe in case each variable
occurring in the rule also occurs in a non-DL-atom in
the body of the rule. This means the identity of all
objects referred to in the rule has to be known
explicitly. To query and reason over a knowledge base
containing OWL-DL as well as DL-safe SWRL axioms
we use the KAON2 inference engine [11].

For the reader's convenience we define DL axioms
either in DL abstract syntax [6] or informally via UML
class diagrams [12], where UML classes correspond to
OWL concepts, UML associations to object properties,
UML inheritance to subconcept relations and UML
attributes to OWL data type properties. For
representing rules we rely on the standard rule syntax
as done in [8].

4.2. Modeling Basis

As shown in Figure 1, instead of engineering a

contract ontology entirely from the scratch we rely on
the foundational ontology DOLCE (Descriptive
Ontology for Linguistic and Cognitive Engineering)
[13] and the DOLCE modules Ontology of

Descriptions and Situations (DnS), Ontology of Plans
(OoP), Ontology of Information Objects (OIO).

DnS provides a theory of contextualization by
introducing the distinction between descriptive and
ground entities. Descriptive entities are aggregated by
a DnS:Description and represent non-physical objects
like product descriptions or legal norms.1 Ground
entities derived from DOLCE constitute a
DnS:Situation that represents information about a
concrete state of affaire in the world such as a concrete
web service invocation or a legal case. Furthermore,
the DnS:satisfies-relation between a DnS:Situation and
a DnS:Description specifies if the descriptive entities
“describe” the DnS:Situation according to specified
rules. Moreover, we rely on the ontology module
Ontology of Plans (DDOP) to describe social and
cognitive plans such as goals and task and the module
Ontology of Information Objects (DDIO) which
introduces primitives for describing information items.
These top level ontologies are discussed in [14].

Based on the DOLCE modules, we reuse further
‘core ontologies’ which are still domain-independent
but geared towards a specific topic. The Core Software
Ontology (CSO) provides a clear distinction between
information (e.g. software or data) and the digital
realization of information in information systems. The
Core Policy Ontology [15, 16] allows the specification
of obligations and rights which are used in the Contract
Ontology to define contractual clauses. The structure
of the Core Policy Ontology (CPO) is in line with the
ontology design pattern DnS. In general, CPO
distinguishes between a CPO:Policy specializing a
DNS:Description and a concrete DnS:Situation which
is evaluated according to the CPO:Policy. As depicted

1 Concepts, relations and rules contained in the ontology are
highlighted in italics. For concepts and relations that are introduced
directly in the contract ontology, namespaces are omitted. For those
that are derived from other ontologies, the corresponding namespace
is mentioned explicitly.

in Figure 2, a CPO:Policy contains CPO:Subjects and
CPO:Objects which are modeled as DnS:Roles to
allow specifying policies on an abstract level without
referring to concrete entities. This is also essential for
modeling contracts, since they are usually applicable in
many different settings. Further, the CPO:Policy
determines the OoP:Task that is regulated as well as
CPO:Attributes defining the constraints that have to be
met to fulfill a certain CPO:Policy. By refining the
DnS:attitudeTowards-relation we can model different
deontic relations between CPO:Subject and OoP:Task,
e.g. we can say that a CPO:Subject either has the
DnS:rightTo or is DnS:obligedTo execute a certain
OoP:Task. In order to find out if a certain
DnS:Situation conforms to a DnS:Policy a
specialization of the DnS:satisfies-relation is used. For
more in-depth discussion of the CPO please refer to
[15, 16].

The remainder of the paper is organized in line with
the structure of the CPO. In the next section we show
how CPO:Policies can be used to model an ontology
for representing Web service contracts. Subsequently
in section 6 monitoring information is modeled as a
DnS:Situation and finally the DnS:satisfies-relation is
refined to check whether the DnS:Situation conforms
to the contract (section 7).

5. Contract Representation

We introduce the contract ontology in three parts:

First, we present the body of the contract which
contains regulations about who has to accomplish
which task. After that we discuss concrete contract
clauses that impose certain conditions on regulations in
the contract. Finally, we show how domain ontologies
can be used to apply the contract ontology in a
concrete scenario.

5.1. Basic contractual concepts

A contract can be seen as a “legally enforceable

agreement in which two or more parties commit to

certain obligations in return for certain rights” [17]. In
a manual contract this could read as follows:
“The Provider shall provide the [specified] Credit
Information Services to the Customer and grant the
[specified] license and right of use of the Credit Information.
The Customer shall pay for Credit Information Services [the
specified amount] to the Provider.”

That means contracts define obligations as well as
permissions that are binding on all contractors as well
as the sequence in which they enter into force. In the
case of Web services we restrict ourselves to contracts
between exactly two parties, namely Provider and
Customer. We consider a Contract as a
DnS:Description containing at least one CPO:Policy
that regulates the transaction. This fact is reflected by
the following DL-axiom:

Contract ≡ DnS:Description u ∃DOLCE:part.CPO:Policy

In the context of contracts, a CPO:Policy represents
either an Obligation or a Permission. An Obligation is
a CPO:Policy where the DnS:attitudeTowards-relation
is refined to DnS:obligedTo and a Permission a
CPO:Policy where it is refined to DnS:rightTo. This
can be formalized using the following SWRL rules:

Obligation(x) ← DnS:defines(x,y), Subject(y),
 DnS:defines(x,z), Task(z),DnS:obligedTo(y,z)
Permission(x) ← DnS:defines(x,y), Subject(y),
 DnS:defines(x,z), Task(z),DnS:rightTo(y,z)

Consequently, as depicted in Figure 3 the most
elementary contract about purchasing Web services in
exchange for money results in two simple Obligations:
(i) A Provider Obligation that specifies that the
Provider is obliged to make certain functionality
accessible to the Customer. We call this activity
Service Task. In this case the CPO:Subject is
specialized to a Provider, the OoP:Task to Service
Task and the CPO:Object to Trading Object. (ii) A
Customer Obligation which specifies that the
Customer is obliged to compensate the Provider for
using the Web service. This activity is called
Compensation Task and mostly involves the transfer of
a certain amount of money. To define a Compensation
Task the CPO:Subject is specialized to a Customer, the
OoP:Task to Compensation Task and the CPO:Object
to Compensation Object. The two Obligations forming
a Contract are shown in Figure 3.

Note that the distinction between Service Tasks and
Trading Objects allows modeling the promised
functionality of a service using either explicit or
implicit capability representation [18]. This enables our
contract ontology to support all major efforts striving
for semantic web service descriptions such as WSMO
[19], OWL-S [20] and WSDL-S [21].

Figure 2: Core Policy Ontology

CPO:Policy

DnS:defines

CPO:Subject OoP:Task OoP:Object

DnS:defines

DnS:defines

CPO:Attribute

DnS:requisiteFor

DnS:requisiteFor

DnS:requisiteFor

DnS:Description DnS:Role DnS:ParameterDnS:Course
D

nS
C

or
e

P
ol

ic
y

O
nt

ol
og

y

DnS:defines

DnS:attitude
Towards

Provider Obligation

DnS:obligedToProvider Service Task Trading Object

Usually contracts also specify in which sequence
obligations have to be fulfilled and rights are obtained.
In our sample contract, for instance, the Send
Information task has to be executed before the
Compensation Task of the Customer. Hence, means for
representing sequences of OoP:Tasks are required. We
reuse the Ontology of Plans which provides primitives
for modeling complex processes, e.g. Sequential Tasks,
Parallel Tasks, Loop Tasks, etc. In this context, the
primary ordering relation for OoP:Tasks are
OoP:directSuccessor and its transitive version
OoP:successor. In Figure 3 for example, we use the
OoP:successor-relation to state that the Service Task
has to be executed before the Compensation Task.
Such information is crucial for figuring out which
party violated a Contract.

5.2. Individual Contract Clauses

As discussed above, a contract imposes further

conditions that have to be fulfilled by the contractors.
These conditions can be modeled as constraints on the
concepts contained in a CPO:Policy. We realize this by
means of the CPO:Attribute concept as follows:

Update period (§ 2) As specified above, update
periods are warranted by the provider. A legal text
negotiated by human beings could read as follows:

“The Provider warrants that it reviews and, if
necessary, updates Business Background Information
every month.”

Since this is a property of the Trading Object we
introduce Update Period as a subclass of
CPO:Attribute which constrains the Trading Object

Information Good. It is DnS:valuedBy a
DOLCE:Region XSD:Integer.

InformationGood v TradingObject

UpdatePeriod v CPO:Attribute u
∃DnS.requisiteFor.InformationGood u
∀DnS.requisiteFor.InformationGood u
∃DnS:valuedBy.XSD:Integer

Allowed usage of purchased information (§ 3):
Typically licenses regulate how information can be
used. A negotiated legal text could read as follows:

“The Provider grants the customer a non-transferable
license to use the Credit Information delivered under
the terms of this contract. The Customer may freely
copy or forward Credit Information within its
company. The Customer may not disclose or make the
Credit Information otherwise available to third parties
without prior consent of the Provider. “

The license specifies if the right to use a certain
Information Good is Transferable, if the Customer
may disclose the Information Good within the
company (Disclose within Company) or to external
third parties (Disclose to 3rd Party). These usage terms
are also modeled as CPO:Attributes of Information
Goods. The following DL axiom formalizes the
CPO:Attribute Transferable which is DnS:valuedBy a
DOLCE:Region containing the two XSD:Strings “yes”
and “no”. The CPO:Attribtues Disclose within
Company and Disclose to 3rd Party are formalized
analogously.

Transferable v CPO:Attribute u
∃DnS.requisiteFor.InformationGood u
∀DnS.requisiteFor.InformationGood u
∃DnS:valuedBy.{“yes”,“ no”}

Figure 3 Contract ontology. Note that plotting UML classes within an Obligation-class
illustrates a DnS:defines-relation between the Obligation and the contained classes.

Contract

DOLCE:part

DnS:anakastic
DutyTowards

Warrenty Level

Update Periode

Disclose within Company

Disclose to 3rd Party

DnS:requisiteFor

DnS:
requisiteFor

Customer Obligation

Customer Compensation Task Compensation ObjectDnS:obligedTo DnS:anakastic
DutyTowards

DOLCE:part

DnS:requisiteFor

DnS:
requisiteFor

Information Good

DnS:
requisiteFor

Delivery Time

OoP:successor

Monetary Units

AmountDnS:requisiteFor

DnS:requisiteFor Currency

DnS:
requisiteForPayment Term Monetary Compensation

Warranties (§ 4) : As explained above, warranties are
an important part of negotiations. A legal warranty
clause negotiated by human beings could contain the
following element:

“The Provider warrants that the credit information is
100% accurate.”

Therefore, we add a DnS:Attribute Warranty Level
which is valued by a DOLCE:Region reflecting the
three different warranty levels defined in the legal
discussion above. Since the warranty can be considered
as a fundamental property of a Trading Object we
model the Warranty Level as a DnS:Attribute of
Trading Object.

WarrantyLevel v CPO:Attribute u
∃DnS.requisiteFor.TradingObject u
∀DnS.requisiteFor.TradingObject u
∃DnS:valuedBy.{1,2,3}

Note that since the Warranty Levels are only vague
terms a conversion-rule has to be used to map the
levels to concrete accuracy guarantees.

Delivery Time (§ 4):

“The Provider shall deliver the credit information
service 5 seconds after conclusion of the contract.”

The CPO:Attribute Delivery Time specifies the period
in which the Service Task has to be executed. Hence, it
is modeled as a constraint of Service Task which is
DnS:valuedBy an XSD:Integer.

DeliveryTime v CPO:Attribute u
∃DnS.requisiteForServiceTask u
∀DnS.requisiteFor.ServiceTask u
∃DnS:valuedBy.XSD:Integer

Prices and Payment Terms (§ 6):

“The price for the Business Background Information is
EUR 15.”

Mostly the provision of goods and services is
compensated by monetary payments. We call a
Compensation Task where Monetary Units are
transferred Monetary Compensation. Monetary Units
are mandatory described by the DnS:Attributes Amount
which is DnS:valuedBy a XSD:Float representing the
number of Monetary Units to be transferred and
Currency which is DnS:valuedBy a XSD:String
representing the currency the Amount is specified. This
is formalized by the following axioms.

MonetaryUnits v CompensationObject u
∃DnS.anakasticDutyTowards.CompensationTask u
∀DnS.anakasticDutyTowards.CompensationTask u
∃DnS:requisites.Amount u ∃DnS:requisites.Currency

Amount v CPO:Attribute u
∃DnS:requisitesFor.MonetaryUnits u
∀DnS:requisitesFor.MonetaryUnits u
∃DnS:valuedBy.XSD:Float

Currency v CPO:Attribute u
∃DnS:requisitesFor.MonetaryUnits u
∀DnS:requisitesFor.MonetaryUnits u
∃DnS:valuedBy.XSD:String

Furthermore, a contract usually contains a Payment
Term that specifies in which timeframe a Monetary
Compensation has to take place. We model the
Payment Term as a CPO:Attribute constraining the
Monetary Compensation task.

PaymentTerm v CPO:Attribute u
∃DnS:requisiteFor.CompensationTask u
∃DnS:requisiteFor.CompensationTask u
∃DnS:valuedBy.DOLCE:Temporal-Region

Of course, all regulations specified above can be
extended in case it is required by a certain application.
This is realized either by introducing new
CPO:Attributes within an existing CPO:Policy or by
adding further CPO:Policies to the Contract.

5.3. Domain Ontology

In order to apply the contract ontology in a concrete

application scenario, domain ontologies are required to
introduce concepts and relations required for
specializing Trading Objects as well as Service and
Compensation Tasks.

Since in our credit information scenario we deal
with information services, the functionality of a service
can be specified by introducing the Send Information
and Monetary Compensation tasks, which concretize
Service Task and Compensation Task, respectively.
Furthermore, in order to define the functionality of a
service specifying the service output is required, which
can be done by means of a reference to a specific type
of information. In the following we discuss a domain
ontology dealing with Trading Objects in the credit
information services example.

As introduced above, there are five main categories
of Credit Information which are named in an
exemplary clause of the umbrella agreement.
Ontologically, information mentioned above is
represented by the concept CSO:Data that is
OIO:realized by a CSO:Computational Object within
the information system. CSO:Data is a
OIO:Information Object which is – in contrast to
CSO:Software – not executable. Hence, we formally
define different types of Credit Information as follows:

CreditInformation v CSO:Data u
∃DOLCE:part.CompanyIdentifier u
∀DOLCE:part.(BusinessBackgroundInformation t
CreditScoreCalculationInformation t
QualityOfCompanyInformation t
CreditLimitCalculation t WarningInformation)

BusinessBackgroundInformation v CSO:Data u
∃DOLCE:part.CompanyIdentifier u
∀DOLCE:parts.(OwnershipInformation t History t
Principles t Operations t Location)

CompleteBusinessBackgroundInformation v CSO:Data
u ∃DOLCE:part.CompanyIdentifie ru
∃DOLCE:part.Ownership u ∃DOLCE:part.History
u ∃DOLCE:part.Principles u
∃DOLCE:part.Operations u ∃DOLCE:part.Location

OwnershipInformation v CSO:Data u
∃DOLCE:part.CompanyIdentifier u
∃DOLCE:part.Ownership

The other types of Credit Information are defined
analogously. Note that this modeling approach enables
a DL-reasoner to automatically infer a Credit
Information hierarchy, e.g. it is inferred that
Ownership Information is a subclass of Business
Background Information as well as Credit Information
or that Complete Business Background Information is a
subclass of Business Background Information.

Figure 4 Monitoring information as
DnS:Situation. Note that plotting UML
classes within a DnS:Situation-class
illustrates a DnS:settingFor-relation between
the DnS:Situation and the contained classes.

WebService/163:12:23:1

COS:ComputationalObject COS:ComputationalActivity

executes

CreditScoreInformation/SAP

involvedIn

DOLCE:
participateIn

Dolce:Quality

DOLCE:
inherentIn DOLCE:

inherentIn

Dolce:RegionDOLCE:
q-location

Duration 25ms
DOLCE:

temporal-location

DOLCE:inherentIn

DnS:Situation

WebServiceInvocation

Send/022706/8:00

6. Representation of Monitoring
Information

In the last section, we presented contract

information as a collection of CPO:Policies which are
modeled by refining DnS:Descriptions. In this section,
we extend this approach in order to represent
Monitoring Information. Since this is information
about real world activities, it is ontologically modeled
as a DnS:Situation. As sketched in Figure 4,
DnS:Situations use DOLCE ground entities to model
concrete activities in a real world information system,
i.e. in our case a concrete web service invocation.
According to the Core Software Ontology (CSO) [16]
such activities are called CSO:Computational
Activities. CSO:Computational Activities are
DOLCE:Perdurants that involve CSO:Computational
Objects which realize either the CSO:Data or
CSO:Software. While CSO:Software can be seen as an
active entity that executes CSO:Computational
Activities, CSO:Data is only passively involved in
CSO:Computational Activities. Therefore, we
introduce the two relations executes and involved in as
follows:

executes(x,y) ← DOLCE:participateIn(x,y),
CSO:ComputationalObject(x),

CSO:ComputationalActivity(y),
OIO:realizes(x,z),CSO:Software(z)

involvedIn(x,y) ← DOLCE:participateIn(x,y),
CSO:ComputationalObject(x),
CSO:ComputationalActivity(y),
OIO:realizes(x,z), CSO:Data(z)

Moreover, computational entities inherently exhibit
certain DOLCE:Qualities which can be seen as
attributes that characterize DOLCE:Endurants and
DOLCE:Perdurants, e.g. the duration of an activity or
the size of an object. DOLCE:Qualities are
DOLCE:localized in DOLCE:Regions. Consequently,
the notion of Monitoring Information is defined by the
following DL axiom:

Monitoring Information v DnS:Situation u
∃settingFor.CSO:ComputationalActivity u
∃settingFor.CSO:ComputationalObject u
∀settingFor.(CSO:ComputationalActivity t
CSO:ComputationalObject t DOLCE:Quality t
DOLCE:Region)

Providing information via a Web service leads to a
CSO:Computational Activity where one party transfers
a CSO:Computational Object, e.g. the realization of
certain credit information, to another party. In
executing this activity various types of monitoring
information about the activity itself as well as about
participating objects can be measured or perceived,
which are represented as DOLCE:Qualities.

Furthermore, Figure 4 introduces a concrete
example which represents information about a Web
service invocation as an instance of Monitoring
Information. The CSO:Computational Activity that is

monitored is a specific Send-activity carried out on
February 27th, 2006 at 8am. The activity was executed
by a Web service with the IP-address 163:12:23:1 and
involved the digital representation of Credit Score
Information of the company SAP. Moreover, the
DOLCE:Quality Duration of the Send-activity is
measured and results in a DOLCE:Region of 25ms. Of
course, other DOLCE:Qualitites of the
CSO:Computational Activity as well as the
CSO:Computational Object beyond Duration can be
determined in the monitoring step. However,
introducing methods for Web services monitoring is
not in the focus of this paper. More information about
how to derive monitoring information can be found in
[22], for instance.

7. Contract Evaluation

After introducing the notion of Contract as
specialization of DnS:Description and Monitoring
Information as specialization of DnS:Situation we can
use the DnS:satisfies-relation that holds between
DnS:Situations and DnS:Descriptions in order to
determine whether the two parts match according to a
specified rule. However, the DnS:satisfies-relation
stemming from DnS is defined on a very abstract level
and thus has to be adapted to our concrete application,
i.e. contract evaluation.

However, evaluating contracts is highly complex.
This is mainly due to context-dependent and fuzzy
interpretations that are required in the evaluation
process. For example, certain actions have to be done
“immediately” or “with utmost care”. Nevertheless,
lawyers typically use guidelines how to interpret
statements and expressions which can be captured by
the DnS:satisfies-relation and thus used for automatic
contract evaluation. For instance, in case the term
“immediately” is used to specify a timeframe in which
a response of the service is expected, one could use a
rule of thumb that says the response is received
“immediately” only if it is received within 5 sec. after
sending the request. Of course, such rules are always
highly domain dependent and have to be verified
regularly for their validity. For instance, it might be
necessary to adapt them to new court decisions.

Subsequently, we exemplify this approach using
the following Provider Obligation: The credit
information service provider X has to provide a
complete set of Business Background Information of
Company Z to customer Y. This has to be done
immediately after closing the contract. Therefore, we
derive the following formal definition of the Provider
Obligation:

Obligation(ProviderObligationX)
Provider(X)
DnS:defines(ProviderObligationX,Y)
TradingObject(BBInformation/Z)
DnS:defines(ProviderObligationX,BBInformation/Z)
OoP:Task(Transfer)
DnS:defines(ProviderObligationX,Transfer)
DeliveryTime(responseTime)
DnS:defines(ProviderObligationX,responseTime)
DnS:Region(‘immediately’)
DnS:defines(ProviderObligationX, ‘immediately’)
DnS:valuedBy(responseTime, ‘immediately’)
DnS:obligedTo(X,Transfer)
DnS:anakasticDutyTowards(BBInformation/Z,Transfer)
DnS:requisiteFor(responseTime,Transfer)

After executing the Contract above the customer has
monitored the Web Service Invocation formalized in
Figure 4.

Based on the Monitoring Information the customer
evaluates the Provider Obligation presented above.
The following questions have to be answered within
this evaluation process:

1. Is the requested trading object delivered?
To answer this question we have to find out if
information is delivered by the provider and – in case it
is – if the delivered information is complete with
respect to the agreement in the Contract. We realize
this by comparing the delivered CSO:Computational
Object contained in the Monitoring Information with
the CSO:Computational Object agreed on in the
contract. This is done by the following SWRL-rule:

correctInformation(x,y) ←
DnS:MonitoringInformation(x), DnS:Policy(y),
DnS:defines(y,t), TradingObject(t),
DnS:playedBy(t,d1), CSO:Data(d1),
DnS:settingFor(x,d2), CSO:Data(d2),
subsumes(d2,d1)

Note that subsumes is implemented as a built-in
predicate that verifies if the first argument classifies
the second, or in other words if the class of the second
argument is either an explicit or inferred subclass of
the first argument. This verification is done with a DL-
reasoner. By using this predicate we allow the provider
to send more information than required, while making
sure that the information agreed in the contract is
provided.

2. Was the correct service task executed?
The SWRL-rule below answers this question by
comparing the executed CSO:Computational Activity
stated in the Monitoring Information with the
CSO:Computational Activity agreed upon in the
Contract. Again we use the subsumes-predicate to
allow a general activity description in the contract to be
fulfilled by a specific activity. For example, a contract
might specify that certain information has to be
transferred. How this should be done is not specified

exactly. Therefore, sending by mail or telling on the
phone might be admissible since both are certain types
for transferring information.

correctActivity(x,y) ← DnS:MonitoringInformation(x),
DnS:Policy(y), DnS:defines(y,t),
OoP:ServiceTask(t), DnS:sequences(t,a1),
CSO:ComputationalActivity(a1),
DnS:settingFor(x,a2), ComputationalActivity(a2),
subsumes(a1,a2)

3. Was the task executed within the required
timeframe?

According to the Contract Ontology a Service Task has
to be executed within a certain Delivery Time. This is
verified by the rule below, which compares the Quality
specifying the response time of the invocation with the
DeliveryTime in the contract.

activityInTime(x,y) ← DnS:MonitoringInformation(x),
DnS:Policy(y), DnS:defines(y,t),
OoP:ServiceTask(t), DeliveryTime(d),
DnS:requisiteFor(d,t), interpretDeliveryTime(d,r1),
DOLCE:Region(r1), DnS:settingFor(x,a),
ComputationalActivity(a), DOLCE:inherentIn(q,a),
DOLCE:Quality(q), DOLCE:q-location(q,r2),
DOLCE:Region(r2), subsumes(r1,r2)

However, since DeliveryTime is expressed by a
XSD:String rather than a DOLCE:Temporal-Region we
need the following conversion-rule. Note that this
interpretation of the term “immediately” is not content
of the contract but rather common sense knowledge.

interpretDeliveryTime(d,r2) ← DeliveryTime(d),
DnS:valuedBy(d,r1), DOLCE:Region(r1),
SWRLB:equals(r1,‘immediately’),
DOLCE:Temporal-Region(‘<5s’),
DOLCE:Temporal-Region(r2),
SWRLB:equals(r,‘<5s’)

After the conversion both measures are expressed via
DOLCE:Temporal-Regions and thus can compared by
the subsumes-relation. A DOLCE:Temporal-Regions
subsumes another one if the timeframe is larger. Thus,
Durations that are shorter than the period specified in
Delivery Time are admissible.

If one of the above questions is not evaluated to
true the contract is considered as violated. Therefore,
the following conjunctive rule specializes DnS:satisfies
and thereby aggregates the results of questions above.

conformsTo(x,y) ← DnS:satisfies(x,y),
DnS:MonitoringInformation(x),
DnS:Policy(y), correctInformation(x,y),
correctActivity(x,y), activityInTime(x,y)

If we have more complex contracts than in this
example (e.g. more than one CPO:Policy in the
Contract) the conformsTo-rule has to be adapted
accordingly. Although it would be desirable to define
the conformsTo-relation in a more general way, this is
not possible with the formalism at hand. Since we do

not have universal quantification in SWRL, we have to
explicitly iterate over all DnS:Concepts in a
CPO:Policy and over all CPO:Policies in a Contract.
However, we belief that remaining in a standardized
and decidable fragment of the logic justifies this
limitation.

8. Related Work

There are several approaches that strive for

electronic contract representation in B2B scenarios,
ranging from EDI to XML-based languages. However,
proprietary approaches such as EDI are not suitable for
open, fast-changing environments like the Internet,
because the introduction of these technologies requires
high investments which could easily lead to lock-in
effects.

XML-based languages tackle this problem (e.g.
ebXML [23]). They introduce machine-readable
contract models that can be considered as a structured
contract document. Some of them are designed for a
Web service scenario. The Web Service Level
Agreement (WSLA) project focuses on the quality of
service aspect within a contract [24]. It also addresses
the monitoring of an agreement. However, the project
covers only some specific elements of a contract.
While WS-Agreement takes a similar approach, it is
not restricted to quality aspects since it is based on WS
Policy [25]. However, all the approaches mentioned
above do not provide formal and explicit semantics.
But this is required to facilitate interoperability in an
open environment where standardization is not always
possible and desirable. In addition, pure XML-based
languages do usually not support the logical reasoning
which is required during contract evaluation.

To meet this requirement several logic-based
contract languages have been proposed. Most of them
are based on deontic logic (e.g. the ODP Enterprise
Language [26]) which extends first order logic by
modal operators like ‘may’ and ‘must’. However, these
languages are not based on internet standards and thus
are not directly applicable to Web service contracting.
RuleML is a first attempt to establish a standardized
syntax for exchanging logical rules [27]. Under the
umbrella of RuleML different kinds of logics can be
used to express contracts (e.g. courteous logic
programs [28] or defeasible logic [29]). However,
RuleML does only deal with standardizing the syntax
and not with standardizing the underlying logic. Thus,
interoperability still seems to be a problem.

By building on a standardized knowledge
representation language like OWL as well as a sound
and highly axiomatized toplevel ontology we are able
to derive a clean and extensible conceptual model that
provides interoperability in open environments and
facilitates the integration of heterogeneous modeling

efforts. We extend this approach for expressing rules
by adding a decidable fragment of the emerging
standard SWRL (called DL-safe rules). This provides
us with an expressive – but still decidable - language
for representing Web service contracts.

9. Conclusion

We presented a modeling framework for Web
service contracts. The approach does not aim towards
full automation, but rather enables semi-automatic
contracting. In our opinion full automation is – at least
for the moment – not feasible across organizational
boundaries. Therefore, we suggest combining an
umbrella contract covering static aspects with a
formalized description of clauses that are dynamically
negotiated and monitored. In contrast to related
approaches, for the formalization of the contract we
rely on internet standards to facilitate interoperability
in a Web environment and on foundational ontologies
in order to derive a sound conceptual model.

10. References

[1] Angelov, S. and P. Grefen, B2B eContract Handling - A
Survey of Projects, Papers and Standards, Technical Report,
University of Twente, The Netherlands, 2001.
[2] Lindemann, M. A. and B. F. Schmid, Elements of a
Reference Model for Electronic Markets, In HICSS '98:
Proceedings of the Thirty-First Annual Hawaii International
Conference on System Sciences-Volume 4, Hawaii, USA,
1998.
[3] Pinto, H. S. and J. P. Martins, Ontologies: How can They
be Built? Knowledge Information System, 6 (2004), pp. 441-
464.
[4] Sester, P. and T. Nitschke, Software-Agent mit der Lizenz
zum.? Computer und Recht (CR) (2004), pp. 548-554.
[5] Gruber, T. R., A translation approach to portable
ontologies, Knowledge Acquisition, 5 (1993), pp. 199-220.
[6] Baader, F., D. Calvanese, D. McGuinness, D. Nardi and
P. F. Patel-Schneider, eds., The Description Logic
Handbook: Theory Implemenation and Applications, 2003.
[7] Horrocks, I., P. F. Patel-Schneider and F. v. Harmelen,
From SHIQ and RDF to OWL: The making of a web
ontology language, Journal of Web Semantics: Science,
Services and Agents on the World Wide Web, 1 (2003), pp.
7-26.
[8] Horrocks, I., P. F. Patel-Schneider, H. Boley, S. Tabet, B.
Grosof and M. Dean, SWRL: A Semantic Web Rule Language
Combining OWL and RuleML, Technical Report, W3C
Submission, 2004.
[9] Horrocks, I. and P. F. Patel-Schneider, A proposal for an
OWL rules language, In WWW '04: Proceedings of the 13th
international conference on World Wide Web, New York,
NY, USA, 2004.
[10] Motik, B., U. Sattler and R. Studer, Query Answering
for OWL-DL with Rules, Journal of Web Semantics: Science,
Services and Agents on the World Wide Web, 3 (2005), pp.
41-60.

[11] Kaon, Karlsruhe Ontology Framework 2 (KAON2),
http://kaon2.semanticweb.org, 2004,
[12] Brockmans, S., R. Volz, A. Eberhart and P. Loeffler,
Visual modeling of OWL DL ontologies using UML,
Proceedings of the Third International Semantic Web
Conference (ISWC2004), Springer, Hiroshima, Japan, 2004.
[13] Masolo, C., S. Borgo, A. Gangemi, N. Guarino, A.
Oltramari and L. Schneider, The WonderWeb library of
foundational ontologies: preliminary report, Padova, Italy,
2002.
[14] Gangemi, A., S. Borgo, C. Catenacci and J. Lehmann,
Task taxonomies for knowledge content, Technical Report,
Metokis deliverable D07, 2004.
[15] Lamparter, S., A. Eberhart and D. Oberle,
Approximating Service Utility from Policies and Value
Function Patterns, In 6th IEEE Int. Workshop on Policies for
Distributed Systems and Networks, Stockholm, Sweden,
2005.
[16] Oberle, D., S. Lamparter, S. Grimm, D. Vrandecic and
A. Gangemi, Towards Ontologies for Formalizing
Modularization and Communication in Large Software
Systems, To appear in Journal of Applied Ontology (2006).
[17] Reinecke, J., G. Dessler and W. Schoell, Introduction to
Business - A Contemporary View, Allyn and Bacon, Boston,
1989.
[18] Sycara, K., M. Paolucci, A. Ankolekar and N.
Srinivasan, Automated Discovery, Interaction and
Composition of Semantic Web Services, Journal of Web
Semantics: Science, Services and Agents on the World Wide
Web, 1 (2003).
[19] WSMO, Web Service Modeling Ontology,
http://www.wsmo.org, 13 April 2005, 2005,
[20] OWL-S, http://www.daml.org/services/owl-s/,
November 2004,
[21] WSDL-S, Web Service Semantics - WSDL-S, W3C
Submission, http://www.w3.org/Submission/WSDL-S/, 7
November 2005, W3C, 2005,
[22] Sahai, A., V. Machiraju, M. Sayal, A. v. Moorsel and F.
Casati, Automated SLA Monitoring for Web Services, In
Proceedings of the 13th IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management:
Management Technologies for E-Commerce and E-Business
Applications, 2002.
[23] Organization for the Advancement of Structured
Information Standards, Enabling a global electronic market:
ebXML, http://www.ebxml.org,
[24] IBM, Web Service Level Agreements (WSLA) Project,
http://www.research.ibm.com/wsla/about.html,
[25] Forge, Grid Resource Allocation Agreement Protocol.
Web Services Specification,
https://forge.gridforum.org/projects/graap-wg/document/WS-
AgreementSpecification,
[26] RM-ODP Enterprise Language [X.911 I IS 15414],
http://www.joaquin.net/ODP/DIS_15414_X.911.pdf,
[27] The Rule Markup Initiative, February 26th, 2005,
http://www.ruleml.org/,
[28] Grosof, B. and T. Poon, SweetDeal: Representing agent
contracts with exceptions using XML rules, ontologies, and
process descriptions, In Proceedings of the 12th World Wide
Web Conference, Budapest, Hungary, 2003.
[29] Governatori, G., Representing business contracts in
RuleML, International Journal of Cooperative Information
Systems, 14 (2005), pp. 181-216.

http://kaon2.semanticweb.org/
http://www.wsmo.org/
http://www.daml.org/services/owl-s/
http://www.w3.org/Submission/WSDL-S/
http://www.ebxml.org/
http://www.research.ibm.com/wsla/about.html
http://www.joaquin.net/ODP/DIS_15414_X.911.pdf
http://www.ruleml.org/

