An Architecture for Recovering Business Events
Bottom-up*

Thomas Barnekow’, Steffen Staab*, Jurgen Ziegler', and Rudi Studer
"Fraunhofer IAO, Nobelstrasse 12, 70569 Stuttgart, Germany
{ Thomas.Barnekow, Juergen.Ziegler} @iao.fhg.de
*AIFB, Univ. Karlsruhe, PO-Box 6980, 76128 Karlsruhe, Germany
{ Steffen.Staab, Rudi.Studer} @aifb.uni-karlsruhe.de

1 Introduction

In order to preserve their competitiveness in todays constantly evolving markets
companies need integrated systems supporting cooperation within flexible,
seamless business processes. However, business processes spanning many
functional departments usualy involve multiple isolated legacy information
systems, which often resist the integration into common workflow management
environments to a large extent. Y et, the sheer amount of business logic intrinsic
in these information systems makes them very vauable assets, whose
modification or extension, when applying standard approaches, is a time
consuming and costly process.

In this paper, we address one aspect of the integration problem, namely the
detection of complex events® relevant to users or to the automatic workflow
enactment. We describe a minimally intrusive system recovering high-level
business events in legacy information systems by monitoring low-level database
events® and infering target business events using previously learned rules.

' To appear in the Proceedings of the HCI International 1999 conference.

2 Complex events are composed of other, atomic or complex, events. Events signal the
fact that corresponding time-consuming operations have been performed successfully. A
business event is an event at the business process level. Database events correspond to
committed database operations.

% We generally assume that information systems are built on top of database systems.

2 Solving the Recovery Problem

Our solution for the automatic recovery of business events in an information
system is based on the following observation: While many information systems
- especialy older ones - are rather monolithic and their intrinsic information
flows are hard to monitor, basic events in their associated database systems can
easily be registered - either by way of listening at the interface or by reporting
methods commonly supported in current database systems, e.g. triggers on
database tables.

Figure 1 summarizes the overall design of our approach: A business operation
carried out on the information system transforms the state of its underlying
database system (arrow 1). Resulting database events are reported by triggers on
the database tables (arrow 2). The reports are used by a production system in
order to recover relevant business events (arrow 3). These can either initiate a
workflow transition (arrow 4) or trigger a notification to a user (arrow 5).

Interface | Information Inference
Level System Engine
Implicit Explicit
Business || Business Business
Object Events Events
Level

S —
Level of

Database Database Observed
Events Events DB Events

Figure 1: Architecture of the recovery process.

It would be rather time consuming or error-prone for a human programmer to
manually code the automatic recovery of business events. Therefore, our design
incorporates a learning process (cf. section 3) during which the functional
correspondences between sequences of atomic database events and higher-level
business events are semi-automatically acquired by our system. The results of
this learning process are then compiled into a set of production rules. At run-
time the production rules are defined in an inference engine that can handle
interleaved business operations commonly arising in multi-user systems (cf.
section 4).

3 The Learning Process

For each legacy information system, the learning process aims at finding
hypothetical rules correctly representing correspondences between business

events and sequences of database events. It should be stressed that the learner is

not required to find the business events’ exact specifications. In fact, the learner
should find the most general rules correctly identifying the respective target
business event among all the other relevant business events that need to be
recovered. For this purpose we use FOIL (Quinlan and Cameron-Jones 1995), a
learning algorithm which, provided with sufficient training data, constructs logic
programs that constitute the intensional definitions of target relations
representing business events.

For example, learning the definition of the relation add-customer() representing
a corresponding business event in a Computer Aided Selling system might
produce the following rule:

add- custoner (cid, nane, age, street, city, zip) :-
i nsert-person(cid, nane, age),
insert-address(aid, cid, street, city, zip).

In our approach, examples are pairs consisting of a high-level predicate
denoting the paremeterized business event and a set of low-level predicates
corresponding to database events. In order to acquire the necessary training data
the human trainer performs sample business operations using the information
system’s standard user interface and, simultaneously, provides the
corresponding high-level predicates that describe the business events signalling
the successful processing of these business operations. In our previous example,
the trainer starts a learning cycle by indicating to the system that a sequence of
database events corresponding to the creation of a customer will occur next in
the database system. Then, he creates a new sample customer. Finally, the
trainer indicates to the system the completion of the cycle. For each information
system, the whole learning process consists of (1) the acquisition of training
data for all relevant business events, and (2) the induction of a set of logic
programs, one per target business event.

4 Infering Business Events by Production Rules

In an operating information system the observation of database events does not
generally yield well-sorted sequences of database operations that clearly

correspond to business operations. Due to multi-user interactions these

sequences may be interleaved and their beginnings and endings are commonly
unmarked.

In order to untangle these sequences of database events the predicates learned
during the learning phase are compiled into a set of production rules, which are
then defined in a forward-chaining inference system (Forgy 1982). At runtime,
facts corresponding to the observed database events are asserted in the inference
system. This will eventually trigger previously learned rules and, thus, infer
assertions corresponding to the business events.

5 Related Work

Our work builds on approaches from the fields of Computer-Supported
Cooparative Work (CSCW), Distributed Artificial Intelligence (DAI), database
technology and machine learning.

In the field of Computer-Supported Collaborative Work (CSCW) notification
mechanisms for complex events are used for supporting awareness in
cooperative working environments (cf. Fuchs et a. 1995, Loevstrand 1991). In
the field of Distributed Artificial Intelligence (DAI) complex events are used for
result sharing in distributed problem solving architectures (cf. Berndtson et al.
1997). Business events recovered by our system can be communicated using the
above mechanisms.

With regard to database technology our approach roughly compares to the
problem of monitoring materialized views over time. However, due to the
complexity of the general problem (cf. Staudt and Jarke 1996) common
database monitoring techniques can not be applied to our recovery problem.

In order to solve the complexity problems our approach builds on algorithms for
the induction of logic programs (cf. Quinlan and Cameron-Jones 1995; Cohen
1994), where complex predicates, i.e. rules describing how business events are
composed from atomic database events, can be learned from examples.

6 Conclusions and Future Work

We have presented a minimally intrusive system that can recover business
events in legacy information systems by monitoring database events and
infering target business events using inductively learned production rules.

We are currently developing an experimental setting that will allow us to
determine the overall efficacy of our solution, as well as precise factors for its
completeness and correctness. The results gained from this experiment will then
alow us to estimate the suitability of our integration approach for particular
system classes. As of today, our solution appears to be a rather promising
approach towards integrating legacy information systems into modern
groupware and workflow environments.

References

Berndtsson, M., Chakravarthy, S., & Lings, B. (1997). Result Sharing Among
Agents Using Reactive Rules. In P. Kandzia & M. Klusch (Eds.), Cooperative
Information Agents: Proceedings of the First International Workshop, CIA '97,
Kiel, Germany, February 26-28, 1997, pp. 126-137. Berlin: Springer.

Cohen, W. (1994). Recovering software specifications with inductive logic
programming, AAAI-94: Proceedings of the 11th National Conference on
Artificial Intelligence, Seattle, Washington, July 31 - August 4, 1994, pp. 142-
148. Menlo Park/Cambridge: AAAI PressMIT Press.

Forgy, C. (1982). Rete: A Fast Algorithm for the Many PatterngMany Objects
Match Problem. Artificial Intelligence, 19(1), 17-37.

Fuchs, L., Pankoke-Babatz, U., & Prinz, W. (1995). Supporting Cooperative
Awareness with Local Event Mechanisms: The GroupDesk System,
Proceedings of the Fourth European Conference on Computer-Supported
Cooperative Work - ECSCW95, pp. 247-262. Dordrecht, NL: Kluwer Academic
Publishers.

Loevstrand, L. (1991). Being Selectively Aware with the Khronika System,
Proceedings of the Second European Conference on Computer-Supported
Cooperative Work - ECSCW91, pp. 265-278. Dordrecht, NL: Kluwer Academic
Publishers.

Quinlan, J. R., & Cameron-Jones, R. M. (1995). Induction of Logic Programs:
FOIL and Related Systems. New Generation Computing, 13, 287-312.

Staudt, M., & Jarke, M. (1996). Incrementa Maintenance of Externally
Materialized Views. VLDB'96, Proceedings of the 22nd International
Conference on Very Large Data Bases, September 3-6, 1996, Mumbai
(Bombay), India, pp. 75-86. San Fransisco: Morgan Kaufmann.

	Introduction
	Solving the Recovery Problem
	The Learning Process
	Infering Business Events by Production Rules
	Related Work
	Conclusions and Future Work
	References

