Knowledge Elicitation Plug-in for Prot ecg:
Card Sorting and Laddering

Yimin Wang!, York Sure, Robert Steverfsand Alan Rectcr

nstitute AIFB, University of Karlsruhe, Germany
{ywa, sure}@i f b. uni - kar| sruhe. de
2School of Computer Science, University of Manchester, MBB,aJK
{rector, robert.stevens}@s. man. ac. uk

Abstract. Ontologies have been widely accepted as the primary methepo
resenting knowledge in the Semantic Web. Knowledge EtioitaKE) is usually
one of the first steps in building ontologies. A number of drgy editors such
as Protégé have been developed to assist users in buddinpgies efficiently.
However, traditional KE techniques, such as card sortirdjladdering, are not
yet supported, but performed manually and outside of sualk.tin this paper we
present a methodology and a corresponding plug-in foegéothat allows graph-
ical ellicitation knowledge from documents using card isgrand laddering ap-
proaches. Our aim is to seamlessly integrate the KE techsioqio the ontology
building process to make ontology building more efficiend #&ss error-prone.
As a side-effect the persistent storage of card sorting addering results al-
lows for later traceability of ontology development. KEdaly depends on user
interaction with the plug-in, therefore we employed usemtoed design princi-
ples to capture requirements. After implementation, theyh was evaluated
thoroughly against the requirements. The evaluation shbaisthis KE plug-in
meets many of the user’s expectations and indeed saves tesiderable time
when building ontologies.

1 Introduction

The explosion of digital knowledge makes finding accuratermation effectively an
increasingly important topic. Making knowledge expligitg. in the form of ontologies
and corresponding metadata, offers many opportunitieibthte effective knowledge
access. One of the first steps in building ontologies is Wsaaknowledge elicitation
(KE) process, which is also known as an important branch ofikedge acquisition.
Traditional KE is a kind of labour-intensive manual workfrexnely time-consuming,
and often not well connected to further steps in ontologyireegying. What is needed
are more usable, handy and in particular well-integratetkits for knowledge elicita-
tion.

Several standard knowledge acquisition/elicitation téghes, such as card sorting
and laddering, have been developed to help in organisingadoexpert’s ideas into
basic structures and to recover tacit knowledge. Cardngphtas been used for several
decades, and it is remarkably useful for finding out how peagltegorise things [1,
2]. Laddering was first introduced by Hinkle [3], a clinicayghologist, in order to

2 Yimin Wang, York Sure, Robert Stevens and Alan Rector

model the concepts and beliefs of people by an unambigualisyetematic approach.
Most of these knowledge acquisition/elicitation techmigiare visual or graphical. The
traditional card sorting and laddering methods are, howexéremely difficult to man-
age and track back — you will find it nearly impossible to keeprtecord for hundreds
of cards or paper pieces and go back to a prior status withoatrgplicated series of
actions, such as video tape recording, searching and plégiok.

A key motivation for our work comes from the CO-ODE projeathere we experi-
enced a rather big gap between manually applied knowledgjgagbn techniques, in
particular card sorting and laddering, and building of dojees with Protégé. Protégé
[4] is one of the most popular ontology editors which supponany of the tasks of
ontology engineering. Protégé enables users to creaddogies by defining concepts,
specifications, relationships, annotations and otherimm&bion within a certain domain.
In our CO-ODE project tutorials users wanted to build a pzi®logy with the Protégé
OWL Plug-in [5], however, often our tutees preferred to witthe pizza terminologies
and properties in a pile of cards and to construct the cone¢fatxonomy by arranging
the cards on the table. After that, the users recorded ttommé in Protégé by manual
transfer from the hard copy on their real desktop. It turngito be very common that
users were getting confused and found it difficult to manag®ale table of cards. Fi-
nally, any re-sorting of the cards required careful adjesthof the ontology modelled
in Protégeé.

Our core contribution consists of a novel technique forgrating the KE tech-
niques of card sorting and laddering into ontology build{nfy Section 3). The tech-
nigue has been implemented in a corresponding plug-in fméBe (cf. Section 5) that
allows graphically eliciting knowledge from documentsngstard sorting and ladder-
ing approaches. Our aim is to seamlessly integrate the Kiimigaes into the ontol-
ogy building process to make ontology building more effitiand less error-prone.
As a side-effect the persistent storage of card sorting adddring results allows for
later traceability. KE largely depends on user interactidth the plug-in, therefore we
employed user-centred design principles to capture remants (cf. Section 4). After
implementation the plug-in was evaluated thoroughly agdfre requirements (cf. Sec-
tion 6). The evaluation shows that this KE plug-in meets nafiilie user’'s expectations
and indeed saves them considerable time when buildingagites.

2 Related Work and Challenges

Related work includes two major aspects. The knowledgdagiicn techniques deal
with the theoretical issues, while the ontology enginegaspect aims to facilitate users
in the process of building ontologies.

From the mid 1980s, people began to do research on expeensyss a sub-
discipline of Knowledge Engineering, and it was also thetistg point for the sci-
entific research on KE. People tried to develop KE techniqoeget knowledge with
effectiveness, efficiency and correctness. A number ofetimesthods were borrowed
from cognitive science and other disciplines such as Apbiagy, Ethnography, and

Yhttp://ww. co- ode. org

Knowledge Elicitation Plug-in for Protégé: Card Sortiangd Laddering 3

Business Administration [6, 7]. KE techniques were effedti used in early 1990s,
with the popularity of graphical based personal computstesy [8].

Card sorting is a comprehensive technique of knowledge elicitation westand
is now being used in several disciplines such as Knowledggngerring, Psychology,
and Marketing. In the field of KE, card sorting is considerecbé one of the most
effective ways for eliciting the domain expert’s idea abthé knowledge structure.
Much evidence shows that card sorting has many positivectspemaking a useful
and reasonable elicitation experiments, including hejpire respondents to recall the
domain concepts; providing a structuralized conceptsfpiléuture processing — such
as laddering; fast acting and easy handling [1, 8]. Figureolvs a real use case of card
sorting.

Fig. 1. Traditional card sorting

Laddering has been widely used in the field of knowledge elicitationvés in
recent years. The basic purpose of the laddering methodeicibpeople’s goals and
values [8, 9]. People from knowledge elicitation commurigve developed a well-
established range of formal semantics, procedures andiorofar building ladders.
Based on the Rugg and McGeorge’s [9] categorisation, laciglean be used for three
major purposes — they are using laddering to elicit subselgsexplanation, goals and
values. Laddering has been implemented as an indepena¢im @ software toolkit,
called PCPACK [10] with integration of the CommonKADS med{d1]. But the im-
plementation in PCPACK lacks the compatibility with fullgeort of the OWL lan-
guage, and the well integration with state-of-the-art togp engineering tools, like
Protégeé. In this paper, we are going to use the ladderintgadeo build up the data
and object properties for concepts, e.g. a typical conetfgdder example is shown in
Figure 2.

4 Yimin Wang, York Sure, Robert Stevens and Alan Rector

Pizza
PizzaTopping PizzaBase

FishTopping

MeatTopping DeepPanBase

Fig. 2. Concepts map with properties

Not many general purpose approaches have been inventediliding ontologies.
The available methodologies are generally frameworks détbcriptions and outlines
on how to build ontologies [12, 13]. Often, such methodadsdgibcus on the ontology
engineering steps without much support for the very eadges of KE. The most re-
cent methodology DILIGENT [14] supports the dynamic natfrentologies and also
includes support for argumentation between differentraalaring the whole process.

The challenges tackled in this paper, therefore, are hownfement a knowl-
edge elicitation methodology which extends existing ardglengineering methodolo-
gies and at the same time focuses on the development of aeusablthat supports
graphically-oriented building of ontologies, using caadtgg and laddering tools re-
spectively, and which allows people to further refine theitobogy in a (broader) on-
tology editor like Protégé.

Our technique and system aims to reduce the work-load fowlauge engineers
and domain experts; increase the reusability of laddenmycard sorting processes;
effectively manage the KE tasks; and seamlessly integréateam existing software
system for ontology engineering.

3 KE Integration Technique

The traditional card sorting method generally consistspifeof cards with the approx-
imate size of a credit card, created by the researchers, wite® ov print the domain
concepts on cards. A video tape recorder captures both thamad voices of the entire
procedure for future analysis. We can therefore find outttiaditional card sorting has
three major drawbacks, which are, easy to be destroyed;udiffito be managed, and
not practical to be transferred to computer files. For exapngblast of wind or a cup of
coffee can easily disrupt the process, this manual prodessannot be shared on the
internet, and the video information is also a bottle-neckevbeople have many tapes
to manage or deliver via the internet.

The solution is straightforward. To avoid the fragility ofteons, we can trans-
plant the entire procedure into the computer, and by usinglanginary version-control

Knowledge Elicitation Plug-in for Protégé: Card Sortiawgd Laddering 5

mechanism, the user can overall control their milestoneswhey sort cards and struc-
ture concepts. Obviously, this plug-in does not record itteviies by capturing the
screen just like a screen recording software, contratilggs the activities performed
by the user in a text file which is essentially easy to be tiemnsfl and managed.

Redo and undo mechanisms in text editors give us a hint teesig problem
by automating the tasks. The whole procedure and all itse@lmatters — we call
it version control manager — need to be temporarily storethéhmemory and saved
to the permanent storage devices if necessary. By doingtttésdomain experts and
developers are able to go back to anywhere if they want, @yl tteed to do is to store
the different versions of the tasks while they are standfregrailestone or a trap point.

Laddering techniques play an important role in discovethegpotential relation-
ships between the domain concepts. The laddering methazlialy used combining
with other KE methods such as card sorting. The subjects bjatts within the on-
tology are inter-connected with several kinds of relatiops elicited from the domain
experts via laddering, and the structural source of subjant objects are built via
card sorting. As ontology is the structuralized domain kleolge base generated from
experts, we can realise that laddering is undoubtedly &aseaihnile developing ontolo-
gies. So we are also going to implement the laddering tecierag part of this plug-in,
as well.

Set of
Terms

é(_'ard Sorting, Laddering
{und Relationship may
have independent outputs.

Qurput

elutionship
Building

Fig. 3. KE integration technique roadmap

Figure 3 illustrates the process of applying KE technigsgsaat of ontology build-
ing. As indicated in the figure there are multiple ways to gghe various KE tech-

6 Yimin Wang, York Sure, Robert Stevens and Alan Rector

niques. In the following we briefly explain three frequentiyed ways to apply the
process.

1. Start with a [Set of Terns] and performcard sorting and/ or |addering

2. Start with a termextraction to retreive a [Set of Terms], then performcard
sorting and/ or |addering

3. Start with a termextraction to retrieve a [Set of Terms], performcard
sorting and/or | addering, then performrelationship building

4 Design and Implementation

While we want to buildreal usablesoftware, rather than a program for demonstration
purposes, there are many principles to be followed, eslhethase related to the design
of the user interface. The implementation phase is tighttyrdinated with the interface
design and there are many rolling procedures to refine thgrdasd implementation
respectively.

4.1 User-centred Design

In the Human-Computer Interaction (HCI) research field,resatred design, also
known as usability engineering, is one of the most centrahodologies and now
widely used in various disciplines, including Software Emgring, Knowledge Man-
agement or Information System [15].

One of the objectives of the CO-ODE project is to provide a-asiented tool set
for the Protégé OWL Plug-in, so the user-centred desigimtigues will be kept in mind
throughout the entire plug-in design life cycle.

A key aspect of user-centred design techniques is to maks usslved in the
software design process, by interviewing various groupssefs based on certain re-
quirements, such as age, occupation, gender, culture aad.sthe interview results
will be gathered and analysed in order to discover the gomlvalues of the target user
group. The techniques of user participatory design aregatiry while designing this
KE plug-in, because the target user group is mainly sciemtiearchers with different
disciplines, requirements, personalities, ways of wagkind thinking.

User participant design includes observing and recordiegrtanual activities, such
as using the paper as window frames; cutting the paper istamgles with difference
size as dialogues and menus; choosing difference colouwlgfasent selection feed-
back; drawing, dragging while necessary to modify the fatss; taking the picture
while performing activities and many other actions. Alltkare performed by theal
target group of users. The picture below was taken from tteeurew activities within
the design process of this plug-in.

It is thereby necessary to set a predefined series of intes\iie which we invite
potential users to participate, and so that we can collesigdénformation. Some in-
terview methods such as unstructured interview and stredtinterview are going to
be employed for different purposes.

An unstructured interview usually tends to be used in thiyedages of the inter-
view session, in which the users will be asked some genegstiuns. In this plug-in

Knowledge Elicitation Plug-in for Protégé: Card Sortiangd Laddering 7

Fig. 4. A user participant design case

design, at first, we need to know the user’s general pointsesf mbout the card sort-
ing and laddering tools, the user’s attitudes towards thspeetives of this plug-in and
perhaps, and their personal manners of using computer aaftwnstructured inter-
view results will provide the developers with appropriad@cepts and sensible ways of
thinking, rather than the technical details.

Comparatively, it is much easier to hold an interview witlish of predefined ques-
tions. The structured interview design is more importantfie software designers be-
cause all the interviewees will be asked a same set of questitated to the software
technical details. The analysis of the structured intevwiesults are crucial since the
detailed technical issues in the software design phaséeiiddressed based mainly
on these results.

4.2 Case Study of Interviews

The interview results show remarkable differences betwemple with different aca-
demic backgrounds, however, it also shows that the age,egeadd cultural back-
ground don'’t play essential roles. Probably that's becaishe statistical analysis
requires a much bigger sample, but we have already collestedgh information re-
quired for the design of this KE plug-in.

Learning from the interview results, this software systdrowdd have 1) a input
from document and elicitation functionality on user int&x; 2) a series of cards gen-
erated from the text with round rectangle and the colouestyProtégé, that's because
using the colour style of an existing popular base systemistém be more acceptable;
3) a flexible and straightforward user interface with layofyplacing the working panel
— both the card sorting and laddering tool, at the left asadbhidgets, and putting the
operation results on the right, as well as a number of butteasonably arranged; 4) a
well-formatted output.

8 Yimin Wang, York Sure, Robert Stevens and Alan Rector

4.3 Implementation

Now we can conclude the procedure of building this plug-ithwiser-centred design
techniques involved, which can be displayed in Figure 5 ittaghtforward manner.

Modeling knowledge [zer-centted design
elicitation technigques \‘ |

AW

Design user interface

sepenei

Testing - Debugging
and User testing

User evaluation

Fig. 5. Whole picture of design and implementation

From Figure 5 we can find that the interview sessions shoulilibwhile intervie-
wees are performing and modeling the KE techniques — bégittad card sorting and
laddering techniques, and the design of the user interfacdhe 3D rectangle objects
are issues related to the HCI area. User participant des@hads are also applied in
the testing and evaluation sessions. We can see from the figatrthere might be some
loops between the testing/debugging and user evaluatidie civhich is because of the
fundamental software engineering rule — developers naevewkvhen the project will
be finished and what kind of extensions should be added. krtpon the evaluation
results and up-to-date user requirements.

5 Application of the Plug-in

We first built a prototype with a focus on application inputfout aspects, then the
prototype was extended to the existing Protégé systeotégé quite naturally was our
first choice as underlying infrastructure due to its widespradoption and its easy
extensibility. There already exists a plethora of freelgikable plug-ins that extend the
basic functionalities.

Knowledge Elicitation Plug-in for Protégé: Card Sortiawgd Laddering 9

5.1 Prototype

The KE methodology (cf. Figure 3) requires input and outputyhich there are some
trade-offs between the simplicity of the user interface stneingth of functionality.

For the input, to show the most straightforward idea of thiggn, we are going to
use plain text as the source of concepts. There are many etedpdrojects investigat-
ing how to use text mining and natural language processib@{kechniques to acquire
knowledge from text, for instance, Text20nto project [1%J. obviously, to search for
a possible extension with existing tools is a better chcaitlear than developing a new
one.

The format of the output is one of the most important designés, because a
primary consideration of this plug-in system is extendijailvhich emphasises globally
unified input/output. This software system might have mawssibilities of input, thus
we are going to discuss the output format here.

Basically, the proposed output file formats are: pure texdtviH and XML/RDF.
Pure text is the most common way to store information, howéwvmay have different
default format like ASCII or Unicode, while they are proocedsn different operat-
ing systems. HTML is a well-defined syntax-based mark-uguage and easy to be
parsed, but an HTML file is not easly machine-understandable Resource Descrip-
tion Framework (RDF) [17] is based on XML technology with rame readable for-
mat, and the processing of RDF is well-implemented by maingt fharty programming
language APIs.

As matters stand above, the most sensible choice is to usef&DRformation
storage in this software because of the consideration sflffity, portability and ac-
ceptability. Another possible output is to use the existigtégé components such as
Protégé OWL Plug-in to directly transfer the output to timtology tree for future de-
velopment.

After making the decision about the input/output issueshasee the prototype for
this plug-in as in Figure 6.

/ \ / Card Sorting + \ / \

Input: Pure Text Laddering Output: OWL

Toppl

et
5 ing Arti
<o sekToy
" ing Oni
se: ng Pe ng Roc

Qw:m:wm ToantoTopp i

Fig. 6. The plug-in prototype

10 Yimin Wang, York Sure, Robert Stevens and Alan Rector

The starting point is we have a series of terms in a text fofiteatThe users can
initialise their ontologies by card sorting and ladderirggtaol tabs in the software
interface at the middle, and then at last the users get thpubas an RDF document.
Thereafter by applying the prototype demonstrated, thg-piucan be developed in
reality.

5.2 The Reality

Assume that users have a source of texts, in which there &tead lerms, this plug-in
allows a user to elicit terms from pure text as Figure 7 sh@ter the elicitation pro-
cedure, the users can build a subsumption relationshipegdnal tree from the working
panel, by adding, deleting and editing the cards, whichidreiied overall by the “Ver-
sion Manage”, marked in Figure 7.

Essentially, this is a typicalard sorting session. The two processes mentioned are
combined together as the conceptual modeling for gengritesubsumption relation-
ship, depicted in Figure 7, respectively. The black colarathbers is to indicate the
steps of operations. The blue arrows will show as dark grétyeifpaper is not colour-
printed.

) o* v o4 AChT . <@|protége

o
12za American AmericanHot -
izza NamedPizza PizzaBase s

(C) Groups
v-(C) Pizza

C) American

©) AmericanHot

(C) Fiorentina

(C) Margherita
¥-(C) PizzaTopping

() CheeseTopping
C) FourCheesesTopping
£ GoatsCheeseToppin

Fig. 7. Building subsumption tree

The prototype figure 6 has displayed the steps to elicit kadge from text. A pure
text window which locates at the right bottom of the figurelisypding the knowledge
resource. The users can load the text to the working panettmsists the cards to be
sorted. Then the users can begin to sort the cards into eliffgriles or groups that are
displayed as the tree showed at the left of Figure 7 to getubewsnption tree as the
very first ontology structure. Different levels of colorslioate the status of each card,
illustrating whether the cards have been sorted (whiteptr n

Card sorting panel gives users a clear and straightforwiargtration of how the
concepts are arranged and which concept has or has not beed. 8y using this
component, the users are not going to be confused by thelisrts on the documents
but sorting fast and correctly.

Knowledge Elicitation Plug-in for Protégé: Card Sortiawgd Laddering 11

While the users have the skeleton of the ontology and they teaadd properties
between the concepts, theddering tool provides a smooth route for this task. The
detailed procedures are indicated at Figure 8. The carthgosindow is not flowing
at the right bottom, showing the procedure of how to add cptscom a series of
cards to the ladder. The conceptual ladder with magnified \oeates at the centre,
and we can observe from the magnified ladder edition windawiseabottom that the
relation between the current concepts “Pizza” and “Pizpair” is “hasTopping”. The
direction of the current ladder is “ladder down”, thereftire domain of object property
“hasTopping” is “Pizza”, while class “PizzaTopping” is thenge. In our integrated KE
technique, we build object properties in this way.

L) Pizza
¥ L) PizzaTopping

L) CheeseTopping
FourCheesesTopping -
GoatsCheeseTopping
FishTopping
EggTopping
ParmesanTopping
L' MozzarellaTopping

. £ protégé

‘L 71 =1 =1 =

Ladder Direction (' Ladder Up @ Ladcer Down

Ladder Type | hasTopping ~|

Fig. 8. Laddering

To control the card sorting and laddering tools overall, tmenable users to easily
manage their milestones, a version manager function iseimehted by saving and
loading the runtime status of the plug-in, both the inforioratof the laddering and
subsumption structure, as well as the contents in carchgadb, to and from the main
memory.

We make use of this manager to organise the global actioferperd by the users
so that users are able to track back to their previous taskimarstatus by simply
choosing and loading the different versions that are cdeamtel saved before. The users
just need to choose a target version, press a “Save Statttshband then the system
will give a message to tell the users whether the versiongsessfully saved or not.
Once the users come back from other versions, they can simgudiythis version into
the working tabs and trees immediately by pressing the “LS&dus” button. This

12 Yimin Wang, York Sure, Robert Stevens and Alan Rector

component lays on the upper right side of the interface, ivben be seen from the
screen shots in Figure 7 with label “Version Manager”.

6 User Evaluation

User evaluation shows the user’s attitudes towards thetgudlthis software. Based
on the requirements of user-centred design, the feedbemisufser evaluation will be
treated as an essential guideline for software testing ebdgting.

We evaluated our approach by performing a user evaluatisecban the require-
ments of the user-centred design. The user evaluation leedifferent parts. One is the
interface evaluation which concerns the GUI, includingeeafsuse, look and feel, and
so on. And the other one is functional evaluation whose esipesa are the background
functionalities. This evaluation methodology aims to detke user's comments on two
basic aspects in the domain of user-centred design — theasefshould be powerful,
flexible and robust.

6.1 Evaluation Result

There were eleven people involved in the user evaluatiavities, and they are diverse
in academic and cultural backgrounds. In order to quartiéyresult, a grading system
similar to the university examination was borrowed (0-16rstg scale), that is, 5 is a
pass, 6 is a good pass, and above 7 is a distinction. In thgsaféhe scores introduced
below, the first five scores in each array come from the exmperfsequent users of
knowledge systems. The participants are marked with “E&fqrert and “N” for “Non-
expert” plus the reference number.

In terms of the user interface design, the grading resulbeiyiven to four different
aspects amiterface evaluation The users were asked for the grades of the four points,
and their grading results are listed in Table 1. To be siedity accurate, the average
score was calculated by eliminating the highest and thedbs@ores in each array.

Participant [E1 E2 E3 E4 E5 EfN1 N2 N3 N4 N5Averags

Lookandfeell9 7 7 8 9 7/7 6 7 8 6 7.3

Interface layout7 7 9 6 8 6|9 5 6 5 6 7.3

Easeofuse|7 7 6 7 8 7|6 6 6 6 5 6.4

Flexibilty |7 8 8 6 5 6/6 6 9 6 8 6.8
Table 1.Interface evaluation results

The overall score was calculated by formula using standevéton so we ges.7
points here.

Thefunctional evaluationinvolved the grading of each basic component, including
card sorting, laddering, relationship setting and versi@mmager. They are four major
components provided by this plug-in and users are easitingdamiliar with them, so
the grading of these components is direct.

Knowledge Elicitation Plug-in for Protégé: Card Sortiawgd Laddering 13

Participant |E1 E2 E3 E4 E5 EfN1 N2 N3 N4 N5Average

Cardsorting |9 8 7 9 9 7/8 8 7 7 8 7.9

Laddering 76 777 76 7 7 9 8 7.0

Relationship settingg 7 6 6 6 87 9 7 8 8 7.0

Versionmanager|]9 9 8 8 9 8/7 8 9 8 9 8.4
Table 2. Functional evaluation results

We can see that the overall 7s6 points. After taking the scores, we now analyse
the results and make a conclusion.

6.2 Result Analysis

From the scores, we can simply find out that the users are yneetiisfied with the
functionalities of the plug-in, which stands that the prignaser-centred design proce-
dure has been well-established. With respect to the irterdé this plug-in, although
the score is comparatively moderate, the users also génbeak given positive com-
ments.

To discover more from the evaluation results, we find thatitierface look and
feel, card sorting and version management components haveghest ratings and are
thought to be the best implemented. Meanwhile, the elemetsed to the ease of use
principle and interface layout arrangement require mutlré&improvement.

If we go further, we may find that the plug-in interface are enappreciated by
the experts rather than the amateurs, because the knowdedgeeering experts are
more familiar with the existing Protégé system, cardiagrand laddering approaches.
They find that this software have a unified style with the 8gétSystem, which doesn’t
quite make sense to the non-experts, though. Otherwisé&racityithe experts are not
fully satisfied with the laddering tool and relationshipt&et component. Their feed-
back express the way of their working is somewhat differeotf how this plug-in
does. That's because, people from different disciplinedikely to use laddering tool
in many different ways for different purposes, and the plugs developed according
to the design principles of CO-ODE project with strong engihién the medical and
biological domain.

It is worthwhile to mention that the evaluation of the softedrom the wholly
independent UK Freshwater Life Biological Associationdaheir comment on this
software is:

"It was good to see what he has been doing and looks like a piatgrvery useful
tool. We really liked to get our hands on a copy to play arouiith vEven in its current
state it could save us considerable time.”

In a nutshell, this plug-in is commonly considered to be alameplemented and
powerful tool inreal use, whereas the interface is possibly only recognised &y th
knowledge system experts. All the evidences in this useluatian procedure show
that people are very eager to see the future developmenisgdltig-in.

14 Yimin Wang, York Sure, Robert Stevens and Alan Rector

7 Conclusion and Outlook

We presented a technique for supporting the building of logies by using and in-
tegrating the knowledge elicitation techniques of cardisgrand laddering. We de-
veloped a Protégé plug-in by employing user-centeretydesethods and thoroughly
evaluated the research outcome. In the evaluation useiaimped very well with the

plug-in and gave highly valuable feedback for future depaient. The conventional
KE techniques were seamlessly integrated to the ontoloilgibg process to close the
gap in the traditional manual ontology engineering cycle.

Future work includes the extension of the plug-in with soatdired capabilities
from the Text20nto tool [16] to automatically extract terfram large texts using text
mining and ontology learning techniques to further heioadtty speed up the ontology
building process.

Acknowledgements

The research reported in this paper was supported in parhdédyCO-ODE project
(ht t p: / / www. co- ode. or g/) funded by the UK Joint Information Services Com-
mittee and the HyOntUse Project (GR/S44686) funded by theBdigineering and
Physical Science Research Council and by 21XS067A from #@Nal Cancer In-
stitute. The authors’ current research is also supportetthdyEU-1ST-506826 SEKT
project ftt p: // wwv. sekt - proj ect. com. This publication only reflects the
authors’ views. We would like to thank the support from thégndial users and our
colleagues for fruitful discussions.

References

1. Upchurch, L., Rugg, G., Kitchenham, B.: Using card sastelicit web page quality at-
tributes. IEEE Softwaré&8 (2001) 84-89

2. Cooke, N.J.: Varieties of knowledge elicitation techudg. Int. J. Hum.-Comput. Studl
(1994) 801849

3. Hinkle, D.: The change of personal constructs from thevp@nt of a theory of construct
implications. PhD thesis, Ohio State University (1965¢@iin: Bannister, D. and Fransella,
F. (1980). Inquiring Man. Penguin, Harmondsworth.

4. Noy, N.F,, Sintek, M., Decker, S., Crubézy, M., Fergarde.W., Musen, M.A.: Creating
semantic web contents with protégé-2000. IEEE Intetitdggystemd 6 (2001) 60-71

5. Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.AePprotégé owl plugin: An open
development environment for semantic web applications.Iriternational Semantic Web
Conference. (2004) 229-243

6. Boose, J.H.: Knowledge acquisition techniques and td@srent research strategies and
approaches. In: Proceedings of Fifth Generation Compuytstesis. (1988) 1221-1235

7. Hoffman, R.R.: The problem of extracting the knowledgexgerts from the perspective of
experimental psychology. Al Magazi®g1987) 53-67

8. Shadbolt, N., Hara, K.O., Crow, L.: The experimental eatibn of knowledge acquisi-
tion techniques and methods: history, problems and newtdires. International Journal of
Human-Computer Studiésl (1999) 729-755

9.

10.
11.

12.

13.

14.

15.

16.

17.

Knowledge Elicitation Plug-in for Protégé: Card Sortiawgd Laddering 15

Rugg, G., Eva, M., Mahmood, A., Rehman, N., Andrews, Svi@&a S.: Eliciting informa-
tion about organizational culture via laddering. Jourrfalnformation Systeml2 (2002)
215-230

Milton, N.: PCPACK Toolkit. (2003) www.epistemics.o&/Notes/55-0-0.htm.

Schreiber, G., Wielinga, B.J., Akkermans, H., de VeWle/., Anjewierden, A.: CML: The
CommonKADS conceptual modelling language. In: Proceedfg8th European Knowl-
edge Acquisition Workshop (EKAW). (1994) 1-25

Lopez, M.F., Gobmez-Pérez, A., Sierra, J.P., Siéria,; Building a chemical ontology using
methontology and the ontology design environment. |IEEElligent Systemd4 (1999)
37-46

Sure, Y., Staab, S., Studer, R.: On-to-knowledge melbgg. In Staab, S., (eds.), R.S., eds.:
Handbook on Ontologies. Series on Handbooks in Informafgstems. Springer (2003)
117-132

Tempich, C., Pinto, H.S., Sure, VY., Staab, S.: An arguatiem ontology for distributed,
loosely-controlled and evolving engineering processesntblogies (diligent). In Gmez-
Prez, A., Euzenat, J., eds.: 2nd European Semantic Web @anfe(ESWC 2005. Volume
3532 of LNCS., Heraklion, Crete, Greece, Springer (2009)-256

Shneiderman, B.: Designing the User Interface: Stiegefgr Effective Human-Computer
Interaction. Addison-Wesley Longman Publishing Co., IBaston, MA, USA (1997)
Cimiano, P., Volker, J.: Text2onto — a framework foradagy learning and data-driven
change discovery. In: Proceedings of the 10th InternattiGoaference on Applications of
Natural Language to Information Systems (NLDB’05). (2005)

Lassila, O., Swick, R.: Resource Description Framew@bF) Model and Syntax
Specification. W3C Recommendation,World Wide Web Consorti Boston. (1999)
www.w3.0rg/TR/REC-rdf-syntax (current 6 Dec. 2000).

