
Knowledge Elicitation Plug-in for Prot éǵe:
Card Sorting and Laddering

Yimin Wang1, York Sure1, Robert Stevens2 and Alan Rector2

1Institute AIFB, University of Karlsruhe, Germany
{ywa,sure}@aifb.uni-karlsruhe.de

2School of Computer Science, University of Manchester, M13 9PL, UK
{rector,robert.stevens}@cs.man.ac.uk

Abstract. Ontologies have been widely accepted as the primary method of rep-
resenting knowledge in the Semantic Web. Knowledge Elicitation (KE) is usually
one of the first steps in building ontologies. A number of ontology editors such
as Protégé have been developed to assist users in buildingontologies efficiently.
However, traditional KE techniques, such as card sorting and laddering, are not
yet supported, but performed manually and outside of such tools. In this paper we
present a methodology and a corresponding plug-in for Prot´egé that allows graph-
ical ellicitation knowledge from documents using card sorting and laddering ap-
proaches. Our aim is to seamlessly integrate the KE techniques into the ontology
building process to make ontology building more efficient and less error-prone.
As a side-effect the persistent storage of card sorting and laddering results al-
lows for later traceability of ontology development. KE largely depends on user
interaction with the plug-in, therefore we employed user-centred design princi-
ples to capture requirements. After implementation, the plug-in was evaluated
thoroughly against the requirements. The evaluation showsthat this KE plug-in
meets many of the user’s expectations and indeed saves them considerable time
when building ontologies.

1 Introduction

The explosion of digital knowledge makes finding accurate information effectively an
increasingly important topic. Making knowledge explicit,e.g. in the form of ontologies
and corresponding metadata, offers many opportunities to facilitate effective knowledge
access. One of the first steps in building ontologies is usually a knowledge elicitation
(KE) process, which is also known as an important branch of knowledge acquisition.
Traditional KE is a kind of labour-intensive manual work, extremely time-consuming,
and often not well connected to further steps in ontology engineering. What is needed
are more usable, handy and in particular well-integrated toolkits for knowledge elicita-
tion.

Several standard knowledge acquisition/elicitation techniques, such as card sorting
and laddering, have been developed to help in organising domain expert’s ideas into
basic structures and to recover tacit knowledge. Card sorting has been used for several
decades, and it is remarkably useful for finding out how people categorise things [1,
2]. Laddering was first introduced by Hinkle [3], a clinical psychologist, in order to



2 Yimin Wang, York Sure, Robert Stevens and Alan Rector

model the concepts and beliefs of people by an unambiguous and systematic approach.
Most of these knowledge acquisition/elicitation techniques are visual or graphical. The
traditional card sorting and laddering methods are, however, extremely difficult to man-
age and track back – you will find it nearly impossible to keep the record for hundreds
of cards or paper pieces and go back to a prior status without acomplicated series of
actions, such as video tape recording, searching and playing back.

A key motivation for our work comes from the CO-ODE project1 where we experi-
enced a rather big gap between manually applied knowledge elicitation techniques, in
particular card sorting and laddering, and building of ontologies with Protégé. Protégé
[4] is one of the most popular ontology editors which supports many of the tasks of
ontology engineering. Protégé enables users to create ontologies by defining concepts,
specifications, relationships, annotations and other information within a certain domain.
In our CO-ODE project tutorials users wanted to build a pizzaontology with the Protégé
OWL Plug-in [5], however, often our tutees preferred to write the pizza terminologies
and properties in a pile of cards and to construct the conceptual taxonomy by arranging
the cards on the table. After that, the users recorded the outcome in Protégé by manual
transfer from the hard copy on their real desktop. It turned out to be very common that
users were getting confused and found it difficult to manage awhole table of cards. Fi-
nally, any re-sorting of the cards required careful adjustment of the ontology modelled
in Protégé.

Our core contribution consists of a novel technique for integrating the KE tech-
niques of card sorting and laddering into ontology building(cf. Section 3). The tech-
nique has been implemented in a corresponding plug-in for Protégé (cf. Section 5) that
allows graphically eliciting knowledge from documents using card sorting and ladder-
ing approaches. Our aim is to seamlessly integrate the KE techniques into the ontol-
ogy building process to make ontology building more efficient and less error-prone.
As a side-effect the persistent storage of card sorting and laddering results allows for
later traceability. KE largely depends on user interactionwith the plug-in, therefore we
employed user-centred design principles to capture requirements (cf. Section 4). After
implementation the plug-in was evaluated thoroughly against the requirements (cf. Sec-
tion 6). The evaluation shows that this KE plug-in meets manyof the user’s expectations
and indeed saves them considerable time when building ontologies.

2 Related Work and Challenges

Related work includes two major aspects. The knowledge elicitation techniques deal
with the theoretical issues, while the ontology engineering aspect aims to facilitate users
in the process of building ontologies.

From the mid 1980s, people began to do research on expert systems as a sub-
discipline of Knowledge Engineering, and it was also the starting point for the sci-
entific research on KE. People tried to develop KE techniquesto get knowledge with
effectiveness, efficiency and correctness. A number of these methods were borrowed
from cognitive science and other disciplines such as Anthropology, Ethnography, and

1 http://www.co-ode.org



Knowledge Elicitation Plug-in for Protégé: Card Sortingand Laddering 3

Business Administration [6, 7]. KE techniques were effectively used in early 1990s,
with the popularity of graphical based personal computer system [8].

Card sorting is a comprehensive technique of knowledge elicitation methods and
is now being used in several disciplines such as Knowledge Engineering, Psychology,
and Marketing. In the field of KE, card sorting is considered to be one of the most
effective ways for eliciting the domain expert’s idea aboutthe knowledge structure.
Much evidence shows that card sorting has many positive aspects in making a useful
and reasonable elicitation experiments, including helping the respondents to recall the
domain concepts; providing a structuralized concepts pilefor future processing – such
as laddering; fast acting and easy handling [1, 8]. Figure 1 shows a real use case of card
sorting.

Fig. 1. Traditional card sorting

Laddering has been widely used in the field of knowledge elicitation activities in
recent years. The basic purpose of the laddering method is toelicit people’s goals and
values [8, 9]. People from knowledge elicitation communityhave developed a well-
established range of formal semantics, procedures and notation for building ladders.
Based on the Rugg and McGeorge’s [9] categorisation, laddering can be used for three
major purposes – they are using laddering to elicit sub-classes, explanation, goals and
values. Laddering has been implemented as an independent tool in a software toolkit,
called PCPACK [10] with integration of the CommonKADS method [11]. But the im-
plementation in PCPACK lacks the compatibility with full support of the OWL lan-
guage, and the well integration with state-of-the-art ontology engineering tools, like
Protégé. In this paper, we are going to use the laddering method to build up the data
and object properties for concepts, e.g. a typical conceptual ladder example is shown in
Figure 2.



4 Yimin Wang, York Sure, Robert Stevens and Alan Rector

Fig. 2. Concepts map with properties

Not many general purpose approaches have been invented for building ontologies.
The available methodologies are generally frameworks withdescriptions and outlines
on how to build ontologies [12, 13]. Often, such methodologies focus on the ontology
engineering steps without much support for the very early stages of KE. The most re-
cent methodology DILIGENT [14] supports the dynamic natureof ontologies and also
includes support for argumentation between different actors during the whole process.

The challenges tackled in this paper, therefore, are how to implement a knowl-
edge elicitation methodology which extends existing ontology engineering methodolo-
gies and at the same time focuses on the development of a usable tool that supports
graphically-oriented building of ontologies, using card sorting and laddering tools re-
spectively, and which allows people to further refine their ontology in a (broader) on-
tology editor like Protégé.

Our technique and system aims to reduce the work-load for knowledge engineers
and domain experts; increase the reusability of laddering and card sorting processes;
effectively manage the KE tasks; and seamlessly integrate with an existing software
system for ontology engineering.

3 KE Integration Technique

The traditional card sorting method generally consists of apile of cards with the approx-
imate size of a credit card, created by the researchers, who write or print the domain
concepts on cards. A video tape recorder captures both the acts and voices of the entire
procedure for future analysis. We can therefore find out thattraditional card sorting has
three major drawbacks, which are, easy to be destroyed, difficulty to be managed, and
not practical to be transferred to computer files. For example, a blast of wind or a cup of
coffee can easily disrupt the process, this manual process also cannot be shared on the
internet, and the video information is also a bottle-neck while people have many tapes
to manage or deliver via the internet.

The solution is straightforward. To avoid the fragility of actions, we can trans-
plant the entire procedure into the computer, and by using a preliminary version-control



Knowledge Elicitation Plug-in for Protégé: Card Sortingand Laddering 5

mechanism, the user can overall control their milestones when they sort cards and struc-
ture concepts. Obviously, this plug-in does not record the activities by capturing the
screen just like a screen recording software, contrarily, it logs the activities performed
by the user in a text file which is essentially easy to be transferred and managed.

Redo and undo mechanisms in text editors give us a hint to solve this problem
by automating the tasks. The whole procedure and all its related matters – we call
it version control manager – need to be temporarily stored inthe memory and saved
to the permanent storage devices if necessary. By doing this, the domain experts and
developers are able to go back to anywhere if they want, all they need to do is to store
the different versions of the tasks while they are standing at a milestone or a trap point.

Laddering techniques play an important role in discoveringthe potential relation-
ships between the domain concepts. The laddering method is usually used combining
with other KE methods such as card sorting. The subjects and objects within the on-
tology are inter-connected with several kinds of relationships elicited from the domain
experts via laddering, and the structural source of subjects and objects are built via
card sorting. As ontology is the structuralized domain knowledge base generated from
experts, we can realise that laddering is undoubtedly essential while developing ontolo-
gies. So we are also going to implement the laddering technique as part of this plug-in,
as well.

Fig. 3. KE integration technique roadmap

Figure 3 illustrates the process of applying KE techniques as part of ontology build-
ing. As indicated in the figure there are multiple ways to apply the various KE tech-



6 Yimin Wang, York Sure, Robert Stevens and Alan Rector

niques. In the following we briefly explain three frequentlyused ways to apply the
process.

1. Start with a [Set of Terms] and perform card sorting and/or laddering
2. Start with a term extraction to retreive a [Set of Terms], then perform card

sorting and/or laddering
3. Start with a term extraction to retrieve a [Set of Terms], perform card

sorting and/or laddering, then perform relationship building

4 Design and Implementation

While we want to buildreal usablesoftware, rather than a program for demonstration
purposes, there are many principles to be followed, especially those related to the design
of the user interface. The implementation phase is tightly coordinated with the interface
design and there are many rolling procedures to refine the design and implementation
respectively.

4.1 User-centred Design

In the Human-Computer Interaction (HCI) research field, user-centred design, also
known as usability engineering, is one of the most central methodologies and now
widely used in various disciplines, including Software Engineering, Knowledge Man-
agement or Information System [15].

One of the objectives of the CO-ODE project is to provide a user-oriented tool set
for the Protégé OWL Plug-in, so the user-centred design techniques will be kept in mind
throughout the entire plug-in design life cycle.

A key aspect of user-centred design techniques is to make users involved in the
software design process, by interviewing various groups ofusers based on certain re-
quirements, such as age, occupation, gender, culture and soon. The interview results
will be gathered and analysed in order to discover the goals and values of the target user
group. The techniques of user participatory design are obligatory while designing this
KE plug-in, because the target user group is mainly scientific researchers with different
disciplines, requirements, personalities, ways of working and thinking.

User participant design includes observing and recording the manual activities, such
as using the paper as window frames; cutting the paper into rectangles with difference
size as dialogues and menus; choosing difference colours asdifferent selection feed-
back; drawing, dragging while necessary to modify the interface; taking the picture
while performing activities and many other actions. All these are performed by thereal
target group of users. The picture below was taken from the interview activities within
the design process of this plug-in.

It is thereby necessary to set a predefined series of interviews in which we invite
potential users to participate, and so that we can collect design information. Some in-
terview methods such as unstructured interview and structured interview are going to
be employed for different purposes.

An unstructured interview usually tends to be used in the early stages of the inter-
view session, in which the users will be asked some general questions. In this plug-in



Knowledge Elicitation Plug-in for Protégé: Card Sortingand Laddering 7

Fig. 4. A user participant design case

design, at first, we need to know the user’s general points of view about the card sort-
ing and laddering tools, the user’s attitudes towards the perspectives of this plug-in and
perhaps, and their personal manners of using computer software. Unstructured inter-
view results will provide the developers with appropriate concepts and sensible ways of
thinking, rather than the technical details.

Comparatively, it is much easier to hold an interview with a list of predefined ques-
tions. The structured interview design is more important for the software designers be-
cause all the interviewees will be asked a same set of questions related to the software
technical details. The analysis of the structured interview results are crucial since the
detailed technical issues in the software design phase willbe addressed based mainly
on these results.

4.2 Case Study of Interviews

The interview results show remarkable differences betweenpeople with different aca-
demic backgrounds, however, it also shows that the age, gender, and cultural back-
ground don’t play essential roles. Probably that’s becauseof the statistical analysis
requires a much bigger sample, but we have already collectedenough information re-
quired for the design of this KE plug-in.

Learning from the interview results, this software system should have 1) a input
from document and elicitation functionality on user interface; 2) a series of cards gen-
erated from the text with round rectangle and the colour style of Protégé, that’s because
using the colour style of an existing popular base system tends to be more acceptable;
3) a flexible and straightforward user interface with layoutof placing the working panel
– both the card sorting and laddering tool, at the left as tabbed widgets, and putting the
operation results on the right, as well as a number of buttonsreasonably arranged; 4) a
well-formatted output.



8 Yimin Wang, York Sure, Robert Stevens and Alan Rector

4.3 Implementation

Now we can conclude the procedure of building this plug-in with user-centred design
techniques involved, which can be displayed in Figure 5 in a straightforward manner.

Fig. 5. Whole picture of design and implementation

From Figure 5 we can find that the interview sessions should beheld while intervie-
wees are performing and modeling the KE techniques – basically, the card sorting and
laddering techniques, and the design of the user interface,i.e. the 3D rectangle objects
are issues related to the HCI area. User participant design methods are also applied in
the testing and evaluation sessions. We can see from the figure that there might be some
loops between the testing/debugging and user evaluation circle, which is because of the
fundamental software engineering rule – developers never know when the project will
be finished and what kind of extensions should be added. It depends on the evaluation
results and up-to-date user requirements.

5 Application of the Plug-in

We first built a prototype with a focus on application input/output aspects, then the
prototype was extended to the existing Protégé system. Protégé quite naturally was our
first choice as underlying infrastructure due to its widespread adoption and its easy
extensibility. There already exists a plethora of freely available plug-ins that extend the
basic functionalities.



Knowledge Elicitation Plug-in for Protégé: Card Sortingand Laddering 9

5.1 Prototype

The KE methodology (cf. Figure 3) requires input and output,in which there are some
trade-offs between the simplicity of the user interface andstrength of functionality.

For the input, to show the most straightforward idea of this plug-in, we are going to
use plain text as the source of concepts. There are many completed projects investigat-
ing how to use text mining and natural language processing (NLP) techniques to acquire
knowledge from text, for instance, Text2Onto project [16].So obviously, to search for
a possible extension with existing tools is a better choice rather than developing a new
one.

The format of the output is one of the most important design issues, because a
primary consideration of this plug-in system is extendibility, which emphasises globally
unified input/output. This software system might have many possibilities of input, thus
we are going to discuss the output format here.

Basically, the proposed output file formats are: pure text, HTML and XML/RDF.
Pure text is the most common way to store information, however, it may have different
default format like ASCII or Unicode, while they are processed in different operat-
ing systems. HTML is a well-defined syntax-based mark-up language and easy to be
parsed, but an HTML file is not easly machine-understandable. The Resource Descrip-
tion Framework (RDF) [17] is based on XML technology with machine readable for-
mat, and the processing of RDF is well-implemented by many third party programming
language APIs.

As matters stand above, the most sensible choice is to use RDFfor information
storage in this software because of the consideration of feasibility, portability and ac-
ceptability. Another possible output is to use the existingProtégé components such as
Protégé OWL Plug-in to directly transfer the output to theontology tree for future de-
velopment.

After making the decision about the input/output issues, wehave the prototype for
this plug-in as in Figure 6.

Fig. 6.The plug-in prototype



10 Yimin Wang, York Sure, Robert Stevens and Alan Rector

The starting point is we have a series of terms in a text formatfile. The users can
initialise their ontologies by card sorting and laddering as tool tabs in the software
interface at the middle, and then at last the users get the output as an RDF document.
Thereafter by applying the prototype demonstrated, the plug-in can be developed in
reality.

5.2 The Reality

Assume that users have a source of texts, in which there are a list of terms, this plug-in
allows a user to elicit terms from pure text as Figure 7 shows.After the elicitation pro-
cedure, the users can build a subsumption relationship conceptual tree from the working
panel, by adding, deleting and editing the cards, which is controlled overall by the “Ver-
sion Manage”, marked in Figure 7.

Essentially, this is a typicalcard sorting session. The two processes mentioned are
combined together as the conceptual modeling for generating the subsumption relation-
ship, depicted in Figure 7, respectively. The black colorednumbers is to indicate the
steps of operations. The blue arrows will show as dark gray ifthe paper is not colour-
printed.

Fig. 7. Building subsumption tree

The prototype figure 6 has displayed the steps to elicit knowledge from text. A pure
text window which locates at the right bottom of the figure is providing the knowledge
resource. The users can load the text to the working panel that consists the cards to be
sorted. Then the users can begin to sort the cards into different piles or groups that are
displayed as the tree showed at the left of Figure 7 to get the subsumption tree as the
very first ontology structure. Different levels of colors indicate the status of each card,
illustrating whether the cards have been sorted (white) or not.

Card sorting panel gives users a clear and straightforward illustration of how the
concepts are arranged and which concept has or has not been sorted. By using this
component, the users are not going to be confused by the textslisted on the documents
but sorting fast and correctly.



Knowledge Elicitation Plug-in for Protégé: Card Sortingand Laddering 11

While the users have the skeleton of the ontology and they want to add properties
between the concepts, theladdering tool provides a smooth route for this task. The
detailed procedures are indicated at Figure 8. The card sorting window is not flowing
at the right bottom, showing the procedure of how to add concepts from a series of
cards to the ladder. The conceptual ladder with magnified view locates at the centre,
and we can observe from the magnified ladder edition windows at the bottom that the
relation between the current concepts “Pizza” and “PizzaTopping” is “hasTopping”. The
direction of the current ladder is “ladder down”, thereforethe domain of object property
“hasTopping” is “Pizza”, while class “PizzaTopping” is therange. In our integrated KE
technique, we build object properties in this way.

Fig. 8. Laddering

To control the card sorting and laddering tools overall, andto enable users to easily
manage their milestones, a version manager function is implemented by saving and
loading the runtime status of the plug-in, both the information of the laddering and
subsumption structure, as well as the contents in card sorting tab, to and from the main
memory.

We make use of this manager to organise the global actions performed by the users
so that users are able to track back to their previous task runtime status by simply
choosing and loading the different versions that are created and saved before. The users
just need to choose a target version, press a “Save Status” button, and then the system
will give a message to tell the users whether the version is successfully saved or not.
Once the users come back from other versions, they can simplyload this version into
the working tabs and trees immediately by pressing the “LoadStatus” button. This



12 Yimin Wang, York Sure, Robert Stevens and Alan Rector

component lays on the upper right side of the interface, which can be seen from the
screen shots in Figure 7 with label “Version Manager”.

6 User Evaluation

User evaluation shows the user’s attitudes towards the quality of this software. Based
on the requirements of user-centred design, the feedbacks from user evaluation will be
treated as an essential guideline for software testing and debugging.

We evaluated our approach by performing a user evaluation based on the require-
ments of the user-centred design. The user evaluation has two different parts. One is the
interface evaluation which concerns the GUI, including ease of use, look and feel, and
so on. And the other one is functional evaluation whose emphasises are the background
functionalities. This evaluation methodology aims to detect the user’s comments on two
basic aspects in the domain of user-centred design – the software should be powerful,
flexible and robust.

6.1 Evaluation Result

There were eleven people involved in the user evaluation activities, and they are diverse
in academic and cultural backgrounds. In order to quantify the result, a grading system
similar to the university examination was borrowed (0-10 scoring scale), that is, 5 is a
pass, 6 is a good pass, and above 7 is a distinction. In the arrays of the scores introduced
below, the first five scores in each array come from the expertsor frequent users of
knowledge systems. The participants are marked with “E” forexpert and “N” for “Non-
expert” plus the reference number.

In terms of the user interface design, the grading result will be given to four different
aspects asinterface evaluation. The users were asked for the grades of the four points,
and their grading results are listed in Table 1. To be statistically accurate, the average
score was calculated by eliminating the highest and the lowest scores in each array.

Participant E1 E2 E3 E4 E5 E6N1 N2 N3 N4 N5Average
Look and feel 9 7 7 8 9 7 7 6 7 8 6 7.3

Interface layout7 7 9 6 8 6 9 5 6 5 6 7.3
Ease of use 7 7 6 7 8 7 6 6 6 6 5 6.4
Flexibility 7 8 8 6 5 6 6 6 9 6 8 6.8

Table 1. Interface evaluation results

The overall score was calculated by formula using standard deviation so we get6.7
points here.

Thefunctional evaluation involved the grading of each basic component, including
card sorting, laddering, relationship setting and versionmanager. They are four major
components provided by this plug-in and users are easily getting familiar with them, so
the grading of these components is direct.



Knowledge Elicitation Plug-in for Protégé: Card Sortingand Laddering 13

Participant E1 E2 E3 E4 E5 E6N1 N2 N3 N4 N5Average
Card sorting 9 8 7 9 9 7 8 8 7 7 8 7.9
Laddering 7 6 7 7 7 7 6 7 7 9 8 7.0

Relationship setting6 7 6 6 6 8 7 9 7 8 8 7.0
Version manager 9 9 8 8 9 8 7 8 9 8 9 8.4

Table 2.Functional evaluation results

We can see that the overall is7.6 points. After taking the scores, we now analyse
the results and make a conclusion.

6.2 Result Analysis

From the scores, we can simply find out that the users are mostly satisfied with the
functionalities of the plug-in, which stands that the primary user-centred design proce-
dure has been well-established. With respect to the interface of this plug-in, although
the score is comparatively moderate, the users also generally have given positive com-
ments.

To discover more from the evaluation results, we find that theinterface look and
feel, card sorting and version management components have the highest ratings and are
thought to be the best implemented. Meanwhile, the elementsrelated to the ease of use
principle and interface layout arrangement require much future improvement.

If we go further, we may find that the plug-in interface are more appreciated by
the experts rather than the amateurs, because the knowledgeengineering experts are
more familiar with the existing Protégé system, card sorting and laddering approaches.
They find that this software have a unified style with the Prot´egé system, which doesn’t
quite make sense to the non-experts, though. Otherwise, contrarily the experts are not
fully satisfied with the laddering tool and relationship setting component. Their feed-
back express the way of their working is somewhat different from how this plug-in
does. That’s because, people from different disciplines are likely to use laddering tool
in many different ways for different purposes, and the plug-in is developed according
to the design principles of CO-ODE project with strong emphasis in the medical and
biological domain.

It is worthwhile to mention that the evaluation of the software from the wholly
independent UK Freshwater Life Biological Association, and their comment on this
software is:

”It was good to see what he has been doing and looks like a potentially very useful
tool. We really liked to get our hands on a copy to play around with. Even in its current
state it could save us considerable time.”

In a nutshell, this plug-in is commonly considered to be a well-implemented and
powerful tool in real use, whereas the interface is possibly only recognised by the
knowledge system experts. All the evidences in this user evaluation procedure show
that people are very eager to see the future development of this plug-in.



14 Yimin Wang, York Sure, Robert Stevens and Alan Rector

7 Conclusion and Outlook

We presented a technique for supporting the building of ontologies by using and in-
tegrating the knowledge elicitation techniques of card sorting and laddering. We de-
veloped a Protégé plug-in by employing user-centered design methods and thoroughly
evaluated the research outcome. In the evaluation users performed very well with the
plug-in and gave highly valuable feedback for future development. The conventional
KE techniques were seamlessly integrated to the ontology building process to close the
gap in the traditional manual ontology engineering cycle.

Future work includes the extension of the plug-in with some featured capabilities
from the Text2Onto tool [16] to automatically extract termsfrom large texts using text
mining and ontology learning techniques to further heuristically speed up the ontology
building process.

Acknowledgements

The research reported in this paper was supported in part by the CO-ODE project
(http://www.co-ode.org/) funded by the UK Joint Information Services Com-
mittee and the HyOntUse Project (GR/S44686) funded by the UKEngineering and
Physical Science Research Council and by 21XS067A from the National Cancer In-
stitute. The authors’ current research is also supported bythe EU-IST-506826 SEKT
project (http://www.sekt-project.com). This publication only reflects the
authors’ views. We would like to thank the support from the potential users and our
colleagues for fruitful discussions.

References

1. Upchurch, L., Rugg, G., Kitchenham, B.: Using card sorts to elicit web page quality at-
tributes. IEEE Software18 (2001) 84–89

2. Cooke, N.J.: Varieties of knowledge elicitation techniques. Int. J. Hum.-Comput. Stud.41
(1994) 801–849

3. Hinkle, D.: The change of personal constructs from the viewpoint of a theory of construct
implications. PhD thesis, Ohio State University (1965) Cited in: Bannister, D. and Fransella,
F. (1980). Inquiring Man. Penguin, Harmondsworth.

4. Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R.W., Musen, M.A.: Creating
semantic web contents with protégé-2000. IEEE Intelligent Systems16 (2001) 60–71

5. Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The protégé owl plugin: An open
development environment for semantic web applications. In: International Semantic Web
Conference. (2004) 229–243

6. Boose, J.H.: Knowledge acquisition techniques and tools: Current research strategies and
approaches. In: Proceedings of Fifth Generation Computer Systems. (1988) 1221–1235

7. Hoffman, R.R.: The problem of extracting the knowledge ofexperts from the perspective of
experimental psychology. AI Magazine8 (1987) 53–67

8. Shadbolt, N., Hara, K.O., Crow, L.: The experimental evaluation of knowledge acquisi-
tion techniques and methods: history, problems and new directions. International Journal of
Human-Computer Studies51 (1999) 729–755



Knowledge Elicitation Plug-in for Protégé: Card Sortingand Laddering 15

9. Rugg, G., Eva, M., Mahmood, A., Rehman, N., Andrews, S., Davies, S.: Eliciting informa-
tion about organizational culture via laddering. Journal of Information System12 (2002)
215–230

10. Milton, N.: PCPACK Toolkit. (2003) www.epistemics.co.uk/Notes/55-0-0.htm.
11. Schreiber, G., Wielinga, B.J., Akkermans, H., de Velde,W.V., Anjewierden, A.: CML: The

CommonKADS conceptual modelling language. In: Proceedings of 8th European Knowl-
edge Acquisition Workshop (EKAW). (1994) 1–25

12. López, M.F., Gómez-Pérez, A., Sierra, J.P., Sierra,A.P.: Building a chemical ontology using
methontology and the ontology design environment. IEEE Intelligent Systems14 (1999)
37–46

13. Sure, Y., Staab, S., Studer, R.: On-to-knowledge methodology. In Staab, S., (eds.), R.S., eds.:
Handbook on Ontologies. Series on Handbooks in InformationSystems. Springer (2003)
117–132

14. Tempich, C., Pinto, H.S., Sure, Y., Staab, S.: An argumentation ontology for distributed,
loosely-controlled and evolving engineering processes ofontologies (diligent). In Gmez-
Prez, A., Euzenat, J., eds.: 2nd European Semantic Web Conference (ESWC 2005. Volume
3532 of LNCS., Heraklion, Crete, Greece, Springer (2005) 241–256

15. Shneiderman, B.: Designing the User Interface: Strategies for Effective Human-Computer
Interaction. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1997)

16. Cimiano, P., Völker, J.: Text2onto – a framework for ontology learning and data-driven
change discovery. In: Proceedings of the 10th International Conference on Applications of
Natural Language to Information Systems (NLDB’05). (2005)

17. Lassila, O., Swick, R.: Resource Description Framework(RDF) Model and Syntax
Specification. W3C Recommendation,World Wide Web Consortium, Boston. (1999)
www.w3.org/TR/REC-rdf-syntax (current 6 Dec. 2000).


