
Annotation of the Shallow and the Deep
Web

Siegfried Handschuh1 and Steffen Staab1;2

1Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany
fsha, sstg@aifb.uni-karlsruhe.de

http://www.aifb.uni-karlsruhe.de/WBS
2Ontoprise GmbH, 76131 Karlsruhe, Germany

http://www.ontoprise.com/

Abstract. The success of the Semantic Web crucially depends on the easy creation of
ontology-based metadata, viz. semantic annotation. We provide a framework, CREAM,
that allows the creation of semantic annotation on the Shallow and the Deep Web.
Hence, it supports the manual annotation, the semi-automatic annotation, the author-
ing of web pages with the simultaneous creation of metadata, and the deep annotation.

1 Introduction

The semantic web – the web of the future – is ought to support the user to find information
fast without great search effort, combine information easily, and arrange own applications
without programming knowledge.

For these purposes not only human readers have to understand, what is offered on a web
page, but also software agents must be able to interpret existing information. That is only pos-
sible when the relevant information is represented semantically precise and declarative and
thus understandable for the computer. Here results the central problem, to produce semanti-
cally precise data, i.e. ontology-based metadata. We describe how this problem is concerned
by means of an annotation framework. The CREAM - CREAting Metadata for the Semantic
Web – annotation framework contains in particular methods for:

� The manual annotation: The transformation existing syntactic resources (viz. documents)
into interlinked knowledge structures that represent relevant underlying information [18].

� The authoring of documents: In addition to the annotation of existing documents the au-
thoring mode lets authors create metadata — almost for free — while putting together the
content of a page [16].

� The semi-automatic annotation: The semi-automatic annotation based on information ex-
traction trainable for a specific domain [17].

� The deep annotation: The treatment of dynamic Web documents by annotation of the un-
derlying database when the database owner is cooperatively participating in the Semantic
Web [19].



2 Annotation of the Shallow and the Deep Web

In the following we wrap up contributions to conference proceedings presented in [18,
16, 17, 19]. In particular we describe first some requirements for annotation, explain our
terminology in more detail, and give an example of metadata we want to create in Section
2. We derive in Section 3 the design of CREAM from the requirements elaborated before.
In Section 4, we explain the major modes of interaction with CREAM. The integration of
CREAM with a learnable information extraction component is given in Section 5. In Section
6 we describe the building blocks for deep annotation. Eventually, we will discuss related
works and conclude.

2 Creating Metadata for the Semantic Web

CREAM is an annotation and authoring framework suited for the easy and comfortable cre-
ation of relational metadata. OntoMat-Annotizer (OntoMat for short) is its concrete imple-
mentation.

2.1 Requirements for CREAM

Given the problems with syntax, semantics and pragmatics in earlier experiences (e.g. KA2
[3]), we list here a set of requirements. Thereby, the principal requirements apply for a-
posteriori annotation as well as for the integration of web page authoring with metadata
creation as follows:

� Consistency: Semantic structures should adhere to a given ontology in order to allow
for better sharing of knowledge. For example, it should be avoided that people use an
attribute, where the ontology requires a concept instance.

� Proper Reference: Identifiers of instances, e.g. of persons, institutes or companies, should
be unique. For instance, the metadata generated in the KA2 case study contained three dif-
ferent identifiers for our colleague Dieter Fensel. Thus, knowledge about him could not
be grasped with a straightforward query.1

� Avoid Redundancy: Decentralized knowledge provisioning should be possible. How-
ever, when annotators collaborate, it should be possible for them to identify (parts of)
sources that have already been annotated and to reuse previously captured knowledge in
order to avoid laborious redundant annotations.

� Relational Metadata: Like HTML information, which is spread on the Web, but related
by HTML links, knowledge markup may be distributed, but it should be semantically
related. Current annotation tools tend to generate template-like metadata, which is hardly
connected, if at all. For example, annotation environments often support Dublin Core
[9, 10, 22], providing means to state, e.g., the name of authors of a document, but not
their IDs2. Thus, the only possibility to query for all publications of a certain person
requires the querying for some attribute like fullname — which is very unsatisfying for
frequent names like “John Smith”.

1The reader may see similar effects in bibliography databases. E.g., query for James (Jim) Hendler at the
— otherwise excellent — DBLP: http://www.informatik.uni-trier.de/˜ley/db/.

2In the web context one typically uses the term ‘URI’ (uniform resource identifier) to speak of ‘unique
identifier’.



Annotation of the Shallow and the Deep Web 3

� Dynamic Documents: A large percentage of the Web pages are not static documents. For
dynamic web pages (e.g. ones that are generated from a database) it does not seem to
be usefull to annotate every single page. Rather one wants to ”annotate the database” in
order to reuse it for its own Semantic Web purpose.

� Maintenance: Knowledge markup needs to be maintained. An annotation tool should
support the maintenance task. In the remainder of the paper we will provide some infras-
tructure support for the task.

� Ease of Use: It is obvious that an annotation environment should be easy to use in order
to be really useful. However, this objective is not easily achieved, because metadata cre-
ation involves intricate navigation of semantic structures, e.g. taxonomies, properties and
concepts.

� Efficiency: The effort for the production of metadata is a large restraining threshold.
The more efficiently a tool supports metadata creation, the more metadata users tend to
produce. This requirement is related to the ease of use. It also depends on the automation
of the metadata creation process, e.g. on the preprocessing of the document.

� Multiple Ontologies: HTML documents in the semantic web may contain information
that is related to different ontologies. Therefore the annotation framework should cater
for concurrent annotation with multiple ontologies.

Our framework, CREAM that is presented here, targets a comprehensive solution for
metadata creation during web page authoring and a-posteriori annotation. The objective is
pursued by combining advanced mechanisms for inferencing, fact crawling, document man-
agement, meta ontology definitions, metadata re-recognition, content generation, and (as ex-
plained in Section 5) information extraction. These components are explained in the subse-
quent sections.

2.2 Relational Metadata

We elaborate the terminology here because many of the terms that are used with regard to
metadata creation tools carry several, ambiguous connotations that imply conceptually im-
portant differences:

� Ontology: An ontology is a formal, explicit specification of a shared conceptualization of
a domain of interest [15]. In our case it is constituted by statements expressing definitions
of DAML+OIL classes and properties [13].

� Annotations: An annotation in our context is a set of instantiations attached to an HTML
document. We distinguish (i) instantiations of DAML+OIL classes, (ii) instantiated prop-
erties from one class instance to a datatype instance — henceforth called attribute instance
(of the class instance), and (iii) instantiated properties from one class instance to another
class instance — henceforth called relationship instance.

Class instances have unique URIs, e.g. like ’http://www.aifb.uni-karlsruhe.de/
WBS/sst/#Steffen’. They frequently come with attribute instances, such as a human-
readable label like ‘Steffen’.



4 Annotation of the Shallow and the Deep Web

� Generic Annotations: In a generic annotation, a piece of text that corresponds to a data-
base field and that is annotated is only considered to be a place holder. I.e. a variable must
be generated for such an annotation.

In consequence to the above terminology, we will refer to generic annotation in detail as
generic class instances, generic attribute instances, and generic relationship instances.

� Metadata: Metadata are data about data. In our context the annotations are metadata
about the HTML documents.

� Relational Metadata: We use the term relational metadata to denote the annotations that
contain relationship instances.

Often, the term “annotation” is used to mean something like “private or shared note”,
“comment” or “Dublin Core metadata”. This alternative meaning of annotation may be
emulated in our approach by modelling these notes with attribute instances. For instance,
a comment note “I like this paper” would be related to the URL of the paper via an
attribute instance ‘hasComment’.

In contrast, relational metadata also contain statements like ‘Siegfried cooperates with
Steffen’, i.e. relational metadata contain relationships between class instances rather than
only textual notes.

Figure 1 illustrates our use of the terms “ontology”, “annotation” and “relational meta-
data”. It depicts some part of the SWRC3 (semantic web research community) ontology. Fur-
thermore it shows two homepages, viz. pages about Siegfried and Steffen (http://www.aifb.
uni-karlsruhe.de/WBS/shaand http://www.aifb.uni-karlsruhe.de/WBS/sst,
respectively) with annotations given in an XML serialization of RDF facts. For the two per-
sons there are instances denoted by corresponding URIs (http://www.aifb.uni-karlsruhe.de/
WBS/sst/#Steffen and http://www.aifb.uni-karlsruhe.de/WBS/sha/#Siegfried).
The swrc:name of http://www.aifb.uni-karlsruhe.de/WBS/sha/#Siegfried is
“Siegfried Handschuh”.

In addition, there is a relationship instance between the two persons, viz. they cooperate.
This cooperation information ‘spans’ the two pages.

The objective of CREAM is to allow for the easy generation of such a target representation
irrespective of whether the major mode of interaction is a-posteriori annotation or web page
authoring.

3 Design of CREAM

3.1 CREAM Modules

The difficulties sketched before directly feed into the design rationale of CREAM. The design
rationale links the requirements with the CREAM modules. This results in a N:M mapping
(neither functional nor injective). A tabular overview of the matrix can be found in [18, 16].

� Document Editor: The document editor may be conceptually — though not practically
— distinguished into a viewing component and the component for generating content:

3http://ontobroker.semanticweb.org/ontos/swrc.html



Annotation of the Shallow and the Deep Web 5

GraduateGraduate

PhDStudentPhDStudent LecturerLecturer

Academic StaffAcademic Staff

PersonPerson

rdfs:subClassOf rdfs:subClassOf

rdfs:subClassOfrdfs:subClassOf

cooperatesWithcooperatesWith

rdfs:rangerdfs:domainOntology

<swrc:Lecturer

rdf:about="http://www.aifb.uni

-karlsruhe.de/WBS/sst/

#Steffen">

<swrc:name>Steffen Staab

</swrc:name>

...

</swrc:Lecturer>

<swrc:Lecturer

rdf:about="http://www.aifb.uni

-karlsruhe.de/WBS/sst/

#Steffen">

<swrc:name>Steffen Staab

</swrc:name>

...

</swrc:Lecturer>

http://www.aifb.uni-karlsruhe.de/WBS/ssthttp://www.aifb.uni-karlsruhe.de/WBS/sst

rdf:type rdf:type

Anno-

tation

<swrc:PhDStudent

rdf:about="http://www.aifb.uni-karls

ruhe.de/WBS/sha/#Siegfried">

<swrc:name>Siegfried Handschuh

</swrc:name>

...

</swrc:PhDStudent>

Web

Page

http://www.aifb.uni-karlsruhe.de/WBS/shaURL

<swrc:cooperatesWith rdf:resource =

"http://www.aifb.uni-karlsruhe.de

/WBS/sst/#Steffen"/>

swrc:cooperatesWith

Figure 1: Annotation example.

– Document Viewer: The document viewer visualizes the document contents. The
metadata creator may easily provide new metadata by selecting pieces of text and
aligning it with parts of the ontology. The document viewer should support various
formats (HTML, PDF, XML, etc.). For some formats the following component for
content generation may not be available.

The document viewer highlights the existing semantic annotation and server-side
markup the of web page. It distinguishes visually between semantic annotation and
markup that describes the information structure of a underlaying database.

– Content Generation: The editor also allows the conventional authoring of docu-
ments. In addition, instances already available may be dragged from a visualization
of the content of the annotation inference server and dropped into the document.
Thereby, some piece of text and/or a link is produced taking into account the infor-
mation from the meta ontology (cf. module meta ontology).

The newly generated content is already annotated and the meta ontology guides the
construction of further information, e.g. further XPointers (cf. [7], [14]) are attached
to instances.

� Ontology Guidance and Fact Browser: The framework needs guidance from the on-
tology. In order to allow for sharing of knowledge, newly created annotations must be



6 Annotation of the Shallow and the Deep Web

consistent with a community’s ontology. If metadata creators instantiate arbitrary classes
and properties the semantics of these properties remains void. Of course the framework
must be able to adapt to multiple ontologies in order to reflect different foci of the meta-
data creators. In the case of concurrent annotation with multiple ontologies there is an
ontology guidance/fact browser for each ontology.

� Crawler: The creation of relational metadata must take place within the Semantic Web.
During metadata creation, subjects must be aware of which entities exist already in their
part of the Semantic Web. This is only possible if a crawler makes relevant entities im-
mediately available. So, metadata creators may look for proper reference, i.e. decide
whether an entity already has a URI (e.g. whether the entity named “Dieter Fensel” or
“D. Fensel” has already been identified by some other metadata creators) and only by this
way metadata creators may recognize whether properties have already been instantiated
(e.g. whether “Dieter Fensel” has already been linked to his publications). As a con-
sequence of metadata creators’ awareness, relational metadata may be created, because
class instances become related rather than only flat templates are filled.

A crawler partially fulfills the requirements of proper reference and the avoidance of re-
dundancy. For example, one might crawl the homepages of his community before he starts
to annotate his homepage in order to reuse and reference existing metadata. However, a
crawler reduces and doesn’t solve the problems since it is obviously not possible to crawl
the whole web.

� Annotation Inference Server: Relational metadata, proper reference and avoidance of
redundant annotation require querying for instances, i.e. querying whether and which
instances exist. For this purpose as well as for checking of consistency, we provide an
annotation inference server in our framework. The annotation inference server reasons on
crawled and newly created instances and on the ontology. It also serves the ontological
guidance and fact browser, because it allows to query for existing classes, instances and
properties.

� Meta Ontology: The purpose of the meta ontology is the separation of ontology design
and use. It is needed to describe how classes, attributes and relationships from the do-
main ontology should be used by the CREAM environment. Thus, the ontology describes
how the semantic data should look like and the meta ontology connected to the onto-
logy describes how the ontology is used by the annotation environment to actually create
semantic data. It is specifically explained in [16].

� Deep Annotation Module: This module enables the deep annotation scenario. Hence, it
manages the mapping rules between the database and the client ontology. Therefore, it
creates and accesses the generic annotation which is stored in the annotation server. On
demand it publishes the mapping rules derived from the generic annotations.

� Document Management: In order to avoid redundancy of annotation efforts, it is not
sufficient to ask whether instances exist at the annotation inference server. When an an-
notator decides to capture knowledge from a web page, he does not want to query for all
single instances that he considers relevant on this page, but he wants information whether
and how this web page has been annotated before. Considering the dynamics of HTML
pages on the web, it is desirable to store foreign web pages one has annotated together



Annotation of the Shallow and the Deep Web 7

with their annotations. Foreign documents for which modification is not possible may be
remotely annotated by using XPointer (cf. [7], [14]) as a addressing meachanism. When
the foreign web page changes, the old annotations may still be valid or they may become
invalid. The annotator must decide based on the old annotations and based on the changes
of the web page.

A future goal of the document management in our framework will be the semi-automatic
maintenance of annotations on foreign web pages. When only few parts of a document
change, pattern matching may propose revisions of old annotations.

� Metadata Re-recognition & Information Extraction: Even with sophisticated tools it is
laborious to provide semantic annotations. A major goal thus is semi-automatic metadata
creation taking advantage of information extraction techniques to propose annotations
to metadata creators and, thus, to facilitate the metadata creation task. Concerning our
environment we envisage three major techniques:

1. First, metadata re-recognition compares existing metadata literals with newly typed
or existing text. Thus, the mentioning of the name “Siegfried Handschuh” in the
document triggers the proposal that URI,
http://www.aifb.uni-karlsruhe.de/WBS/sha/#Siegfried is co-referenced
at this point.

2. “Wrappers” may be learned from given markup in order to automatically annotate
similarly structured pages (cf., e.g., [24]).

3. Message extraction like systems may be used to recognize named entities, propose
co-reference, and extract some relationship from texts (cf., e.g., [28, 33]).

This component has been realized by using the Amilcare information extraction system
(Section 5)4, but it is not yet available in the download version of OntoMat.

Besides the requirements that constitute single modules, one may identify functions that
cross module boundaries:

� Storage: CREAM supports two different ways of storage. The annotations will be stored
inside the document that is in the document management component. Alternatively or
simultaneously it is also possible to store them in the annotation inference server.

� Replication: We provide a simple replication mechanism by crawling annotations into
our annotation inference server. Then inferencing can be used to rule out formal inconsis-
tencies.

3.2 Architecture of CREAM

The architecture of CREAM is depicted in Figure 2. The Design of the CREAM framework
pursues the idea to be flexible and open. Therefore, OntoMat, the implementation of the
framework, comprises a plug-in structure, which is flexible with regard to adding or replacing
modules.

4http://www.dcs.shef.ac.uk/˜fabio/Amilcare.html



8 Annotation of the Shallow and the Deep Web

The core OntoMat, which is downloadable, consists of an Ontology Guidance and Fact
browser, a document viewer/editor, and a internal memory data-structure for the ontology
and metadata. However, one only gets the full-fledged semantic capabilities (e.g. datalog
reasoning or subsumption reasoning) when one uses a plug-in connection to a corresponding
annotation inference server.

Document

Management

Annotation Environment

Annotated

Web Pages

Web Pages

Domain

Ontologies

copy

WWW

Annotation

Inference

Server

Information Extraction

Component & Re-recognition

annotate

crawl

Annotation

Tool GUI

plugin

plugin

plugin

Ontology

Guidance

&

Fact

Browser

Document

Editor /

Viewer

query

extract

load

Meta-Ontology

Annotation by Authoring

Annotation by Markup

Annotation

by Typing

Deep

Annotation

Module

plugin

generic

annotate
Mapping

Rules

publish DB

server-side

markup

Document

Management

Annotation Environment

Annotated

Web Pages

Web Pages

Domain

Ontologies

copy

WWW

Annotation

Inference

Server

Information Extraction

Component & Re-recognition

annotate

crawl

Annotation

Tool GUI

plugin

plugin

plugin

Ontology

Guidance

&

Fact

Browser

Document

Editor /

Viewer

query

extract

load

Meta-Ontology

Annotation by Authoring

Annotation by Markup

Annotation

by Typing

Deep

Annotation

Module

plugin

generic

annotate

Figure 2: Architecture of CREAM.

4 Modes of Interaction

The metadata creation process in OntoMat is actually supported by three types of interaction
with the tool (also cf. Figure 2):

1. Annotation by Typing Statements: This involves working almost exclusively within the
ontology guidance/fact browser.

2. Annotation by Markup: This mostly involves the reuse of data from the document edi-
tor/viewer in the ontology guidance/fact browser.

3. Annotation by Authoring Web Pages: This mostly involves the reuse of data from the fact
browser in the document editor.

In order to clarify the different role of the three types of interaction, we here describe how
they differ for generating three types of metadata:

1. Generating instances of classes



Annotation of the Shallow and the Deep Web 9

2. Generating attribute instances

3. Generation relationship instances

4.1 Annotation by Typing

Annotation by typing is almost purely based on the ontology guidance/fact browser (cf.
Section 3). The user generates metadata (class instances, attribute instances, relationship in-
stances) that are completely independent from the Web page currently viewed.

In addition, the user may drag-and-drop around instances that are already in the know-
ledge base in order to create new relationship instances (cf. arrow #0 in Figure 3).

4.2 Annotation by Markup

The basic idea of annotation by markup is the usage of marked-up content in the document
editor/viewer for instance generation.

1. Generating class instances: When the user drags a marked up piece of content onto a
particular concept from the ontology, a new class instance is generated. A new URI is
generated and a corresponding property is assigned the marked up text (cf. arrow #1 in
Figure 3).

For instance, marking “Siegfried Handschuh” and dropping this piece of text on the con-
cept PhDStudent creates a new URI, instantiates this URI as belonging to PhDStudent and
assigns “Siegfried Handschuh” to the swrc:name slot of the new URI.

2. Generating attribute instance: In order to generate an attribute instance the user simply
drops the marked up content into the corresponding table entry (cf. arrow #2 in Figure 3).
Depending on the setting the corresponding XPointer or the content itself is filled into the
attribute.

3. Generating relationship instance: In order to generate a relationship instance the user sim-
ply drops the marked up content onto the relation of a pre-selected instance (cf. arrow #3
in Figure 3). Like in “class instance generation” a new instance is generated and connected
with the pre-selected instance.

4.3 Annotation by Authoring

The third major process is authoring Web pages and metadata together. There are two modi
for authoring: (i), authoring by using ontology guidance and fact browser for content gen-
eration and, (ii), authoring with the help of metadata re-recognition or — more general —
information extraction. As far as authoring is concerned, we have only implemented (i) so
far. However, we want to point out that already very simple information extraction mecha-
nisms, i.e. metadata re-recognition (cf. Section 3) may help the author to produce consistent
metadata.



10 Annotation of the Shallow and the Deep Web

3

0

1

2

Figure 3: Annotation example.

Authoring with Content Generation By inverting the process of markup (cf. Figure 2),
we may reuse existing instance description, like labels or other attributes:

1. Class instances: Dropping class instances from the fact browser into the document creates
text according to their labels and — if possible — links (cf. arrow #1 in Figure 4).

2. Attribute instances: Dropping attribute instances from the fact browser in the document
(cf. arrow #2 in Figure 4) generates the corresponding text or even linked text.

3. Relationship instances: Dropping relationship instances from the fact browser in the docu-
ment generates simple “sentences”. For instance, the dropping of the relationship COOPERATES-
WITH between the instances corresponding to Rudi and Steffen triggers the creation of a
small piece of text (cf. arrow #3 in Figure 4). The text corresponds to the instance labels
plus the label of the relationship (if available), e.g. “Rudi Studer cooperates with Steffen
Staab”. Typically, this piece of text will require further editing.

Further mechanisms, like the creation of lists or tables from selected concepts (e.g. all
Persons), still need to be explored.



Annotation of the Shallow and the Deep Web 11

3

2

1

Figure 4: Annotation by Authoring example.

5 Semi-automatic Creation of Metadata

Providing plenty of relational metadata by manual annotation, i.e. conceptual mark-up of text
passages, is a laborious task.

In Section 2 we described the idea that wrappers and information extraction components
could be used to facilitate the work. Hence, we have developed S-CREAM (Semi-automatic
CREAtion of Metadata), an annotation framework (cf. [17]) that integrates a learnable infor-
mation extraction component (viz. Amilcare [4]).

Amilcare is a system that learns information extraction rules from manually marked-up
input. S-CREAM aligns conceptual markup, which defines relational metadata, (such as pro-
vided through OntoMat-Annotizer) with semantic and indicative tagging (such as produced
by Amilcare).

Synthesizing S-CREAM: In order to synthesize S-CREAM out of the existing frameworks
CREAM and Amilcare, we consider their core processes in terms of input and output, as
well as the process of S-CREAM. Figure 5 surveys the three processes. The first process is
indicated by a circled M. It is manual annotation of metadata, which turns a document into
relational metadata that corresponds to the given ontology. The second process is indicated
by a circled A1. It is information extraction, e.g. provided by Amilcare. When comparing



12 Annotation of the Shallow and the Deep Web

Document

DR

IE

Lecturer

Uni

M

A1 A2 A3

Institution

Uni Lecturer

Person

Thing

works_at

SteffenKarlsruhe

works_at

Lecturer

Uni

<Lecturer>
Steffen
</Lecturer>

<Uni>
Karlsruhe
</Uni>

DocumentDocument

DRDRDR

IEIE

LecturerLecturer

UniUni

MM

A1A1 A2A2 A3A3

InstitutionInstitution

UniUni LecturerLecturer

PersonPerson

ThingThing

works_at

SteffenSteffenKarlsruheKarlsruhe

works_at

LecturerLecturer

UniUni

<Lecturer>
Steffen
</Lecturer>

<Uni>
Karlsruhe
</Uni>

<Lecturer>
Steffen
</Lecturer>

<Uni>
Karlsruhe
</Uni>

Figure 5: Manual and Automatic Annotation

the desired relational metadata from manual markup and the semantic tagging provided by
information extraction systems, one recognizes that the output of this type of systems is
underspecified for the purpose of the Semantic Web. In particular, the nesting of relationships
between different types of concept instances is undefined and, hence, more comprehensive
graph structures may not be produced. In order to overcome this problem, we introduce a
new processing component, viz. a lightweight module for discourse representation. This third
process is given in Figure 5 is indicated by the composition of A1, A2 and A3. It bridges from
the tagged output of the information extraction system to the target graph structures via an
explicit discourse representation. Our discourse representation is based on a very lightweight
version of Centering.

6 On Deep Annotation

A large percentage of Web pages are not static documents. Rather the majority of Web pages
are dynamic.5 For dynamic web pages (e.g. ones that are generated from the database that
contains a catalogue of books) it does not seem to be useful to annotate every single page.
Rather one wants to “annotate the database” in order to reuse it for one’s own Semantic Web
purposes.

For this objective, approaches have been conceived that allow for the construction of
wrappers by explicit definition of HTML or XML queries [30] or by learning such definitions
from examples [24, 4]. Thus, it has been possible to manually create metadata for a set of
structurally alike Web pages. The wrapper approaches come with the advantage that they do
not require cooperation by the owner of the database. However, their disadvantage is that the
correct scraping of metadata is dependent to a large extent by data layout rather than by the
structures underlying the data.

While for many web sites, the assumption of non-cooperativity may remain valid, we
assume that many web sites will in fact participate in the Semantic Web and will support

5It is not possible to give a percentage of dynamic to static web pages in general, because a single Web
site may use a simple algorithm to produce an infinite number of, probably not very interesting, web pages.
Estimations, however, based on web pages actually crawled by existing search engines estimate that dynamic
web pages outnumber static ones by 100 to 1.



Annotation of the Shallow and the Deep Web 13

the sharing of information. Such web sites may present their information as HTML pages for
viewing by the user, but they may also be willing to describe the structure of their information
on the very same web pages.

Dynamic web sites with an cooperative owner may present their information as HTML
pages for viewing by the user, but they may also be willing to describe the structure of their
information on the very same web pages. Thus, they give their users the possibility to utilize:

1. information proper,

2. information structures, and

3. information context.

A user may then exploit these three in order to create mappings into his own information
structures (e.g., his ontology) — which may be a lot easier than if the information a user gets
is restricted to information structures [29] and/or information proper only [8].

We define “deep annotation” as an annotation process that utilizes information proper,
information structures and information context in order to derive mappings between informa-
tion structures. The mappings may then be exploited by the same or another user in order to
query the database underlying a web site in order to retrieve semantic data — combining the
capabilities of conventional annotation and databases.

6.1 Process

The process of deep annotation consists of the following four steps (depicted in Figure 6):

42 3

DB DB DB

Mapping

Rules

DB

Mapping

Rules

Web site
Server-side
markup

Client-side
semantic annotation

Published
ontology and
mapping rules Database query

11

Client

Ontology

Ontology-based

Query resultsHTML HTML HTML

Client

Ontology
Client

Ontology

Figure 6: The Process of Deep Annotation

Input: A Web site6 driven by an underlying relational database.

Step 1: The database owner produces server-side web page markup according to the infor-
mation structures of the database.

Result: Web site with server-side markup.

6Cf. Section 8 on other information sources.



14 Annotation of the Shallow and the Deep Web

Step 2: The annotator produces client-side annotations conforming to the client ontology
and the server-side markup.

Result: Mapping rules between database and client ontology

Step 3: The annotator publishes the client ontology (if not already done before) and the
mapping rules derived from annotations.

Result: The annotator’s ontology and mapping rules are available on the Web

Step 4: The querying party loads second party’s ontology and mapping rules and uses them
to query the database via the web service API.

Result: Results retrieved from database by querying party

Obviously, in this process one single person may be the database owner and/or the anno-
tator and/or the querying party.

To align this with our running example of the community Web portal, the annotator might
annotate a organization entry from ontoweb.org according to his own ontology. Then, he
may use the ontology and mapping to instantiate his own syndication services by regularly
querying for all recent entries the titles of which match to his list of topics.

6.2 Scenario and Roles

Our scenario for deep annotation consists of three major pillars corresponding to the three
different roles (database owner, annotator, querying party) as described in the process.
Database and Web Site Provider. At the web site, we assume that there is an underlying
database (cf. Figure 7) and a server-side scripting environment, like Zope, JSP or ASP, used
to create dynamic Web pages. Furthermore, the web site may also provide a Web service API
to third parties who want to query the database directly.
Annotator. The annotator uses an extended version of the OntoMat in order to manually
create relational metadata, which correspond to a given client ontology, for some Web pages.
The extended OntoMat takes into account problems that may arise from generic annotations
required by deep annotation (see Section 6.3). With the help of OntoMat, we create mapping
rules from such annotations that are later exploited by an inference engine.
Querying Party. The querying party uses a corresponding tool to visualize the client on-
tology, to compile a query from the client ontology and to investigate the mapping. In our
case, we use OntoEdit [31] for those three purposes. In particular, OntoEdit also allows for
the investigation, debugging and change of given mapping rules. To that extend, OntoEdit
integrates and exploits the Ontobroker [12] inference engine (see Figure 7).

6.3 Annotation

To enable deep annotation one must consider an additional kind of annotation, viz. generic
annotation. In a generic annotation, a piece of text that corresponds to a database field and
that is annotated is only considered to be a place holder. I.e. a variable must be generated
for such an annotation and the variable may have multiple relationships allowing for the
description of general mapping rules.



Annotation of the Shallow and the Deep Web 15

Figure 7: Scenario for Deep Annotation

Annotation Process: An annotation process of server-side markup (generic annotation) is
supported by the user interface as follows:

1. The user opens in the browser a server-side marked up web page.

2. The server-side markup is handled individually by the browser, e.g. it provides graphical
icons on the page wherever a markup is present, so that the user can easily identify values
which come from a database.

3. The user can select one of server-side markups to either create a new generic instance
and map its database field to an generic attribute, or map a database field to an generic
attribute of an existing generic instance.

4. The database information necessary to query the database in a later step is stored along-
with the generic instance.

The reader may note that literal annotation is still performed when the user drags a
marked up piece of content, that is not a server-side markup.

Create Generic Instances of Classes: When the user drags a server-side markup onto a
particular concept of the ontology, a new generic class instance is generated (cf. arrow #1
in Figure 8). The application displays a dialog for the selection of the instance name and
the attributes to map the database value to. Attributes which resemble the column name are
preselected (cf. dialog #1a in Figure 8). If the user clicks OK, database concept and instance
checks are performed and the new generic instance is created. Generic instances will appear
with a database symbol in their icon.



16 Annotation of the Shallow and the Deep Web

Figure 8: Screenshot of Providing Deep Annotation with OntoMat

Create Generic Attribute Instances: In order to create a generic attribute instance the
user simply drops the server-side markup into the corresponding table entry (cf. arrow #2 in
Figure 8). Generic attributes which are mapped to database table columns will also show a
special icon and their value will appear in italics. Such generic attributes cannot be modified,
but their value can be deleted.

When the generic attribute is filled the following steps are performed by the system:

1. Checking database definition integrity.

2. All attributes of the selected generic instance (except the generic attribute to be pasted to)
are examined. The following conditions apply to each attribute:

� The attribute is empty or

� The attribute does not hold server-side markup or

� The attribute holds markup, the database name and the query ID of the content on the
current selection must be the same. This must be checked to ensure that result fields
come from the same database and the same query. If this is not checked, unmatching
information (e.g. publication titles and countries) could be queried for.

3. The generic attribute contains the information given by the markup, i.e. which column of
the result tuple delivered by a query represents the value.



Annotation of the Shallow and the Deep Web 17

Create Generic Relationship Instances: To create a generic relationship instance the user
simply drops the selected server-side markup onto the relation of a pre-selected instance (cf.
arrow #3 in Figure 8). As in Section 6.3 a new generic instance is generated. In addition, the
new generic instance is connected with the preselected generic instance.

6.4 Mapping and Querying

The results of the annotation are mapping rules between the database and the client ontology.
The annotator publishes7 the client ontology and the mapping rules derived from annotations.
This enables third parties (querying party) to access and query the database on the basis of
the semantics that is defined in the ontology. The user of this mapping description might be a
software agent or a human user.

Querying the Database: OntoQuery is a Query-by-Example user interface. One creates a
query by clicking on a concept and selecting the relevant attributes and relationships. The
underlying Ontobroker system transforms the ontological query into a corresponding SQL
query. Ontobroker uses the mapping description, which are internal represented as F-Logic
Axioms, to transform the query. The SQL query will be send as an RPC call to the web ser-
vice, where it will be answered in the form of a set of records. These records are transformed
back to an ontological representation. This task will be executed automatically, so that no
interaction with the user is necessary.

After the creation of all instances we start computing the values of the instance relation-
ships and attributes. The way the values are assigned is determined by the mapping rules.
Since the values of an attribute or a relationship have to be computed from both the re-
lational database and the ontology, we generate two queries per attribute/relationship, one
SQL query and one Ontobroker query. Each query is invoked with an instance key value
(corresponding database key in SQL-queries) as a parameter and returns the value of the
attribute/relationship.

Note that the database communication takes place through binding variables. The corre-
sponding SQL query is generated, and if this is the first call, it is cached. A second call would
try to use the same database cursor if still available, without parsing the respective SQL state-
ment. Otherwise, it would find an unused cursor and retrieve the results. In this way efficient
access methods for relations and database rules can be maintained throughout the session.

7 Comparison with Related Work

Creating ontology-based semantic annotation for the shallow and the deep Web as we have
presented it here is a cross-sectional enterprise.8 Therefore there are a number of communities
that have contributed towards reaching the objective of semantic annotation. So far, we have
identified communities for Semantic Web, knowledge acquisition, annotation, information
extraction (cf. [5]), information integration, mapping frameworks and wrapper construction
(cf. [1]).

7Here, we used the Ontobroker OXML format to publish the mapping rules.
8Just like the Semantic Web overall!



18 Annotation of the Shallow and the Deep Web

In the following we mention only shortly some of the related work, for a more elaborate
comparison the interested reader may have a look at [16, 19] as well as in the corresponding
contributions in this book.

We know of three major systems that intensively use knowledge markup in the Semantic
Web, viz. SHOE [20], Ontobroker [6], and WebKB [27]. All three of them rely on markup
in HTML pages. They all started with providing manual markup by editors. However, our
experiences (cf.[11]) have shown that text-editing knowledge markup yields extremely poor
results, viz. syntactic mistakes and improper references.

The approaches from this line of research that are closest to CREAM is the SHOE Know-
ledge Annotator9, WebKB, and the MnM annotation tool.

The SHOE Knowledge Annotator is a Java program that allows users to mark-up web
pages with the SHOE ontology. The SHOE system [26] defines additional tags that can be
embedded in the body of HTML pages. The SHOE Knowledge Annotator is rather a little
helper (like our earlier OntoPad [12], [6]) than a full fledged annotation environment.

WebKB [27] uses conceptual graphs for representing the semantic content of Web doc-
uments. It embeds conceptual graph statements into HTML pages. Essentially they offer a
Web-based template like interface as knowledge acquisition frameworks described next.

The more recent development was the system from The Open University [25] and the
corresponding MnM [32] annotation tool. MnM [32] also uses the Amilcare information
extraction system. It allows the semi-automatic population of an ontology with metadata. So
far, they have not dealt with relational metadata, authoring concerns or deep annotation.

Annotea (Amaya) [23, 21] is a tool that share the idea of creating a kind of user comment
about Web pages. The term “annotation” in these frameworks is understood as a remark to
an existing document. But Annotea actually goes one step further. It allows to rely on an
RDF schema as a kind of template that is filled by the annotator. For instance, Annotea users
may use a schema for Dublin Core and fill the author-slot of a particular document with a
name. The user may also decide to use complex RDF descriptions instead of simple strings
for filling such a template.

The authoring of hypertexts and the authoring with concepts are topics in the COHSE
project [2, 14]. They allow for the automatic generation of metadata descriptions by analysing
the content of a Web page and comparing the tokens with concept names described in a
lexicon.

8 Conclusion

CREAM is a comprehensive framework for creating semantic metadata, relational metadata
in particular — the foundation of the future Semantic Web. CREAM supports the annota-
tion on the Shallow and the Deep Web. In order to avoid problems with syntax, seman-
tics and pragmatics, CREAM employs a rich set of modules including inference services,
crawler, document management system, ontology guidance/fact browser, and document edi-
tors/viewers.

Nevertheless, the general problem of metadata creation remains interesting. Questions
like “how do you annotate multimedia items?” or “what happens if there are 100,000 people
known in your annotation inference server?” affect the scalability to more and larger dimen-
sions, respectively. Some of them are currently approached by other research — as will be

9http://www.cs.umd.edu/projects/plus/SHOE/KnowledgeAnnotator.html



Annotation of the Shallow and the Deep Web 19

seen, e.g., in this book — others such as ”what is the appropriate methodology for annotation”
wait for more research.

9 Acknowledgements

Research for this paper has been funded by the projects DARPA DAML OntoAgents, EU IST
Bizon, and EU IST WonderWeb. We gratefully thank Leo Meyer and Dirk Wenke, Ontoprise,
for implementations that contributed toward the prototype described in this paper. Further,
the research presented in this paper has profited from discussions with our colleagues at
University of Karlsruhe, Stanford University and Ontoprise GmbH. In particular, we want
thank Stefan Decker (now: Information Science Institute, USC), Alexander Maedche (now:
FZI Research Center for Information Technologies) and Mika Maier-Collin (Ontoprise).

References

[1] Robert Baumgartner, Sebastian Eichholz, Sergio Flesca, Georg Gottlob, and Marcus Herzog. Semantic
Markup of News Items with Lixto. In this book, 2003.

[2] Sean Bechhofer, Carole Goble, Leslie Carr, Wendy Hall, Simon Kampa, and Dave De Roure. COHSE:
Conceptual Open Hypermedia Service. In this book, 2003.

[3] R. Benjamins, D. Fensel, and S. Decker. KA2: Building Ontologies for the Internet: A Midterm Report.
International Journal of Human Computer Studies, 51(3):687–713, 1999.

[4] Fabio Ciravegna. Adaptive information extraction from text by rule induction and generalisation. In
Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI)e, Seattle, Usa,
August 2001.

[5] Fabio Ciravegna and Yorick Wilks. Designing Adaptive Information Extraction for the Semantic Web in
Amilcare. In this book, 2003.

[6] S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology Based Access to Distributed
and Semi-Structured Information. In R. Meersman et al., editors, Database Semantics: Semantic Issues in
Multimedia Systems, pages 351–369. Kluwer Academic Publisher, 1999.

[7] S. DeRose, E. Maler, and R. Daniel. XML Pointer Language (XPointer). Technical report, W3C, 2001.
Working Draft 16 August 2002.

[8] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between ontologies on the semantic
web. In Proceedings of the World-Wide Web Conference (WWW-2002), pages 662–673. ACM Press, 2002.

[9] Dublin core metadata initiative, April 2001. http://purl.oclc.org/dc/.

[10] Dublin Core Metadata Template, 2001. http://www.ub2.lu.se/metadata/DC creator.html.

[11] M. Erdmann, A. Maedche, H.-P. Schnurr, and S. Staab. From Manual to Semi-automatic Semantic Anno-
tation: About Ontology-based Text Annotation Tools. In P. Buitelaar & K. Hasida (eds). Proceedings of
the COLING 2000 Workshop on Semantic Annotation and Intelligent Content, Luxembourg, August 2000.

[12] D. Fensel, J. Angele, S. Decker, M. Erdmann, H.-P. Schnurr, S. Staab, R. Studer, and Andreas Witt.
On2broker: Semantic-based access to information sources at the WWW. In Proceedings of the World
Conference on the WWW and Internet (WebNet 99), Honolulu, Hawaii, USA, pages 366–371, 1999.

[13] Reference description of the DAML+OIL (March 2001) ontology markup language, March 2001.
http://www.daml.org/2001/03/reference.html.

[14] C. Goble, S. Bechhofer, L. Carr, D. De Roure, and W. Hall. Conceptual Open Hypermedia = The Semantic
Web? In S. Staab, S. Decker, D. Fensel, and A. Sheth, editors, The Second International Workshop on the
Semantic Web, CEUR Proceedings, Volume 40, http://www.ceur-ws.org, pages 44–50, Hong Kong, May
2001.



20 Annotation of the Shallow and the Deep Web

[15] T. R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition,
6(2):199–221, 1993.

[16] S. Handschuh and S. Staab. Authoring and annotation of web pages in cream. In Proceedings of the
11th International World Wide Web Conference, WWW 2002, Honolulu, Hawaii, May 7-11, 2002, pages
462–473. ACM Press, 2002.

[17] S. Handschuh, S. Staab, and F. Ciravegna. S-CREAM — Semi-automatic CREAtion of Metadata.
In EKAW02, 13th International Conference on Knowledge Engineering and Knowledge Management,
LNCS/LNAI 2473, pages 358–372, Sigüenza, Spain, October 2002. Springer.

[18] S. Handschuh, S. Staab, and A. Maedche. CREAM — Creating relational metadata with a component-
based, ontology-driven annotation framework. In Proceedings of K-Cap 2001, pages 76–83. ACM Press,
2001.

[19] Siegfried Handschuh, Steffen Staab, and Raphael Volz. On deep annotation. In Proceeding of the
WWW2003 - The Twelfth International World Wide Web Conferenceb (to appear), Budapest, HUNGARY,
May 2003.

[20] J. Heflin and J. Hendler. Searching the Web with SHOE. In Artificial Intelligence for Web Search. Papers
from the AAAI Workshop. WS-00-01, pages 35–40. AAAI Press, 2000.

[21] J. Kahan, M. Koivunen, E. Prud’Hommeaux, and R. Swick. Annotea: An Open RDF Infrastructure for
Shared Web Annotations. In Proceedings of the Tenth International World Wide Web Conference, WWW
10, Hong Kong, China, May 1-5, 2001, pages 623–632. ACM Press, 2001.

[22] Klarity – automatic generation of metadata based on concepts within the document, 2001. Klarity white
paper. http://www.klarity.com.au.

[23] Marja-Riitta Koivunen and Ralph R. Swick. Collaboration through Annotations in the Semantic Web. In
this book, 2003.

[24] N. Kushmerick. Wrapper Induction: Efficiency and Expressiveness. Artificial Intelligence, 118(1-2):15–
68, 2000.

[25] Y. Lei, E. Motta, and J. Domingue. An Ontology-Driven Approach to Web Site Generation and Mainte-
nance. In EKAW02, 13th International Conference on Knowledge Engineering and Knowledge Manage-
ment, LNCS/LNAI 2473, Sigüenza, Spain, October 2002. Springer.

[26] S. Luke, L. Spector, D. Rager, and J. Hendler. Ontology-based Web Agents. In Proceedings of the First
International Conference on Autonomous Agents, Marina del Rey, CA, USA, February 5-8, 1997, pages
59–66, 1997.

[27] P. Martin and P. Eklund. Embedding Knowledge in Web Documents. In Proceedings of the 8th Int. World
Wide Web Conf. (WWW‘8), Toronto, May 1999, pages 1403–1419. Elsevier Science B.V., 1999.

[28] MUC-7 — Proceedings of the 7th Message Understanding Conference, 1998. http://www.muc.saic.com/.

[29] N. F. Noy and M. A. Musen. PROMPT: Algorithm and Tool for Automated Ontology Merging and
Alignment. In Proc. of AAAI-2000, pages 450–455, 2000.

[30] A. Sahuguet and F. Azavant. Building intelligent Web applications using lightweight wrappers. Data and
Knowledge Engineering, 3(36):283–316, 2001.

[31] Y. Sure, J. Angele, and S. Staab. Guiding Ontology Developement by Methodology and Inferencing. In
K. Aberer and L. Liu, editors, ODBASE-2002 — Ontologies, Databases and Applications of SEmantics.
Irvine, CA, USA, Oct. 29-31, 2002, LNCS, pages 1025–1222. Springer, 2002.

[32] M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni, A. Stutt, and F. Ciravegna. MnM: Ontology Driven
Semi-Automatic and Automatic Support for Semantic Markup. In EKAW02, 13th International Con-
ference on Knowledge Engineering and Knowledge Management, LNCS/LNAI 2473, pages 379–391,
Sigüenza, Spain, October 2002. Springer.

[33] M. Vargas-Vera, E. Motta, J. Domingue, S. Buckingham Shum, and M. Lanzoni. Knowledge Extraction
by using an Ontology-based Annotation Tool. In Proceedings of the Knowledge Markup and Semantic
Annotation Workshop 2001 (at K-CAP 2001), pages 5–12, Victoria, BC, Canada, October 2001.


