
CREAM — Creating relational metadata with a
component-based, ontology-driven annotation framework

1Siegfried Handschuh, 1;2Steffen Staab, 1;3Alexander Maedche

1Institute AIFB, University of Karlsruhe, D-76128 Karlsruhe, Germany
http://www.aifb.uni-karlsruhe.de/WBS

fsha,sst,amag@aifb.uni-karlsruhe.de

2Ontoprise GmbH, Haid-und-Neu Straße 7, 76131 Karlsruhe, Germany
http://www.ontoprise.de

3FZI Research Center for Information Technologies,
Haid-und-Neu Straße 10-14, 76131 Karlsruhe, Germany

http://www.fzi.de/wim

\The Web is about links; the Semantic Web is about the
relationships implicit in those links."

Dan Brickley

ABSTRACT
Richly interlinked, machine-understandable data constitutes
the basis for the Semantic Web. Annotating web documents
is one of the major techniques for creating metadata on

the Web. However, annotation tools so far are restricted in
their capabilities of providing richly interlinked and truely
machine-understandable data. They basically allow the user
to annotate with plain text according to a template struc-
ture, such as Dublin Core. We here present CREAM (Creat-

ing RElational, Annotation-based Metadata), a framework
for an annotation environment that allows to construct rela-
tional metadata, i.e. metadata that comprises class instances
and relationship instances. These instances are not based
on a �x structure, but on a domain ontology. We discuss
some of the requirements one has to meet when developing

such a framework, e.g. the integration of a metadata crawler,
inference services, document management and information
extraction, and describe its implementation, viz. Ont-O-Mat
a component-based, ontology-driven annotation tool.

Keywords
Metadata, Markup, Annotations, Ontology, DAML+OIL,
RDF, Semantic Web

1. INTRODUCTION
Research about the WWW currently strives to augment

syntactic information already present in the Web by seman-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission by the authors.
Copyright by the authors.

tic metadata in order to achieve a Semantic Web that hu-
man and software agents alike can understand. RDF(S)
or DAML+OIL are languages that have recently advanced
the basis for extending purely syntactic information, e.g.
HTML documents, with semantics. Based on these recent

advancements one of the the most urgent challenges now is
a knowledge capturing problem, viz. how one may turn ex-
isting syntactic resources into interlinked knowledge struc-
tures that represent relevant underlying information. This
paper is about a framework for facing this challenge, called
CREAM1, and about its implementation, Ont-O-Mat.

The origin of our work facing this challenge dates back
to the start of the seminal KA2 intiative [1], i.e. the initia-
tive for providing semantic markup on HTML pages for the
knowledge acquisition community. The basic idea then was
that manual knowledge markup on web pages was too error-
prone and should therefore be replaced by a simple tool that
should help to avoid syntactic mistakes.
Developing our CREAM framework, however, we had to

recognize that this knowledge capturing task exhibited some
intrinsic diÆculties that could not be solved by a simple
tool. We here mention only some challenges that immedi-

ately came up in the KA2 setting:

� Consistency: Semantic structures should adhere to

a given ontology in order to allow for better sharing
of knowledge. For example, it should be avoided that
people confuse complex instances with attribute types.

� Proper Reference: Identi�ers of instances, e.g. of
persons, institutes or companies, should be unique.
For instance, in KA2 metadata there existed three dif-
ferent identi�ers of our colleague Dieter Fensel. Thus,
knowledge about him could not be grasped with a

straightforward query.2

1CREAM: Creating RElational, Annotation-based Meta-
data.
2The reader may see similar e�ects in bibliography
databases. E.g., query for James (Jim) Hendler at the |
otherwise excellent | DBLP:
http://www.informatik.uni-trier.de/�ley/db/.

� Avoid Redundancy: Decentralized knowledge pro-

visioning should be possible. However, when anno-
tators collaborate, it should be possible for them to
identify (parts of) sources that have already been an-
notated and to reuse previously captured knowledge in
order to avoid laborious redundant annotations.

� Relational Metadata: Like HTML information, which
is spread on the Web, but related by HTML links,
knowledge markup may be distributed, but it should
be semantically related. Current annotation tools tend
to generate template-like metadata, which is hardly

connected, if at all. For example, annotation environ-
ments often support Dublin Core [12], providing means
to state, e.g., the name of authors, but not their IDs3.

� Maintenance: Knowledge markup needs to be main-
tained. An annotation tool should support the main-
tenance task.

� Ease of use: It is obvious for an annotation environ-
ments to be useful. However, it is not trivial, because
it involves intricate navigation of semantic structures.

� EÆciency: The e�ort for the production of metadata
is a large restraining threshold. The more eÆciently a
tool support the annotation, the more metadata will
produce a user. These requirement stand in relation-
ship with the ease of use. It depends also on the au-
tomation of the annotation process, e.g. on the pre-

processing of the document.

CREAM faces these principal problems by combining ad-

vanced mechanisms for inferencing, fact crawling, document
management and | in the future | information extraction.
Ont-O-Mat, the implementation of CREAM, is a component-
based plug-in architecture that tackles this broad set of re-
quirements.4

In the following we �rst sketch two usage scenarios (Sec-

tion 2). Then, we explain our terminology in more detail,
derive requirements from our principal considerations above
and explain the architecture of CREAM (Section 3). We de-
scribe our actual tool, Ont-O-Mat, in Section 4. Before we
conclude, we contrast CREAM with related work, namely
knowledge acquisition tools and annotation frameworks.

2. SCENARIOS FOR CREAM
We here only summarize two scenarios, two knowledge

portals, for annotation that have been elaborated in [21]:

The �rst scenario extends the objectives of the seminal
KA2 initiative. The KA2 portal provides a view onto know-
ledge of the knowledge acquisition community. Besides of
semantic retrieval as provided by the original KA2 initiative,
it allows comprehensive means for navigating and querying
the knowledge base and also includes guidelines for build-

ing such a knowledge portal. The potential users provide
knowledge, e.g. by annotating their web pages in a decen-
tralized manner. The knowledge is collected at the portal
by crawling and presented in a variety of ways.

3In the web context one typically uses the term `URI' (uni-
form resource identi�er) to speak of `unique identi�er'.
4The core Ont-O-Mat can be downloaded from:
http://ontobroker.semanticweb.org/annotation.

The second scenario is a knowledge portal for business an-

alysts that is currently constructed at Ontoprise GmbH. The
principal idea is that business analyst review news tickers,
business plans and business reports. A considerable part of
their work requires the comparison and aggregation of simi-
lar or related data, which may be done by semantic queries
like\Which companies provide B2B solutions?", when the

knowledge is semantically available. At the Time2Research
portal they will handle di�erent types of documents, anno-
tate them and, thus, feed back into the portal to which they
may ask questions.

3. DESIGN OF CREAM
In this section we explain basic design decisions of CREAM,

which are founded on the general problems sketched in the

introduction above. In order to provide a clear design ratio-
nale, we �rst provide de�nitions of important terms we use
subsequently:

� Ontology: An ontology is a formal, explicit speci�-
cation of a shared conceptualization of a domain of

interest [8]. In our case it is constituted by statements
expressing de�nitions of DAML+OIL classes and prop-
erties [7].

� Annotations: An annotation in our context is a set
of instantiations attached to an HTML document. We
distinguish (i) instantiations of DAML+OIL classes,
(ii) instantiated properties from one class instance to

a datatype instance | henceforth called attribute in-
stance (of the class instance), and (iii) instantiated
properties from one class instance to another class in-
stance | henceforth called relationship instance.

Class instances have unique URIs. Instantiations may
be attached to particular markups in the HTML doc-
uments, viz. URIs and attribute values may appear as
strings in the HTML text.

� Metadata: Metadata are data about data. In our
context the annotations are metadata about the HTML

documents.

� Relational Metadata: We use the term relational
metadata to denote the annotations that contain rela-
tionship instances.

Often, the term \annotation" is used to mean some-

thing like \private or shared note", \comment" or \Dublin
Core metadata". This alternative meaning of annota-
tion may be emulated in our approach by modeling
these notes with attribute instances. For instance, a
comment note \I like this paper" would be related to
the URL of the paper via an attribute instance `has-

Comment'.

In contrast, relational metadata contain statements
like `student Siegfried cooperates with lecturer Ste�en',

i.e. relational metadata contain relationships between
class instances rather than only textual notes.

Figure 1 illustrates our use of the terms \ontology", \an-
notation" and \relational metadata". It depicts some part
of the SWRC5 (semantic web research community) ontol-
ogy. Furthermore it shows two homepages, viz. pages about

5http://ontobroker.semanticweb.org/ontos/swrc.html

Graduate

<swrc:Lecturer rdf:ID="person_sst">

<swrc:name>Steffen Staab

</swrc:name>

...

</swrc:Lecturer>

<swrc:PhDStudent rdf:ID="person_sha">

<swrc:name>Siegfried Handschuh</swrc:name>

<swrc: cooperateWith rdf:resource =

"http://www.aifb.uni-karlsruhe.de/WBS/sst#person_sst"/>

...

</swrc:PhDStudent>

http://www.aifb.uni-karlsruhe.de/WBS/sha

PhDStudent Lecturer

Academic Staff

Person

swrc:cooperateWith

rdf:type

rdf:type

http://www.aifb.uni-karlsruhe.de/WBS/sst

rdf:subClass rdf:subClass

rdf:subClassrdf:subClass

cooperateWith

rdf:hasRangerdf:hasDomain
ontology

annotation

web page

URL

Figure 1: Annotation example

Siegfried and Ste�en (http://www.aifb.uni-karlsruhe.de/
WBS/sha and http://www.aifb.uni-karlsruhe.de/WBS/sst,
respectively) with annotations given in an XML serialization
of RDF facts. For the two persons there are instances de-
noted by corresponding URIs (person sha and person sst).

The swrc:name of person sha is \Siegfried Handschuh". In
Addition, there is a relationship instance between the two
persons: they cooperate. This cooperation information `spans'
the two pages.

3.1 Requirements for CREAM
The diÆculties sketched in the introduction directly feed

into the design rationale of CREAM. The design rationale
links the challenges with the requirements. This results
in a N:M mapping (neither functional nor injective). An

overview of the matrix is given in Table 1. It shows which
modules (requirements) are mainly used to answer chal-
lenges set forth in the introduction, viz.:

� Document Viewer: The document viewer visualizes
the web page contents. The annotator may easily pro-
vide annotations by highlighting text that serves as
input for attribute instances or the de�nition of URIs.

The document viewer must support various formats
(HTML, PDF, XML, etc.).

� Ontology Guidance: The annotation framework needs
guidance from the ontology. In order to allow for shar-
ing of knowledge, newly created annotations must be

consistent with a community's ontology. If annotators

instantiate arbitrary classes and properties the seman-
tics of these properties remains void. Of course the
framework must be able to adapt to varying ontolo-
gies in order to re
ect di�erent foci of the annotators.

Furthermore, the ontology is important in order to
guide annotators towards creating relational metadata.

We have done some preliminary experiments and found
that subjects have more problems with creating re-
lationship instances than with creating attribute in-
stances (cf. [22]). Without the ontology they would
miss even more cues for assigning relationships be-
tween class instances.

Both ontology guidance and document viewer should

be easy to use: Drag'n'drop helps to avoid syntax er-
rors and typos and a good visualization of the ontology
can help to correctly choose the most appropriate class
for instances.

� Crawler: The creation of relational metadata must
take place within the Semantic Web. During annota-
tion annotaters must be aware of which entities exist
in the part of the Semantic Web they annotate. This is
only possible if a crawler makes relevant entities imme-

diately available. So, annotators may look for proper
reference, i.e. decide whether an entity already has a
URI (e.g. whether the entity named \Dieter Fensel" or
\D. Fensel" has already been identi�ed by some other
annotators) and thus only annotators may recognize
whether properties have already been instantiated (e.g.

whether \Dieter Fensel" has already be linked to his

Table 1: Design Rationale | Linking Challenges with Required Modules

Requirement Storage
Replication

Document Ontology Crawler Annotation Document Information
General Viewer Guidance Inference Management Extraction
Problem Server

Consistency X X
Proper Reference X X
Avoid Redundancy X X X
Relational Metadata X X X
Maintenance X X
Ease of use X X X
EÆciency X X X X X X

publications). As a consequence of annotators' aware-
ness relational metadata may be created, because class
instances become related rather than only
at tem-
plates are �lled.

� Annotation Inference Server: Relational metadata,
proper reference and avoidance of redundant annota-
tion require querying for instances, i.e. querying whether
and which instances exist. For this purpose as well as

for checking of consistency, we provide an annotation
inference server in our framework. The annotation in-
ference server reasons on crawled and newly annotated
instances and on the ontology. It also serves the onto-
logical guidance, because it allows to query for existing
classes and properties.

� Document Management: In order to avoid redun-
dancy of annotation e�orts, it is not suÆcient to ask
whether instances exist at the annotation inference

server. When an annotator decides to capture know-
ledge from a web page, he does not want to query
for all single instances that he considers relevant on
this page, but he wants information, whether and how
this web page has been annotated before. Consider-
ing the dynamics of HTML pages on the web, it is

desirable to store annotated web pages together with
their annotations. When the web page changes, the
old annotations may still be valid or they may become
invalid. The annotator must decide based on the old
annotations and based on the changes of the web page.

A future goal of the document management in our
framework will be the semi-automatic maintenance of

annotations. When only few parts of a document change,
pattern matching may propose revision of old annota-
tions.

� Information Extraction: Even with sophisticated
tools it is laborious to provide semantic annotations.
A major goal thus is semi-automatic annotation tak-
ing advantage of information extraction techniques to
propose annotations to annotators and, thus, to facili-
tate the annotation task. Concerning our environment

we envisage two major techniques: First, \wrappers"
may be learned from given markup in order to au-
tomatically annotate similarly structured pages (cf.,
e.g., [16]). Second, message extraction like systems
may be used to recognize named entities, propose co-
reference, and extract some relationship from texts

(cf., e.g., [20]).

Besides of the requirements that constitute single modules,
one may identify functions that cross module boundaries:

� Storage: CREAM supports two di�erent ways of stor-
age. The annotations will be stored inside the docu-
ment that is in the document management component,
but it is also stored in the annotation inference server.

� Replication: We provide a simple replication mecha-
nism by crawling annotations into our annotation in-
ference server.

3.2 Architecture of CREAM
The architecture of CREAM is depicted in Figure 2. The

complete design of CREAM comprises a plug-in structure,
which is
exible with regard to adding or replacing modules.
Document viewer and ontology guidance module together
constitute the major part of the graphical user interface. Via

plug-ins the core annotation tool, Ont-O-Mat, is extended
to include the capabilities outlined above. For instance, a
plug-in for a connection to a document management system
provides document management and retrieval capabilities
that show the user annotations of a document he loads into
his browser. This feature even becomes active when the user

does not actively search for already existing annotations.
Similarly, Ont-O-Mat provides extremely simple means for
navigating the taxonomy, which means that the user can
work without an inference server. However, he only gets
the full-
edged semantics when the corresponding plug-in
connection to the annotation inference server is installed.

4. IMPLEMENTATION: ONT-O-MAT
This section describes Ont-O-Mat, the implementation of

our CREAM framework. Ont-O-Mat is a component-based,
ontology-driven markup tool. The architectural idea behind
CREAM is a component-based framework, thus, being open,

exible and easily extensible.
In the following subsection we refer to the concrete re-

alization and the particular technical requirements of the
components. In subsection 4.2 we describe the functionality
of Ont-O-Mat based on an example ontology for annotation
that is freely available on the web.

4.1 Ont-O-Mat services and components
The architecture of Ont-O-Mat provides a plug-in and ser-

vice mechanism. The components are dynamically plug-able
to the core Ont-O-Mat. The plug-in mechanism noti�es each

installed component, when a new component is registered.

annotated

weg pages

web pages

domain

ontologies

copy

WWW

Document Management

Annotation

Inference

Server

Annotation

Inference

Server

Information

extraction

Component

annotate

crawl

Annotation

Tool GUI

plugin

plugin

plugin

Ontology

Guidance

Document

Viewer

Annotation Environment

query

extract

crawl

Figure 2: Architecture of CREAM.

Through the service mechanism each component can dis-
cover and utilize the services o�ered by another component

[9]. A service represented by a component is typically a ref-
erence to an interface. This provides among other things
a de-coupling of the service from the implementation and
allows therefore alternative implementations.
The Ont-O-Mat services have been realized by compo-

nents according to the requirements listed in subsection 3.1.

So far we have realized the following components: a compre-
hensive user-interface, component for document-management,
an annotation inference-server and a crawler:

� Document Viewer and Ontology Guidance: There
are various ways how the gained knowledge database
can be visualized and thus experienced. On the one
hand, the system can be used as a browser. In the an-

notated web pages, the extracted text fragments are
then highlighted and an icon after each fragment is
visible. By clicking on the icon, the name of the as-
signed class or attribute will be shown. On the other
hand, the user can browse the ontology and retrieve for
one class all instances or for one instance all attributes.

The underlying data model used for Ont-O-Mat has
been taken from the comprehensive ontology engineer-
ing and learning system OntoEdit / Text-To-Onto
(see [18]).

Ont-O-Mat works currently in \read-only{mode" with
respect to the ontology and only operates on the rela-
tional metadata de�ned on top of the given ontology.

� Document Management: A component for docu-
ment management is required in order to avoid dupli-
cate annotations and existing semantic annotations of
documents should be recognized. In our current imple-
mentation we use a straight forward �le-system based

document management approach.

Ont-O-Mat uses the URI to detect the re-encounter of
previously annotated documents and highlights anno-

tations in the old document for the user. Then the
user may decide to ignore or even delete the old an-
notations and create new metadata, he may augment
existing data, or he may just be satis�ed with what
has been previously annotated. In order to recognize
that a document has been annotated before, but now

appears under a di�erent URI, Ont-O-Mat computes
similarity with existing documents by simple informa-
tion retrieval methods, e.g. comparison of the word
vector of a page. If thereby a similarity is discovered,
this is indicated to the user, so that he can check for
congruency.

� Annotation Inference Server: The annotation in-
ference server reasons on crawled and newly annotated
instances and on the ontology. It also serves the onto-

logical guidance, because it allows to query for existing
classes and properties. We use Ontobroker's [3] un-
derlying F-Logic [14] based inference engine SilRI [2]
as annotation inference server. The F-Logic inference
engine combines ordering-independent reasoning in a
high-level logical language with a well-founded seman-

tics.

� RDF Crawler: As already mentioned above, the an-
notation must take place right within the Semantic

Web and not isolated. Therefore, we have built a RDF
Crawler6, a basic tool that gathers interconnected frag-
ments of RDF from the Web and builds a local know-
ledge base from this data.

In general, RDF data may appear in Web documents
in several ways. We distinguish between (i) pure RDF

6RDF Crawler is freely available for download at:
http://ontobroker.semanticweb.org/rdfcrawler.

(�les that have an extension like "*.rdf"), (ii) RDF em-

bedded in HTML and (iii) RDF embedded in XML.
Our RDF Crawler relys on Melnik's RDF-API7 that
can deal with the di�erent embeddings of RDF de-
scribed above. One general problem of crawling is
the applied �ltering mechanism: Baseline document
crawlers are typically restricted by a prede�ned depth

value. Assuming that there is an unlimited amount
of interrelated information on the Web (hopefully this
will soon hold about RDF data as well), at some point
RDF fact gathering by the RDF Crawler should stop.
We have implemented a baseline approach for �lter-
ing: At the very start of the crawling process and at

every subsequent step we maintain a queue of all the
URIs we want to analyze. We process them in the
breadth-�rst-search fashion, keeping track of those we
have already visited. When the search goes too deep,
or we have received suÆcient quantity of data (mea-
sured as number of links visited or the total web traÆc

or the amount of RDF data obtained) we may quit.

� Information Extraction: This component has not

yet been integrated in our Ont-O-Mat tool. Actually,
we are near �nishing an integration of a simple wrap-
per approach [15], but we have not yet the message
extraction approach for Ont-O-Mat that suggests rel-
evant part of the texts for annotation.

4.2 Using Ont-O-Mat — An Example
Our example is based on the freely available SWRC (Se-

mantic Web Research Community)8 ontology , the succes-
sor of the KA2 ontology. The SWRC ontology models the
semantic web research community, its researchers, topics,
publications, tools, etc. and properties between them. It
is available in the form of DAML+OIL classes and proper-

ties, in pure RDF-Schema and in F-Logic. The general idea
behind SWRC is that the SW research community creates
relational metadata according to the SWRC ontology to en-
able semantic access to their web pages. In the following we
shortly explain how Ont-O-Mat may be used for creating
relational metadata based on the SWRC ontology.

The annotation process is started either with an annota-
tion inference server or the server process is fed with meta-
data crawled from the web and the document server. Figure
3 shows the screen for navigating the ontology and creat-
ing annotations in Ont-O-Mat. The right pane displays the
document and the left panes show the ontological structures

contained in the ontology, namely classes, attributes and re-
lations. In addition, the left pane shows the current semantic
annotation knowledge base, i.e. existing class instances, at-
tribute instances and relationship instances created during
the semantic annotation.

1. First of all, the user browses a document by enter-
ing the URL of the web document that he would like
to annotate. This step is quite familiar from existing
browsers.

2. Then the user selects a text fragment by highlighting
it and takes a look on the ontology which �ts in the
topic and is therefore loaded and visible in ontology
browser.

7http://www-db.stanford.edu/�melnik/rdf/api.html
8http://www.semanticweb.org/ontologies/

3. There are two possibilities for the text fragment to

be annotated: as an instance or as an property. In the
case of an instance, the user selects in the ontology the
class where the text fragment �ts in, e.g. if he has the
text fragment "Siegfried Handschuh", he would select
the class "PhD Student". By clicking on the class, the
annotation gets created and thus the text fragment

will be shown as an instance of the selected class in
the ontology at the ontology browser.

4. To each created instance, literal attributes can be as-
signed. The choice of the prede�ned attributes de-
pends on the class the instance belongs to, e.g. the
class "PhD Student" has the attributes name, address,
email, and telephone number. The attributes can be

assigned to the instance by highlighting the appropri-
ate text fragment of the web document and dragging
it to the related property �eld.

5. Furthermore, the relationships between the created in-
stances can be set, e.g. the PhD Student Siegfried
Handschuh "works at" the OntoAgent project and "is
supervised" by Rudi Studer. Ont-O-Mat preselects

class instances according to the range restrictions of
the chosen relation, e.g. the "works at" of a PhD Stu-
dent must be an Project. Therefore only Projects are
o�ered as potential �llers to the "works at" relation of
Siegfried.

5. COMPARISON WITH RELATED WORK
CREAM can be compared along three dimensions: First,

it is a framework for mark-up in the Semantic Web. Second,
it can be considered as a particular knowledge acquisition
framework vaguely similar like Prot�eg�e-2000[6]. Third, it is
certainly an annotation framework, though with a di�erent
focus than ones like Annotea [13].

5.1 Knowledge Markup in the Semantic Web
We know of three major systems that intensively use know-

ledge markup in the Semantic Web, viz. SHOE [10], On-

tobroker [3] and WebKB [19]. All three of them rely on
knowledge in HTML pages.
They all started with providing manual mark-up by ed-

itors. However, our experiences (cf. [5]) have shown that
text-editing knowledge mark-up yields extremely poor re-

sults, viz. syntactic mistakes, improper references, and all
the problems sketched in the introduction.
The approaches from this line of research that are closest

to CREAM is the SHOE Knowledge Annotator9 .
The SHOE Knowledge Annotator is a Java program that

allows users to mark-up webpages with the SHOE ontology.

The SHOE system [17] de�nes additional tags that can be
embedded in the body of HTML pages. The Knowledge An-
notater is less user friendly compared with our implemen-
tation Ont-O-Mat. It shows the ontology in some textual
lists, whereas Ont-O-Mat gives a graphical visualization of
the ontologies. Furthermore, in SHOE there is no direct re-

lationship between the new tags and the original text of the
page, i.e. SHOE tags are not annotations in a strict sense.

9http://www.cs.umd.edu/projects/plus/SHOE/
KnowledgeAnnotator.html

Figure 3: Ont-O-Mat Screenshot.

5.2 Comparison with Knowledge Acquisition
Frameworks

The CREAM framework is specialized for creating class
and property instances and for populating HTML pages
with them. Thus, it does not function as an ontology editor,

but rather like the instance acquisition phase in the Prot�eg�e-
2000 framework [6]. The obvious di�erence of CREAM to
the latter is that Protege does not (and does not intend
to) support the particular web setting, viz. managing and
displaying web pages.

5.3 Comparison with Annotation Frameworks
There are a lot of | even commercial | annotation tools

like ThirdVoice10, Yawas [4], CritLink [23] and Annotea
(Amaya) [13].
These tools all share the idea of creating a kind of user

comment on the web pages. The term \annotation" in these
frameworks is understood as a remark to an existing docu-

ment. As mentioned before, we would model such remarks
as attribute instances only in our framework. For instance,
a user of these tools might attach a note like "A really nice
professor!" to the name \Studer" on a web page.

10http://www.thirdvoice.com

Annotea actually goes one step further. It allows to rely
on an RDF schema as a kind of template that is �lled by the
annotator. For instance, Annotea users may use a schema
for Dublin Core and �ll the author-slot of a particular doc-
ument with a name. This annotation, however, is again
restricted to attribute instances. The user may also decide

to use complex RDF descriptions instead of simple strings
for �lling such a template. However, he then has no further
support from Amaya that helps him providing syntactically
correct statements with proper references.
To summarize, CREAM is used to generate really machine-

understandable data and addresses all the problems that

come from this objective: relational metadata, proper refer-
ence and consistency.

6. CONCLUSION AND FUTURE PLANS
CREAM is a comprehensive framework for creating an-

notations, relational metadata in particular | the founda-
tion of the future Semantic Web. The framework comprises
inference services, crawler, document management system,
ontology guidance, and document viewers.
Ont-O-Mat is the reference implementation of CREAM

framework. The implementation supports so far the user

with the task of creating and maintaining ontology-based

DAML+OIL markups, i.e. creating of class, attribute and
relationship instances. Ont-O-Mat include an ontology browser
for the exploration of the ontology and instances and a
HTML browser that will display the annotated parts of the
text. Ont-O-Mat is Java-based and provide a plugin inter-
face for extensions for further advancement.

Our goal is a constant advancement of Ont-O-Mat and
the CREAM framework in order to answer basic problems
that come with semantic annotation.
We are already dealing with many di�erent issues and

through our practical experiences we could identify problems
that are most relevant in our scenario/settings, KA2 and

Time2Research. Nevertheless our analysis of the general
problem is far from being complete. Some further important
issues we want to mention here are:

� Information Extraction: We have done some �rst
steps to incorporate information extraction. However,
our future experiences will have to show how and how
well information extraction integrates with semantic

annotation.

� Multimedia Annotation: This requires considera-
tions about time, space and synchronization.

� Changing Ontologies: Ontologies on the web have
characteristics that in
uence the annotation process.
He
in & Hendler [11] have elaborated on changes that

a�ect annotation. Future annotation tools will have to
incorporate solutions for the diÆculties they consider.

� Active Ontology Evolvement: Annotation should
feed back into the actual ontologies, because annota-
tors may �nd that they should consider new know-
ledge, but need revised ontologies for this purpose.

Thus, annotation a�ects ontology engineering and on-
tology learning.

Our general conclusion is that providing semantic annota-
tion, relational metadata in particular, is an important com-
plex task that needs comprehensive support. Our framework
CREAM and our tool Ont-O-Mat have already proved very
successful in leveraging the annotation process. They still

need further re�nement, but they are unique in their design
and implementation.

7. ACKNOWLEDGEMENTS.
The research presented in this paper would not have been

possible without our colleagues and students at the Insti-

tute AIFB, University of Karlsruhe, and Ontoprise GmbH.
We thank Kalvis Apsitis (now: RITI Riga Information Tech-
nology Institute), Stefan Decker (now: Stanford University),
Michael Erdmann, Mika Maier-Collin, Leo Meyer and Tanja
Sollazzo. Research for this paper was partially �nanced by
US Air Force in the DARPA DAML project \OntoAgents"

(01IN901C0).

8. REFERENCES
[1] R. Benjamins, D. Fensel, and S. Decker. KA2:

Building Ontologies for the Internet: A Midterm
Report. International Journal of Human Computer
Studies, 51(3):687, 1999.

[2] S. Decker, D. Brickley, J. Saarela, and J. Angele. A

Query and Inference Service for RDF. In Proceedings
of the W3C Query Language Workshop (QL-98),
http://www.w3.org/TandS/QL/QL98/, Boston, MA,
December 3-4, 1998.

[3] S. Decker, M. Erdmann, D. Fensel, and R. Studer.
Ontobroker: Ontology Based Access to Distributed
and Semi-Structured Information. In R. Meersman
et al., editors, Database Semantics: Semantic Issues
in Multimedia Systems, pages 351{369. Kluwer
Academic Publisher, 1999.

[4] L. Denoue and L. Vignollet. An annotation tool for
web browsers and its applications to information
retrieval. In In Proceedings of RIAO2000, Paris, April
2000. http://www.univ-

savoie.fr/labos/syscom/Laurent.Denoue/riao2000.doc.

[5] M. Erdmann, A. Maedche, H.-P. Schnurr, and Ste�en
Staab. From manual to semi-automatic semantic
annotation: About ontology-based text annotation

tools. In P. Buitelaar & K. Hasida (eds). Proceedings
of the COLING 2000 Workshop on Semantic
Annotation and Intelligent Content, Luxembourg,
August 2000.

[6] H. Eriksson, R. Fergerson, Y. Shahar, and M. Musen.
Automatic generation of ontology editors. In
Proceedings of the 12th Ban� Knowledge Acquisition
Workshop, Ban�, Alberta, Canada, 1999.

[7] Reference description of the daml+oil (march 2001)
ontology markup language.
http://www.daml.org/2001/03/reference.html, March
2001.

[8] T. R. Gruber. A Translation Approach to Portable
Ontology Speci�cations. Knowledge Acquisition,
6(2):199{221, 1993.

[9] Siegfried Handschuh. Ontoplugins { a
exible

component framework. Technical report, University of
Karlsruhe, May 2001.

[10] J. He
in and J. Hendler. Searching the web with shoe.
In Arti�cial Intelligence for Web Search. Papers from
the AAAI Workshop. WS-00-01, pages 35{40. AAAI
Press, 2000.

[11] J. He
in, J. Hendler, and S. Luke. Applying Ontology
to the Web: A Case Study. In Proceedings of the
International Work-Conference on Arti�cial and
Natural Neural Networks, IWANN'99, 1999.

[12] Dublin Core Metadata Initiative.
http://purl.oclc.org/dc/, April 2001.

[13] J. Kahan, M. Koivunen, E. Prud'Hommeaux, and
R. Swick. Annotea: An Open RDF Infrastructure for
Shared Web Annotations. In Proc. of the WWW10
International Conference. Hong Kong, 2001.

[14] M. Kifer, G. Lausen, and J. Wu. Logical foundations
of object-oriented and frame-based languages. Journal
of the ACM, 42, 1995.

[15] J. Klotzbuecher. Ontowrapper. Master's thesis,
University of Karlsruhe, to appear 2001.

[16] N. Kushmerick. Wrapper Induction: EÆciency and
Expressiveness. Arti�cial Intelligence, 118(1), 2000.

[17] S. Luke, L. Spector, D. Rager, and J. Hendler.
Ontology-based Web Agents. In Proceedings of First
International Conference on Autonomous Agents,
1997.

[18] A. Maedche and S. Staab. Ontology learning for the

semantic web. IEEE Intelligent Systems, 16(2), 2001.

[19] P. Martin and P. Eklund. Embedding Knowledge in
Web Documents. In Proceedings of the 8th Int. World
Wide Web Conf. (WWW`8), Toronto, May 1999,
pages 1403{1419. Elsevier Science B.V., 1999.

[20] MUC-7 | Proceedings of the 7th Message
Understanding Conference.
http://www.muc.saic.com/, 1998.

[21] S. Staab and A. Maedche. Knowledge portals |
ontologies at work. AI Magazine, 21(2), Summer 2001.

[22] S. Staab, A. Maedche, and S. Handschuh. Creating

metadata for the semantic web: An annotation
framework and the human factor. Technical Report
412, Institute AIFB, University of Karlsruhe, 2001.

[23] Ka-Ping Yee. CritLink: Better Hyperlinks for the

WWW, 1998. http://crit.org/ ping/ht98.html.

