
Level Mapping Characterizations of Selector
Generated Models for Logic Programs

Pascal Hitzler1? and Sibylle Schwarz2

1 AIFB, Universität Karlsruhe (TH)
email: hitzler@aifb.uni-karlsruhe.de

2 Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg
email: schwarzs@informatik.uni-halle.de

Abstract. Assigning semantics to logic programs via selector generated
models (Schwarz 2002/2003) extends several semantics, like the stable,
the inflationary, and the stable generated semantics, to programs with
arbitrary formulae in rule heads and bodies. We study this approach by
means of a unifying framework for characterizing different logic program-
ming semantics using level mappings (Hitzler and Wendt 200x, Hitzler
2003), thereby supporting the claim that this framework is very flexible
and applicable to very diversely defined semantics.

1 Introduction

Hitzler and Wendt [8, 10, 11] have recently proposed a unifying framework for
different logic programming semantics. This approach is very flexible and allows
to cast semantics of very different origin and style into uniform characterizations
using level mappings, i.e. mappings from atoms to ordinals, in the spirit of
the definition of acceptable programs [2], the use of stratification [1, 14] and
a characterization of stable models by Fages [3]. These characterizations display
syntactic and semantic dependencies between language elements by means of
the preorders on ground atoms induced by the level mappings, and thus allow
inspection of and comparison between different semantics, as exhibited in [8, 10,
11].

For the syntactically restricted class of normal logic programs, the most im-
portant semantics — and some others — have already been characterized and
compared, and this was spelled out in [8, 10, 11]. Due to the inherent flexibility
of the framework, it is clear that studies of extended syntax are also possible,
but have so far not been carried out. In this paper, we will present a non-trivial
technical result which provides a first step towards a comprehensive comparative
study of different semantics for logic programs under extended syntax.
? The first named author acknowledges support by the German Federal Ministry of

Education and Research under the SmartWeb project, and by the European Union
under the KnowledgeWeb Network of Excellende. He also acknowledges the hospi-
tality of the Graduiertenkolleg Wissensrepräsentation at the University of Leipzig,
Germany, while working on a first draft of this paper.

Table 1. Notions of specific types of rules.

rule is called set condition

definite LP body(r) ∈ Lg ({∧, t}, A) and head(r) ∈ A
normal NLP body(r) ∈ Lg ({∧, t}, Lit (A)) and head(r) ∈ A

head-atomic HALP body(r) ∈ Lg
`
Σcl, A

´
and head(r) ∈ A

pos. head disj. DLP+ body(r) ∈ Lg ({∧, t}, Lit (A)) and head(r) ∈ Lg ({∨}, A)
disjunctive DLP body(r) ∈ Lg ({∧, t}, Lit (A)), head(r) ∈ Lg ({∨, f}, Lit (A))

head-disjunctive HDLP body(r) ∈ Lg
`
Σcl, A

´
, head(r) ∈ Lg ({∨, f}, Lit (A))

generalized GLP no condition

More precisely, among the many proposals for semantics for logic programs
under extended syntax we will study a very general approach due to Schwarz
[15, 16]. In this framework, arbitrary formulae are allowed in rule heads and
bodies, and it encompasses the inflationary semantics [12], the stable semantics
for normal and disjunctive programs [5, 13], and the stable generated semantics
[7]. It can itself be understood as a unifying framework for different semantics.

In this paper, we will provide a single theorem — and some corollaries thereof
— which gives a characterization of general selector generated models by means
of level mappings. It thus provides a link between these two frameworks, and
implicitly yields level mapping characterizations of the semantics encompassed
by the selector generated approach.

The plan of the paper is as follows. In Section 2 we will fix preliminaries and
notation. In Section 3 we will review selector generated models as introduced
in [15, 16]. In Section 4, we present our main result, Theorem 4, which gives a
level-mapping characterization of general selector generated models in the style
of [8, 10, 11]. In Section 5 we study corollaries from Theorem 4 concerning specific
cases of interest encompassed by the result. We eventually conclude and discuss
further work in Section 6.

2 Preliminaries

Throughout the paper, we will consider a language L of propositional logic
over some set of propositional variables, or atoms, A, and connectives Σcl =
{¬,∨,∧, t, f}, as usual. A rule r is a pair of formulae from L denoted by ϕ⇒ ψ.
ϕ is called the body of the rule, denoted by body(r), and ψ is called the head of
the rule, denoted by head(r). A program is a set of rules. A literal is an atom
or a negated atom, and Lit (A) denotes the set of all literals in L. For a set of
connectives C ⊆ Σcl we denote by Lg (C,A) the set of all formulae over L in
which only connectives from C occur.

Further terminology is introduced in Table 1. The abbreviations in the second
column denote the sets of all rules with the corresponding property. A program
containing only definite (normal, etc.) rules is called definite (normal, etc.).
Programs not containing the negation symbol ¬ are called positive. Facts are
rules r where body(r) = t, denoted by ⇒ head(r).

The base BP is the set of all atoms occurring in a program P . A two-valued
interpretation of a program P is represented by a subset of BP , as usual. By IP

we denote the set of all interpretations of P . It is a complete lattice with respect
to the subset ordering ⊆. For an interpretation I ∈ IP , we define ↑ I = {J ∈
IP | I ⊆ J} and ↓ I = {J ∈ IP | J ⊆ I}. [I, J] = ↑ I ∩ ↓ J is called an interval
of interpretations.

The model relation M |= ϕ for an interpretation M and a propositional
formula ϕ is defined as usual in propositional logic, and Mod(ϕ) denotes the set
of all models of ϕ. Two formulae ϕ and ψ are logically equivalent, written ϕ ≡ ψ,
iff Mod(ϕ) = Mod(ψ).

A formula ϕ is satisfied by a set J ⊆ IP of interpretations if each interpre-
tation J ∈ J is a model of ϕ. For a program P , a set J ⊆ IP of interpretations
determines the set of all rules which fire under J, formally fire(P,J) = {r ∈ P |
∀J ∈ J : J |= body(r)}. An interpretation M is called a model of a rule r (or
satisfies r) if M is a model of the formula ¬body(r)∨ head(r). An interpretation
M is a model of a program P if it satisfies each rule in P .

For conjunctions or disjunctions ϕ of literals, ϕ+ denotes the set of all atoms
occurring positively in ϕ, and ϕ− contains all atoms that occur negated in ϕ. For
instance, for the formula ϕ = (a ∧ ¬b ∧ ¬a) we have ϕ+ = {a} and ϕ− = {a, b}.
In heads ϕ consisting only of disjunctions of literals, we always assume without
loss of generality that ϕ+ ∩ ϕ− = ∅.

If ϕ is a conjunction of literals, we abbreviate M |=
∧

a∈ϕ+ a (i.e. ϕ+ ⊆ M)
by M |= ϕ+ and M |=

∧
a∈ϕ− ¬a (i.e. ϕ− ∩ M = ∅) by M |= ϕ−, abusing

notation. If ϕ is a disjunction of literals, we write M |= ϕ+ for M |=
∨

a∈ϕ+ a

(i.e. M ∩ ϕ+ 6= ∅) and M |= ϕ− for M |=
∨

a∈ϕ− ¬a (i.e. ϕ− 6⊆M).
By iterative application of rules from a program P ⊆ GLP starting in the

least interpretation ∅ ∈ IP , we can create monotonically increasing (transfinite)
sequences of interpretations of the program P , as follows.

Definition 1. A (transfinite) sequence C of length α of interpretations of a
program P ⊆ GLP is called a P -chain iff

(C0) C0 = ∅,
(Cβ) Cβ+1 ∈ Min(↑Cβ ∩ Mod(head(Qβ))) for some set of rules Qβ ⊆ P and

for all β with β + 1 < α, and
(Cλ) Cλ =

⋃
{Cβ | β < λ} for all limit ordinals λ < α.

CP denotes the collection of all P -chains.

Note that all P -chains increase monotonically with respect to ⊆.

3 Selector generated models

In [15, 16], a framework for defining declarative semantics of generalized logic
programs was introduced, which encompasses several other semantics, as already
mentioned in the introduction. Parametrization within this framework is done
via so-called selector functions, defined as follows.

Definition 2. A selector is a function Sel : CP × IP → 2IP , satisfying ∅ 6=
Sel(C, I) ⊆ [I, sup(C)] for all P -chains C and each interpretation I ∈ ↓ sup(C).

We use selectors Sel to define nondeterministic successor functions ΩP on
IP , as follows.

Definition 3. Given a selector Sel : CP × IP → 2IP and a program P , the
function ΩP : (CP × IP → 2IP)×CP × IP → 2IP is defined by

ΩP (Sel, C, I) = Min ([I, sup (C)] ∩Mod (head (fire (P,Sel (C, I))))) .

Example 1. In this paper, we will have a closer look at the following selectors.

lower bound selector Sell(C, I) = {I}
lower and upper bound selector Sellu(C, I) = {I, sup(C)}
interval selector Seli(C, I) = [I, sup(C)]
chain selector Selc(C, I) = [I, sup(C)] ∩ C

With the first two arguments (the selector Sel and the chain C) fixed, the
function ΩP (Sel, C, I) can be understood as a nondeterministic consequence op-
erator. Iteration of the function ΩP (Sel, C, ·) from the least interpretation ∅
creates sequences of interpretations. This leads to the following definition of
(P,M,Sel)-chains.

Definition 4. A (P,M,Sel)-chain is a P -chain satisfying

(C sup) M = sup(C) and
(CβSel) Cβ+1 ∈ ΩP (Sel, C, Cβ) for all β, where β+ 1 < κ and κ is the length of

the transfinite sequence C.

Thus, (P,M,Sel)-chains are monotonically increasing sequences C of inter-
pretations of P , that reproduce themselves by iterating ΩP . Note that this def-
inition is non-constructive.

The main concept of the selector semantics is fixed in the following definition.

Definition 5. A model M of a program P ⊆ GLP is Sel-generated if and only
if there exists a (P,M,Sel)-chain C. The Sel-semantics of the program P is the
set ModSel(P) of all Sel-generated models of P .

Example 2. The program P = {⇒ a, a ⇒ b, (a ∨ ¬c) ∧ (c ∨ ¬a) ⇒ c} has the
only Sell-generated model {a, b, c}, namely via the chain C1 = (∅ 1,3→ {a, c} 2→
{a, b, c})), where the rules applied in each step are denoted above the arrows.
{a, b} and {a, b, c} are Sellu-generated (and Selc-generated) models, namlely via
the chains C2 = (∅ 1→ {a} 2→ {a, b}) and C1). {a, b} is the only Seli-generated
model of P , namely via C2.

Some properties of semantics generated by the selectors in Example 1 were
studied in [15]. In Section 5, we will make use of the following results from [15].

Theorem 1 ([16]).

1. For definite programs P ⊆ DLP, the unique element contained in Modl(P) =
Modlu(P) = Modc(P) = Modi(P) is the least model of P .

2. For normal programs P ⊆ NLP, the unique element of Modl(P) is the infla-
tionary model of P (as introduced in [12]).

3. For normal programs P ⊆ NLP, the set Modlu(P) = Modc(P) = Modi(P)
contains exactly all stable models of P (as defined in [5]).

4. For disjunctive programs P ⊆ DLP+, the minimal elements in Modlu(P) =
Modc(P) = Modi(P) are exactly all stable models of P (as defined in [13]),
but for generalized programs P ⊆ GLP, the sets Modlu(P), Modc(P), and
Modi(P) may differ.

5. For generalized programs P ⊆ GLP, Modi(P) is the set of stable generated
models of P (as defined in [7]). ut

This shows that the framework of selector semantics covers some of the most
important declarative semantics for normal logic programs. Selector generated
models provide a natural extension of these semantics to generalized logic pro-
grams and allow systematic comparisons of many new and well-known semantics.

4 Selector generated models via level mappings

In [8, 10, 11], a uniform approach to different semantics for logic programs was
given, using the notion of level mapping, as follows.

Definition 6. A level mapping for a logic program P ⊆ GLP is a function
l : BP → α, where α is an ordinal.

In order to display the style of level-mapping characterizations for semantics,
we cite two examples which we will further discuss later on.

Theorem 2 ([11]). Every definite program P ⊆ LP has exactly one model M ,
such that there exists a level mapping l : BP → α satisfying

(Fd) for every atom a ∈ M there exists a rule
∧

b∈B b ⇒ a ∈ P such that
B ⊆M and max {l(b) | b ∈ B} < l(a).

Furthermore, M coincides with the least model of P . ut

Theorem 3 ([4]). Let P be a normal program and M be an interpretation for
P . Then M is a stable model of P iff there exists a level mapping l : BP → α
satisfying

(Fs) for each atom a ∈M there exists a rule r ∈ P with head(r) = a, body(r)+ ⊆
M , body(r)− ∩M = ∅, and max {l(b) | b ∈ body(r)+} < l(a). ut

It is evident, that among the level mappings satisfying the respective condi-
tions in Theorems 2 and 3, there exist pointwise minimal ones.

We set out to prove a general theorem which characterizes selector generated
models by means of level mappings, in the style of the results displayed above.
The following notion will ease notation considerably.

Definition 7. For a level mapping l : BP → α for a program P ⊆ GLP and an
interpretation M ⊆ BP , the elements of the (transfinite) sequence Cl,M consist-
ing of interpretations of P are for all β < α defined by

Cl,M
β = {a ∈M | l(a) < β} = M ∩

⋃
γ<β

l−1(γ).

Remark 1. Definition 7 implies that

1. the (transfinite) sequence Cl,M is monotonically increasing,
2. Cl,M

0 = ∅, and
3. M =

⋃
β<α Cl,M

β = sup Cl,M .

The following Theorem provides a mutual translation between the definition
of selector semantics and a level mapping characterization.

Theorem 4. Let P ⊆ HDLP be a head disjunctive program and M ∈ IP . Then
M is a Sel-generated model of P iff there exists a level mapping l : BP → α
satisfying the following properties.

(L1) M = sup
(
Cl,M

)
∈ Mod (P).

(L2) For all β with β + 1 < α we have

Cl,M
β+1 \ Cl,M

β ∈ Min
{
J ∈ IP

∣∣∣∣J |= head
(
R

(
Cl,M

β , J
))+

}
, where

R
(
Cl,M

β , J
)

=

{
r ∈ fire

(
P,Sel

(
Cl,M ,Cl,M

β

)) ∣∣∣∣∣Cl,M
β 6|= head (r)+ and
J ∪ Cl,M

β 6|= head (r)−

}
.

(L3) For all limit ordinals λ < α we have Cl,M
λ =

⋃
β<λ Cl,M

β .

The proof of Theorem 4 is omitted for space limitations. It is rather involved
and technical, and can be found in detail in [9]

Remark 2. As P is a head disjunctive program, we have Cl,M
β 6|= head (r)+ iff

head (r)+ ∩ Cl,M
β = ∅, and J ∪ Cl,M

β 6|= head (r)− iff head (r)− ⊆ J ∪ Cl,M
β , thus

R
(
Cl,M

β , J
)

=

{
r ∈ fire

(
P,Sel

(
Cl,M ,Cl,M

β

)) ∣∣∣∣∣head (r)+ ∩ Cl,M
β = ∅ and

head (r)− ⊆ J ∪ Cl,M
β

}
.

Also note that for every rule r ∈ fire
(
P,Sel

(
Cl,M ,Cl,M

β

))
\ R

(
Cl,M

β , J
)
, we

have ↓
(
Cl,M

β ∪ J
)
⊆ Mod

(
head (r)−

)
or ↑Cl,M

β ⊆ Mod
(
head (r)+

)
. Thus all

of these rules are satisfied in the interval
[
Cl,M

β ,Cl,M
β ∪ J

]
.

For all selectors Sel, it was shown in [15] that the Sel-semantics of programs in
GLP is invariant with respect to the following transformations: the replacement
(→eq) of the body and the head of a rule by logically equivalent formulae and the

splitting (→hs) of conjunctive heads, more precisely the replacement P ∪ {ϕ ⇒
ψ ∧ ψ′} →hs P ∪ {ϕ⇒ ψ,ϕ⇒ ψ′}.

Since every formula head(r) is logically equivalent to a formula in conjunc-
tive normal form, each selector sematics ModSel of a generalized program P is
equivalent to the selector semantics ModSel of all head disjunctive programs Q
where P →∗

eq,hs Q. Note that in the transformation →∗
eq,hs, no shifting of subfor-

mulas between the body and the head of a rule is involved. Therefore, Theorem 4
immediately generalizes to our main result.

Corollary 1. Let P be a generalized program and M an interpretation of P .
Then M is a Sel-generated model of P iff for any head disjunctive program Q
with P →∗

eq,hs Q there exists a level mapping l : BQ → α satisfying (L1), (L2)
and (L3) of Theorem 4. ut

5 Corollaries

We can now apply Theorem 4 in order to obtain level mapping characterizations
for every semantics generated by a selector, in particular for those semantics
generated by the selectors defined in Example 1 and listed in Theorem 1. For
syntactically restricted programs, we can furthermore simplify the properties
(L1),(L2) and (L3) in Theorem 4. Alternative level mapping characterizations
for some of these semantics were already obtained directly in [11].

Programs with positive disjunctions in all heads

For rules r ∈ HDLP, where head(r) is a disjunction of atoms, we have head(r)− =
∅. Hence we have head(r)− ⊆ I, i.e. I 6|= head(r)−, for all interpretations I ∈ IP .
Thus the set R

(
Cl,M

β , J
)

from (L2) in Theorem 4 can be specified by

R
(
Cl,M

β , J
)

=
{
r ∈ fire

(
P,Sel

(
Cl,M ,Cl,M

β

))
| Cl,M

β 6|= head(r)+
}
.

We furthermore observe that the set R
(
Cl,M

β , J
)

does not depend on the inter-
pretation J , so we obtain

R′
(
Cl,M

β

)
=

{
r ∈ fire

(
P,Sel

(
Cl,M ,Cl,M

β

))
| Cl,M

β ∩ head(r)+ = ∅
}

and hence

Min
{
J ∈ IP

∣∣∣∣J |= head
(
R

(
Cl,M

β , J
))+

}
= Min

(
Mod

(
head

(
R′

(
Cl,M

β

))))
.

Thus for programs containing only rules whose heads are disjunctions of
atoms we can rewrite condition (L2) in Theorem 4, as follows:

(L2d) for every β with β + 1 < α:

Cl,M
β+1 \ Cl,M

β ∈ Min
(
Mod

(
head

(
R′

(
Cl,M

β

))))
,where

R′
(
Cl,M

β

)
=

{
r ∈ fire

(
P,Sel

(
Cl,M ,Cl,M

β

)) ∣∣∣Cl,M
β ∩ head(r)+ = ∅

}
.

Programs with atomic heads

Single atoms are a specific kind of disjunctions of atoms. Hence for programs
with atomic heads we can replace condition (L2) in Theorem 4 by (L2d), and
further simplify it as follows.

For rules with atomic heads we have head ({r ∈ P | head(r) 6∈ I}) = head(P)\
I and therefore

head
(
R′

(
Cl,M

β

))
= head

({
r ∈ fire

(
P,Sel

(
Cl,M ,Cl,M

β

))
| head(r) ∩ Cl,M

β = ∅
})

= head
({
r ∈ fire

(
P,Sel

(
Cl,M ,Cl,M

β

))
| head(r) 6∈ Cl,M

β

})
= head

(
fire

(
P,Sel

(
Cl,M ,Cl,M

β

)))
\ Cl,M

β .

Because all formulae in head(P) are atoms we obtain

Min
(
Mod

(
head

(
R′

(
Cl,M

β

))))
= Min

(
↑

(
head

(
R′

(
Cl,M

β

))))
=

{
head

(
R′

(
Cl,M

β

))}
and this allows us to simplify (L2) in Theorem 4 to the following:

(L2a) for each β with β + 1 < α:

Cl,M
β+1 \ Cl,M

β = head
(
fire

(
P,Sel

(
Cl,M ,Cl,M

β

)))
\ Cl,M

β .

Inflationary models From Section 3 we know that for normal programs P
the selector Sell generates exactly the inflationary model of P as defined in [12].
The generalizations of the definition of inflationary models and this result to
head atomic programs are immediate. From [16] we also know that every Sell-
generated model is generated by a (P,M,Sell)-chain of length ω. Thus level
mappings l : BP → ω are sufficient to characterize inflationary models of head
atomic programs. In this case, condition (L3) applies only to the limit ordinal
0 < ω. But by remark 1, all level mappings satisfy this property. Therefore we
do not need condition (L3) in the characterization of inflationary models.

Using Theorem 4 and the considerations above, we obtain the following char-
acterization of inflationary models.

Corollary 2. Let P ⊆ HALP be a head atomic program and M be an inter-
pretation for P . Then M is the inflationary model of P iff there exists a level
mapping l : BP → ω with the following properties.

(L1) M = sup
(
Cl,M

)
∈ Mod(P).

(L2i) for all n < ω: Cl,M
n+1 \ Cl,M

n = head
(
fire

(
P,Cl,M

n

))
\ Cl,M

n . ut

Normal programs

For normal programs, the heads of all rules are single atoms. Hence the simpli-
fication (L2a) of condition (L2) in Theorem 4 applies for all selector generated
semantics for normal programs.

The special structure of the bodies of all rules in normal programs allows an
alternative formulation of (L2a). In every normal rule, the body is a conjunc-
tion of literals. Thus for any set of interpretations J we have J |= body(r) iff
body(r)+ ⊆ J and body(r)− ∩ J = ∅ for all interpretations J ∈ J.

Stable models We develop next a characterization for stable models of normal
programs, as introduced in [5]. The selector Sellu generates exactly all stable
models for normal programs. In [16], it was also shown that all Sellu-generated
models M of a program P are generated by a (P,M,Sel)-chain of length ≤ ω. So
for the same reasons as discussed for inflationary models, level mappings with
range ω are sufficient to characterize stable models and condition (L3) can be
neglected.

For a normal rule r and two interpretations I,M ∈ IP with I ⊆ M we
have {I,M} |= body(r), i.e. I |= body(r) and M |= body(r), iff body(r)+ ⊆ I
and body(r)− ∩ M = ∅. Combining this with (L2a) we obtain the following
characterization of stable models for normal programs.

Corollary 3. Let P ⊆ NLP be a normal program and M an interpretation for
P . Then M is a stable model of P iff there exists a level mapping l : BP → ω
satisfying the following properties:

(L1) M = sup
(
Cl,M

)
∈ Mod(P).

(L2s) for all n < ω:

Cl,M
n+1\Cl,M

n = head
({
r ∈ P | body(r)+ ⊆ Cl,M

n , body(r)− ∩M = ∅
})
\Cl,M

n . ut

Comparing this with Theorem 3, we note that both theorems characterize
the same set of models. Thus for a model M of P there exists a level mapping
l : BP → ω satisfying (L1) and (L2s) iff there exists a level mapping l : BP → α
satisfying (Fs). The condition imposed on the level mapping in Theorem 3,
however, is weaker than the condition in Corollary 3, because level mappings
defined by (P,M,Sel)-chains are always pointwise minimal.

Definite programs

In order to characterize the least model of definite programs, we can further
simplify condition (L2) in Theorem 4. Definite programs are a particular kind
of head atomic programs. For definite programs, the inflationary and the least
model coincide. We can replace condition (L2) in Theorem 4 by (L2i) in Corol-
lary 2. Since the body of every definite rule is a conjunction of atoms we obtain

fire(P, I) =
{
r ∈ P | body(r)+ ⊆ I

}
for every interpretation I ∈ IP . Thus we get the following result.

Corollary 4. Let P ⊆ LP be a definite program and let M be an interpretation
for P . Then M is the least model of P iff there exists a level mapping l : BP → ω
satisfying the following conditions.

(L1) M = sup
(
Cl,M

)
∈ Mod(P).

(L2l) for all n < ω: Cl,M
n+1 \Cl,M

n = head
({
r ∈ P | body(r)+ ⊆ Cl,M

n

})
\Cl,M

n ut

Comparing this to Theorem 2, we note that the relation between the condi-
tions (L2l) and (Fd) are similar to those of the conditions (Fs) und (L2s).

6 Conclusions and Further Work

Our main result, Corollary 1 respectively Theorem 4 in Section 4, provides a
characterization of selector generated models — in general form — by means of
level mappings in accordance with the uniform approach proposed in [8, 10, 11].
As corollaries from this theorem, we have also achieved level mapping charac-
terizations of several semantics encompassed by the selector generated approach
due to [15, 16].

Our contribution is technical, and provides a first step towards a comprehen-
sive comparative study of different semantics of logic programs under extended
syntax by means of level mapping characterizations. Indeed, a very large num-
ber of syntactic extensions for logic programs are currently being investigated in
the community, and even for some of the less fancy proposals there is often no
agreement on the preferable way of assigning semantics to these constructs.

A particularly interesting case in point is provided by disjunctive and ex-
tended disjunctive programs, as studied in [6]. While there is more or less gen-
eral agreement on an appropriate notion of stable model, as given by the notion
of answer set in [6], there exist various different proposals for a corresponding
well-founded semantics, see e.g. [17]. We expect that recasting them by means
of level-mappings will provide a clearer picture on the specific ways of modelling
knowledge underlying these semantics.

Eventually, we expect that the study of level mapping characterizations of
different semantics will lead to methods for extracting other, e.g. procedural,
semantic properties from the characterizations, like complexity or decidability
results.

References

1. Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a theory of
declarative knowledge. In Jack Minker, editor, Foundations of deductive databases
and logic programs. Morgan Kaufmann, Los Altos, US, 1988.

2. Krzysztof R. Apt and Dino Pedreschi. Reasoning about termination of pure Prolog
programs. Information and Computation, 106(1), September 1993.

3. François Fages. Consistency of Clark’s completion and existence of stable models.
Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

4. François Fages. A new fixpoint semantics for general logic programs compared with
the well-founded and the stable model semantics. In Peter Szeredi and David H.D.
Warren, editors, Proceedings of the 7th International Conference on Logic Pro-
gramming (ICLP ’90), Jerusalem, June 1990. MIT Press.

5. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic pro-
gramming. In Robert A. Kowalski and Kenneth Bowen, editors, Proceedings of the
Fifth International Conference on Logic Programming, Cambridge, Massachusetts,
1988. The MIT Press.

6. Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing, 9(3/4), 1991.

7. Heinrich Herre and Gerd Wagner. Stable models are generated by a stable chain.
Journal of Logic Programming, 30(2), February 1997.

8. Pascal Hitzler. Towards a systematic account of different logic programming se-
mantics. In Andreas Günter, Rudolf Kruse, and Bernd Neumann, editors, KI2003:
Advances in Artificial Intelligence. Proceedings of the 26th Annual German Con-
ference on Artificial Intelligence, KI2003, Hamburg, Germany, September 2003,
volume 2821 of Lecture Notes in Artificial Intelligence, pages 355–369. Springer,
Berlin, 2003.

9. Pascal Hitzler and Sibylle Schwarz. Level mapping characterizations of selector gen-
erated models for logic programs. Technical Report WV-04-04, Technische Univer-
sität Dresden, 2004. Available from www.aifb.uni-karlsruhe.de/WBS/phi/pub/wv-
04-04.ps.gz.

10. Pascal Hitzler and Matthias Wendt. The well-founded semantics is a stratified
Fitting semantics. In Matthias Jarke, Jana Koehler, and Gerhard Lakemeyer,
editors, Proceedings of the 25th Annual German Conference on Artificial Intelli-
gence, KI2002, Aachen, Germany, September 2002, volume 2479 of Lecture Notes
in Artificial Intelligence, pages 205–221. Springer, Berlin, 2002.

11. Pascal Hitzler and Matthias Wendt. A uniform approach to logic programming
semantics. Theory and Practice of Logic Programming, 5(1-2):123–159, 2005. To
appear.

12. Phokion G. Kolaitis and Christos H. Papadimitriou. Why not negation by fixpoint?
In PODS ’88. Proceedings of the Seventh ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems: March 21–23, 1988, Austin, Texas, New
York, NY 10036, USA, 1988. ACM Press.

13. Teodor Przymusinski. Stable Semantics for Disjunctive Programs. New Generation
Computing Journal, 9, 1991.

14. Teodor C. Przymusinski. On the declarative semantics of deductive databases and
logic programs. In Jack Minker, editor, Foundations of Deductive Databases and
Logic Programming, pages 193–216. Morgan Kaufmann, Los Altos, CA, 1988.

15. Sibylle Schwarz. Answer sets generated by selector functions. In Proceedings of
the Workshop on Nonmonotonic Reasoning’2002, pages 247–253, Toulouse, 2002.
http://www.tcs.hut.fi/∼ini/nmr2002/schwarz.ps.

16. Sibylle Schwarz. Selektor-erzeugte Modelle verallgemeinerter logischer Pro-
gramme. PhD thesis, Universität Leipzig, 2004. http://www.informatik.uni-
leipzig.de/∼schwarz/ps/thes.ps.gz.

17. Kewen Wang. A comparative study of well-founded semantics for disjunctive logic
programs. In Thomas Eiter, Wolfgang Faber, and Miroslaw Truszczynski, editors,
Logic Programming and Nonmonotonic Reasoning, 6th International Conference,
LPNMR 2001, Vienna, Austria, September 17-19, 2001, Proceedings, volume 2173
of Lecture Notes in Artificial Intelligence, pages 133–146. Springer, 2001.

