
Formation of Service Value Networks for Decentralized
Service Provisioning

Sebastian Speiser1, Benjamin Blau2, Steffen Lamparter1,2, Stefan Tai1,2

1 Institute AIFB, Universität Karlsruhe (TH), Germany
lastname@aifb.uni-karlsruhe.de

2 Karlsruhe Service Research Institute (KSRI), Universität Karlsruhe (TH), Germany
firstname.lastname@ksri.uni-karlsruhe.de

Abstract. The provisioning of complex services requires tight collaboration be-
tween diverse service providers and their customers harmonizing supply and de-
mand chains to a highly flexible, dynamic and decentralized service value net-
work. Peers in such a network autonomously delegate (sub-)tasks which cannot
be done efficiently by themselves to other more suitable peers in their commu-
nity. In this paper, we propose an architecture for such service communities that
features decentralized service provisioning based on current Web technologies. In
this context, we present an algorithm for efficient service value network formation
and show by means of a simulation that sufficiently sized service networks can
fulfill practically all customer requests. When compared to the optimal (central)
case, there is a modest price increase for the customers but the overall welfare
decreases only insignificantly.

1 Introduction

Complex (or composite) services ”typically involve the assembly and invocation of
many pre-existing services possibly found in diverse enterprises [1],” and thus, a net-
work of service providers and consumers. In modern services-led economies, such net-
works increasingly are loosely-coupled configurations of legally independent firms.

The formation of such networks is driven by the value that the network generates for
its customers. With increasing competition and specialization in the services sector, and
the continuous introduction of new services offerings, value-driven network formation
and transformation is of predominant importance. Dynamic service value networks are
often considered as the only strategic alternative to provide complex services [2–5].

Due to low lock-in and lock-out costs, service value networks are characterized
by a high rate of fluctuation of service providers. Monetary barriers for entering and
leaving strategic positions within the network are relatively low compared to traditional
supply chains in product-oriented economies. Such an environment fosters flexible and
interchangeable business relations that co-produce value in a highly dynamic manner.
Service networks describe the possible cooperations between legally independent actors
that enable co-generation of value by fulfilling complex customer requests.

The high degree of flexibility and alteration of business connections in service net-
works implies a vast amount of information regarding participating players and their

interrelations to be available. An efficient collection and management of this informa-
tion in a central repository is however not feasible. It is neither desirable nor possible for
all directly and indirectly connected partners of a network to provide continuous, con-
sistent information to a central repository; central service repositories have found little
acceptance in practice for even less demanding simple service discovery scenarios.

Consequently, this paper analyzes the formation of service value networks in a de-
centralized service provisioning environment. Based on customers’ requests for the
completion of complex tasks, peers in such a network autonomously delegate (sub-)
tasks to other service providers within their partner networks. This iterative process
fosters the evolution of a network-based value generation driven by customers’ needs
and co-opetition of specialized service providers.

In this paper, we propose an architecture for such service networks that features
decentralized service provisioning based on current Web technologies. In this context,
we present an algorithm for efficient service value network formation and show by
means of a simulation that sufficiently sized service networks can fulfill practically all
customer requests. When compared to the optimal (central) case, there is a modest price
increase for the customers but the overall welfare decreases only insignificantly.

The paper is structured as follows. In Section 2 we define our model of composed
services and service value networks. Based thereon in Section 3 we introduce our pro-
posed algorithms for decentralized service provisioning. Section 4 describes a simula-
tion of the algorithms and compares them to centralized approaches. A system archi-
tecture that can be used to implement our approach is presented in Section 5. Related
work is discussed in Section 6 before we finally conclude and give an outlook on future
work in Section 7.

2 Service Value Networks

A customer may have a need for a complex service that no single service provider can
fulfill all by himself. Decomposing the complex service into more basic services that
each can be delivered by at least one provider enables the satisfaction of the customer’s
need. The cooperation of the different providers and the relationship to the customer
form a service value network, as a value is cogenerated by delivering services through
a network of actors.

The received value for the customer is determined by his valuation of the service
minus the price he has to pay. He will only accept an offer if the price is below his
valuation. Providers receive a value given by the received payments minus the payments
to other providers and the internal costs they are imposed when executing a service or
part of it themselves. We want to maximize the welfare in the network which is the
sum of the received values for all participants. A payment results in the same amount of
decreased value for the payer and increased value for the receiver. Therefore payments
are neutral to the welfare, which is only determined by the customers valuation of the
service minus the internal costs of the involved providers. Therefore the goal for the
network is to minimize the internal costs and ensure that the total price is below the
customer’s valuation.

In a centralized approach an algorithm that has access to all providers, their ca-
pabilities and the associated costs can compute optimal service assignments for every
customer request. Since such a central authority has failed in practice, we propose and
analyze a decentralized scenario where a customer sends service requests to a limited
set of providers, which in turn cooperate with a limited set of other providers. Every
provider knows about his capabilities and costs. As he is aiming at making a profit he
will add a margin to his costs and then advertise his capabilities with associated price
functions to his partners. Through these advertisements a provider knows which ser-
vices from his partner he can combine with his own capabilities to form new services
he can deliver. As the provider can also charge money for the delegation of services, it
may be desirable to become a pure service trader, whose business assets are his rela-
tionship to customers and other providers.

In this section we introduce a formal model that is the foundation for the algo-
rithms proposed in Section 3. First we define a service specification which specifies
how atomic services are combined to form more complex composed services. After-
wards service providers and customers are introduced that are connected in service net-
work. For the fulfillment of service requests the network dynamically forms a service
value network (SVN). At last we define the value that is generated by a SVN.

Service Specification Services that cannot be decomposed in smaller sub-services are
called atomic. In contrast a composed service is equivalent to its component services
that can in turn again be atomic or composed. Let S be the set of all services. The set
of ordered pairs ES represents the component relationship meaning that s1 ∈ S is a
component service of s2 ∈ S, iff (s1, s2) ∈ ES . The directed graph GS = (S,ES) is
called service specification. We requireGs to be acyclic. Furthermore we define the two
disjoint sets of atomic services Sa = {s ∈ S | @s′ ∈ S : (s′, s) ∈ ES} and composed
services Sc = {s ∈ S | ∃s′ ∈ S : (s′, s) ∈ ET } = S \Sb. The following functions will
be helpful:

– components(s) = {s′ ∈ S | (s′, s) ∈ ES}, returns all component services of
service s.

– offspring(s) =
⋃

s′∈components(s)
(
{s′} ∪ offspring(s′)

)
, returns recur-

sively all services that are direct or indirect components of s.
– complexity(s) = |({s} ∪ offspring(t)) ∩ Sb|, returns the complexity of a

service, defined as the number of atomic services required to create an equivalent
service.

– fathers(s) = {s′ ∈ S | (s, s′) ∈ ES}, returns the services of which s is a
component.

Service Provider Each service provider p is able to execute the services denoted by
his capability set φp ∈ R. For the execution of a service s ∈ φp the provider is charged
with internal costs, determined by his cost function cp : S −→ R. As a provider aims
at making a profit he charges a price that adds a margin to his costs, given by the
margin function mp : R −→ R. The charged price is given by the function fp(s) =
mp(cp(s)), s ∈ S. The provider is able to subcontract services to a set of cooperating

service providers, denoted as Vp. The costs for p when subcontracting s /∈ φp are given
by cp(s) = minp′∈Vp

fp′(s).
For each service s that a provider p can offer either himself or in cooperation he

maintains the information if the service should be executed or delegated as a whole
or decomposed into its components. This information is represented in the function
dp : S −→ {false, true}, which evaluates to true if the corresponding service should
be decomposed. For all services that should not be decomposed the provider has a
mapping sap : S −→ P that assigns a service to a provider, possibly himself.

Customer Besides service providers that delegate services to subcontractors we con-
sider pure customers that want to consume services but do not provide services them-
selves nor forward requests. Let W be the set of customers. A customer w ∈ W has a
valuation for the services he wants to request, given by his utility function uw : S −→
R. The service providers to which w sends service requests are given by the set Vw.

Service Value Network The relationships between customers, providers and among
providers are represented by the directed graphG = (P∪W,E) where an edge (x, y) ∈
E denotes that x sends requests to y. The edges are given byE = {(x, y) ∈ P×P | y ∈
Vx}∪{(x, y) ∈W×P | y ∈ Vx}. The graphG is called service network. The customer
that requests a service and the providers that are involved in the fulfillment of the request
form a service value network. As this process is invoked for every service request it is
a dynamic formation.

Let P ′ ⊂ P ∪ W be the set of participants in a service value network fulfilling
the request for service s by customer w. Service delegations are represented as tuples
(p1, p2, s) ⊂ P ′×P ′×S, meaning that p1 delegates service s to p2. Internal executions
are also treated as service delegations with p1 = p2. Let E′ be the set of all service del-
egations then the directed graph G′ = (P ′, E′) denotes the service value network. For
the reader’s convenience we define the following three sets for a service value network:

– The customer’s request RG′ = {(w, p, s) ∈ E′ | w ∈W}.
– IG′ = {(p1, p2, s) ∈ E′ | p1 = p2}, containing the internal executions.
– DG′ = E′ \ (RG′ ∪ IG′), the set of service cooperations.

Welfare in Service Value Networks The welfare cogenerated in a service value net-
work is given by the sum of received values for all participants. For a service value
network G′ = (P ′, E′) which serves customer w with service s, we define the welfare
wfG′ as ∑

(w′,p,s′)∈RG′

uw′(s′) +

︸ ︷︷ ︸
customer’s valuation

∑
(p1,p2,s′)∈DG′

fp2(s
′)− fp2(s

′)

︸ ︷︷ ︸
received payments - paid prices

−
∑

(p,p,s′)∈IG′

cp(s′)︸ ︷︷ ︸
internal costs

= uw(s)−
∑

(p,p,s′)∈IG′

cp(s′).

This shows that the welfare is independent of payments and can be maximized if the
internal costs that occur during the execution of a service are minimized. The payments
play however a role as the total price has to be below the customer’s valuation.

3 Network Formation and Service Delivery Algorithms

The algorithms can be divided into two groups. The first initializes and maintains the
data structures a provider keeps to determine the best executions strategies for each
service. Based on this data the second group generates concrete offers upon service
requests.

In the code of the algorithms we use the notation f [x] := y with the meaning that
after this statement, the function f evaluates to y for the argument x.

Algorithm 1 initProvider
Require: Provider p
1: for all s ∈ S do
2: sap[s] := p
3: dp[s] := false
4: if s ∈ φp then
5: fp[s] := mp(cp(s))
6: else
7: cp[s] := ∞
8: end if
9: end for

10: for all s ∈ φp do
11: for all p′ ∈ Vp do
12: notifyProvider(p′ , p , s , fp)
13: end for
14: end for

Every new provider p that joins the service value network executes the function
initProvider (see Algorithm 1). First all services s ∈ S are assigned to p himself
and either get associated costs of ∞, if p cannot deliver the service or the price is set
by adding the margin on the internal costs. Afterwards for all services in the capability
set of the provider a notification is sent to the partner network that p can execute s at a
price determined by the function fp.

A provider p that receives a notification via the function notifyProvider about
the capability of p′ to deliver s at price fp′ , first checks if the new price is better than
his current costs (see Algorithm 2). If this is the case he updates the preferred provider
for the service and sets the costs to the received price. He also updates the price fp(s)
he charges for the service to be the costs plus his margin. Then he calls the function
updateCosts.

This function is provided by Algorithm 3 and first notifies the partner network about
the new capability or respectively the new price. Then it is checked if the updated ser-
vice is part of composed services. In that case for each composed service the sum of

Algorithm 2 notifyProvider
Require: Provider p, Provider p′, Service s, Function fp′

1: if cp(s) > fp′(s) then
2: sap[s] := p′

3: dp[s] := false
4: cp[s] := fp′(s)
5: fp[s] := mp(cp(s))
6: updateCosts(p,s)
7: end if

Algorithm 3 updateCosts
Require: Provider p, Service sc

1: for all p′ ∈ Vp do
2: notifyProvider(p′,p,sc,fp)
3: end for
4: if fathers(sc) <> ∅ then
5: for all s ∈ fathers(sc) do
6: if

P
s′∈components(s) cp(s′) < cp(s) then

7: sap[s] := p
8: dp[s] := true
9: cp[s] :=

P
s′∈components(s) cp(s′)

10: fp[s] := mp(cp(s))
11: updateCosts(p,s)
12: end if
13: end for
14: end if

the prices for the components is compared to the current total price. If a decomposition
is cheaper this is saved in the provider’s data structure and updateCosts is called
recursively for the composed services.

Algorithm 4 makeOffer
Require: Provider p, Service s
Ensure: Price for offering s
1: return mp(getCosts(p, s))

A concrete offer for a service s by provider p is requested by calling the function
makeOffer(p, s), which simply adds p’s margin on his costs for delivering s (see
Algorithm 4). The costs are calculated by the function getCosts (see Algorithm 5)
that distinguishes the following three cases. If s is marked for decomposed execution,
the costs for its components are added by recursively calling getCosts. If p is the
preferred provider for s, the internal costs are taken. Else an offer from the provider
that p has assigned for s is requested.

Algorithm 5 getCosts
Require: Provider p, Service s
Ensure: Costs that p has to spend for delivering s
1: if dp(s) then
2: return

P
s′∈components(s) getCosts(p, s′)

3: else
4: if sap(s) = p then
5: return cp(s)
6: else
7: return makeOffer(sap(s), s)
8: end if
9: end if

Correctness and Scalability Initially a provider assigns all services to himself and
memorizes as costs either his internal costs or infinity for services that he is not capa-
ble of doing. In the succeeding phase the provider broadcasts his capabilities. We can
assume that each provider adds a margin that leads to increasing prices (∀x ∈ R, p ∈
P : mp(x) > x). Therefore at some point providers will dismiss further notifications
based on their price. The notification phase is very similar to the Routing Information
Protocol (RIP) [6]. With RIP routers on the internet exchange information about which
networks they can reach. The costs are measured as the number of intermediary routers
that are used by a router to reach the network. The different network speeds are equiv-
alent to the margins charged by providers. RIP has proven to be correct by operating
reliably the internet and other networks. However it has some scalability issues and is
therefore replaced more and more by link-state based routing protocols, like OSPF [7].
These protocols are not applicable to our problem domain, as they require that providers
can gather complete topological information about the service network, including the
margins of other providers. This is not a realistic option. The scalability issues will not
be a problem in the near future as the service networks are supposed to be much smaller
than the internet.

Routers operating with RIP resend their routing information every 30 seconds and
delete routes that are not confirmed by such resendings. In this way the protocol deals
with the removal of links or routers. This can also be applied to our algorithms in order
to react to price increases or false advertisements. False advertisements are notifications
of providers that they can deliver a service for a given price but always return higher
prices in the offer phase. Other providers can detect such a behavior and remove the
provider from their partner network.

In the offer making phase a provider knows exactly if he should decompose a service
and to which other providers services are delegated. This efficiency for the frequent ser-
vice offers is bought with increased costs for the propagation of changes in the service
value network.

4 Network Simulation

We ran simulations of service value networks in order to compare them to an approach
with a central registry. The following questions are analyzed with the simulation results:

1. What is the performance of the notification algorithm?
2. How many service requests can be fulfilled?
3. How large is the price increase for customers?
4. What is the impact on the welfare?

For the experiment we first create a service specification consisting of ns services.
Composed services have at least 2 and at most 5 components. Each of the np providers
is capable of doing a randomly selected service s with internal costs randomly selected
between 0.2 · complexity(s) and 0.8 · complexity(s). It is insured that every
service has at least one provider. The margin function for a provider p is created by
drawing a random number Mp of the interval [0.1, 0.2] and taking it at as a profit per-
centage:mp(x) = (1+Mp)·x. The partner network is dependent on the chosen density
d. Between the providers ne = d · np(np−1)

2 random partnerships are established. The
customer’s valuation of a service s is given by complexity(s).

For the evaluation of our approach we compare it to the case where a central service
registry exists. This can be modelled as a provider that has partnerships with all other
providers and charges no margin. The registry is able to serve a customer all services
with optimal price. In some comparisons we assume that the registry also knows about
the internal costs of individual providers and can therefore provide service executions
with optimal welfare.

We ran an experiment testing the performance of the algorithm and the quality of
the service value networks as the number of providers grows. For each run we created
a random service specification consisting of ns = 50 services and a random service
network with density d = 0.1. The experiment was run 100 times for each np which
was varied from 50 to 400 in steps of 25 and the averages values of the following
variables were recorded:

– ex(np): decentral execution ratio, meaning the probability that a request to a ran-
dom provider for a random service results in a price that is lower than the valuation
of the service.

– wf dec(np): the average percental welfare decrease when a customer requests a
random provider for a random service, compared to an optimal execution.

– price inc(np): the average percental price increase for a customer requesting a
random provider for a random service, compared to requesting the same service at
a central registry.

– n notifications(np): number of notifications that are sent between providers
until all service pricing information is exchanged.

The values wf dec(np) and price inc(np) are only collected for executable ser-
vices, in order to avoid infinite values. Note that all service offers from the central reg-
istry are priced below the valuation and therefore executable (as the maximum costs 0.8
times the maximum margin 1.2 results in maximum price of 0.96 per atomic service).

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 50 100 150 200 250 300 350 400

se
nt

 n
ot

ifi
ca

tio
ns

n providers

Fig. 1. Number of notifications n notifications(np) until service delegations are stable for
varying np from 50 to 400. Fixed: 50 Services, 0.1 density.

Performance of Algorithm (Question 1) The number of needed notifications in the
experiment is plotted in Figure 1. Our experimental data suggest that it grows with speed
O(n3). As the number of providers also grows, this means an average number ofO(n2)
notifications per provider. Therefore the algorithm can be considered efficient although
it was simulated with sequential notification phases. More realistic is that all providers
concurrently start their notifications, which leads to fewer notifications as there is no
worst-case where each provider one after another notifies about a new best price.

Decentral Execution Ratio (Question 2) In Figure 2 we plot the ratio of executable
customer requests in our experiment. Even with a small number of providers the ratio
is around 80% to 90% and converges with increasing number of providers fast to the
optimal value of 100%. In our experiment from 200 providers on, meaning on average
every service can be executed by 4 providers, almost every request can be fulfilled.

Price Increase for Customer (Question 3) We see in Figure 3 that the price increase
for customers gets smaller with increasing size of the service network. In our simula-
tion there is an inherent reason why a zero price increase is not possible: every provider
can execute himself only one service and therefore has to delegate all other services,
which means for almost all requests at least two providers are involved that both charge
a margin. In the central case we assumed that the registry does not charge money and
can therefore offer the best available price. The operation of such a central registry how-
ever is associated with costs that have to be reimbursed either by charging a margin or

 0.8

 0.85

 0.9

 0.95

 1

 50 100 150 200 250 300 350 400

de
ce

nt
ra

l e
xe

cu
tio

n
ra

tio

n providers

Fig. 2. Decentral execution ratio ex(np) for varying np from 50 to 400. Fixed: 50 Services, 0.1
density.

receiving payments from the service providers which will increase their costs. There-
fore we conclude that with increasing size of the service network the prices get more
competitive when compared to a central registry scenario.

Welfare Decrease (Question 4) The participants in a service network are self-interested.
The proposed algorithms aim at keeping prices low in order to stay competitive while
ensuring that a given margin is earned. Our main concern is how the welfare of a de-
central formed service value network is compared to a centrally planed cooperation.
We observed in the simulation that the welfare decrease behaves similar to the price
increase (see Figure 3). However the decrease is always very small (below 0.6%) even
for small networks.

We showed that the algorithm is efficient and delivers results that are competitive to
a central approach with a registry that operates for free, which is optimal but unrealistic.
Although customers have to pay slightly higher prices, practically all requests can be
fulfilled without a significant welfare decrease. We also observed that a larger service
network is better both for the customer and the overall welfare.

We assumed that the cooperations in a service network are equally distributed. A lot
of real world networks including the internet have links that are power-law distributed
[8]. This means that there are a few nodes with a great number of links and many
nodes with only small numbers of links. Such a link distribution occurs when it is more
probable that new links are created with already heavily linked nodes. This may also
be a realistic assumption for service networks. Customers may prefer sending their

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 50 100 150 200 250 300 350 400

 0.0025

 0.003

 0.0035

 0.004

pr
ic

e
in

cr
ea

se
 fo

r c
us

to
m

er

w
el

fa
re

 d
ec

re
as

e

n providers

price increase
welfare decrease

Fig. 3. Price increase price inc(np) for customer and welfare decrease wf dec(np) for vary-
ing np from 50 to 400. Fixed: 50 Services. 0.1 density.

requests to providers with a large partner network and new providers possibly want to
establish partnerships with large providers in hope of many requests. In future work
we aim at evaluating our algorithms on power-law networks both with simulations and
analytics.

5 System Architecture

In order to realize the algorithms introduced above, we describe a platform aimed at
enabling the agile formation and transformation of service value networks. The platform
is an open distributed system based on service-oriented architecture principles. At its
core is a service middleware, which provides a set of community services and SVN
management services, including implementations of the algorithms introduced. Besides
providing means for community management and task allocation the platform aims
at increasing the connectivity and the size of the service network. As shown by the
simulations in Section 4, this leads to a higher welfare in the network.

In the architecture, a service network is represented as set of digital communities.
Each community consists of members (people, organizations) who know each other and
provide services to or consume services from their neighbors by means of the platform.
A service provider or customer may belong to one or several communities. Members of
a community use a Web client to work with each other; the web client includes functions
such as browsing and searching service offerings by other members of the community,
offering new services, testing and invoking services, tagging and rating services. In

addition, the platform provides monitoring and management services that can be used
to implement a governance model for the SVN [9].

For encoding communication primitives such as service offers and requests we cur-
rently use a central platform ontology as described in [10]. The way atomic services can
be composed to complex services is explicitly modeled in the ontology – i.e. we cur-
rently do not apply any automated planing algorithms for composing complex services
but all possible compositions are explicitly modeled in the ontology. This approach is
illustrated by the following example.3 According to the service specification outlined
in Section 2, Equations 1 and 2 define the set of AtomicServices Sa and the set
of ComplexServices Sc as subclasses of the set of Services S. Equations 3-5
represent a very simple example how the complex service CloudService can be
modeled based on the two atomic services StorageService and Computation-
Service.

AtomicService v Service (1)
ComplexService v Service u ∃composedOf.Service (2)
StorageService v AtomicService u ∃StorageCapacity (3)

ComputationService v AtomicService (4)
CloudService v ComplexService u

∃composedOf.StorageService u
∃composedOf.ComputationService (5)

Based on such a formalization each service provider is able to determine whether a
service sp provided by himself or by one of his neighbors is suitable for a certain service
request sr. In technical terms this is realized by verifying if the requested service sr is
logically subsumed by the provided service sp (or one of the services sp is composed
of), i.e. for a match sr v sp has to hold. Calculating the subsumption hierarchy between
a set of description logic concepts is a standard reasoning task which is provided by all
off-the-shelf description logic reasoners.

The formation and transformation of SVNs is driven by the availability of new ser-
vice offerings that introduce a competitive advantage. For this purpose, either existing
community members can add new service offerings (provided by themselves, or by a
third-party), or new service providers join the service network. For this purpose, a set of
membership services exist, such as joining by invitation, or joining by application. The
platform can accommodate a variety of community membership models, as different
membership services may be available [12].

We are currently exploring extensions to the platform in line with the architecture
described in [13], in order to introduce a model for the composition of services into
mashups, further allowing the sharing of code and data within a community to develop
new services.

3 The example is formalized in OWL abstract syntax as introduced in [11].

6 Related Work

Traditionally, coordination between Web service providers and customers is done by
setting up central service repositories, which can be used to retrieve relevant services
according to a customer’s service request. Most prominent in this context has been the
Universal Description, Discovery and Integration (UDDI) registry [14] which provides
a data model for describing services offers and a corresponding discovery mechanism.
However, UDDI registries have not been accepted by industry and most publicly avail-
able UDDI registries have been shut down by 2006.

Several decentralized service discovery mechanisms have been presented in litera-
ture. Most of them distribute service descriptions over several peers and use an index-
ing mechanism to efficiently route the queries through the P2P network (e.g. [15–17]).
However, building and maintaining such indexes contradicts our assumption that each
peer in the network has only knowledge about his direct neighbors and usually peers
are not willing to share this knowledge since it can be an important business asset.

Related problems which are extensively discussed in distributed computer systems
literature are (decentralized) task/job allocation and scheduling problems. There is a
wide range of approaches which differ in their underlying assumptions, such as coop-
erative vs. non-cooperative agents, agents with complete vs. incomplete information
(e.g. about costs), centralized vs. decentralized planer, etc. (e.g. see [18, 19]). A major
problem which is specific to our scenario and is thus neither addressed by current task
allocation nor task scheduling algorithms is the fact that peers are arranged in complex
networks and each peer does not want to reveal his business contacts to other peers –
i.e. no peer in the network has complete knowledge about the network structure.

There are a few approaches that explicitly consider a network of providers [20] -
especially in the area of supply chain management [21, 22]. However, the algorithms
assume peers with different capacity (i.e. available resources) but the same homoge-
neous functionality (such as computing power). Since in our network the services are
highly specialized and therefore provide different functionality, these algorithms are
not directly applicable. In order to determine the suitability of a peer for a certain task
our approach features an expressive task ontology, which is required to overcome the
heterogeneity of the Web environment.

7 Conclusion

In this paper we considered the problem of decentralized service value network for-
mation. We provided an algorithm that distributes a service request over a network of
self-interested, non-cooperative service providers and thereby creates an efficient ser-
vice value network. The algorithm is novel compared to existing approaches as peers
in the network do not have to provide any information about their business network to
their customers. Thereby, new business models for service intermediaries are enabled,
whose only business asset is a strong partner network. Up to now such business mod-
els which purely rely on social networking and contacts have been restricted to the
offline world. We showed by means of a simulation that the algorithm is tractable for
reasonable sized scenarios as the number of required notifications in a network with n

providers is O(n3). In addition, the results show that the algorithm performs quite well
in terms of welfare descrease and price increase compared to a scenario with central
repository. In fact, the total loss in welfare is only between 0.2% and 0.6%.

There are several directions in which we plan to extend this work. First, we plan to
replace the current uniform distribution used to create the service network with a power-
law distribution which seems to be a more realistic assumption for social networks as
well as Web environments [8]. We plan an analytical and experimental evaluation how
this change impacts the performance of our algorithms. Second, we plan to extend the
algorithms for quality of service aspects. Modeling the trade-off between quality and
price requires the introduction of a multi-attribute price and value function for providers
and customers, respectively. In addition, functions have to be defined that allow us to
determine the overall quality of a complex service by aggregating the quality of the
atomic services. Third, we plan to assess whether introducing a market mechanism
such as a path auction might further increase the efficiency of the service allocation.

References

1. Papazoglou, M.: Web Services: Principles and Technologies. Prentice Hall (2007)
2. Tapscott, D., Lowy, A., Ticoll, D.: Digital Capital: Harnessing the Power of Business Webs.

Harvard Business School Press (2000)
3. Hagel III, J.: Spider versus Spider. The McKinsey Quarterly (1) (1996) 4–5
4. Zerdick, A., Picot, A., Schrape, K., Artope, A., Goldhammer, K., Lange, U.T., Vierkant,

E., Lopez-Escobar, E., Silvertone, R.: E-economics. Strategies for the Digital Marketplace.
Springer (2000)

5. F., S.: Formation and Early Growth of Business Webs: Modular Product Systems in Network
Markets. Physica-Verlag Heidelberg (2004)

6. Hedrick, C.: Routing Information Protocol. RFC 1058 (Historic) (June 1988) Updated by
RFCs 1388, 1723.

7. Moy, J.: OSPF Version 2. RFC 2328 (Standard) (April 1998)
8. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topol-

ogy. In: SIGCOMM ’99: Proceedings of the conference on Applications, technologies, ar-
chitectures, and protocols for computer communication, Cambridge, Massachusetts, United
States (1999) 251–262

9. Desai, N., Mazzoleni, P., Tai, S.: Service clubs: A structuring mechanism for service-oriented
business ecosystems. In: Proceedings of the Inaugural Conference on Digital Ecosystems and
Technologies (DEST 2007), Cairns, Australia, IEEE (2007)

10. Lamparter, S., Ankolekar, A., Oberle, D., Studer, R., Weinhardt, C.: Semantic specification
and evaluation of bids in web-based markets. Electronic Commerce Research and Applica-
tions (ECRA) (2008) . In Press.

11. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F., eds.: The
Description Logic Handbook: Theory, Implementation, and Applications. In Baader, F.,
Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F., eds.: Description Logic
Handbook, Cambridge University Press (2003)

12. Tai, S., Desai, N., Mazzoleni, P.: Service communities: applications and middleware. In
Wohlstadter, E., ed.: Proceedings of the 6th International Workshop on Software Engineering
and Middleware, SEM 2006, Portland, Oregon, USA, November 10, 2006, ACM (2006) 17–
22

13. Maximilien, E.M., Ranabahu, A., Tai, S.: Swashup: situational web applications mashups.
In: Companion to the 22nd ACM SIGPLAN conference on Object oriented program-
ming systems and applications companion (OOPSLA’07), Montreal, Quebec, Canada, ACM
(2007) 797–798

14. OASIS Technical Committee: OASIS UDDI Specification. http://www.oasis-
open.org/committees/uddi-spec/doc/tcspecs.htm (2004)

15. Schmidt, C., Parashar, M.: A peer-to-peer approach to web service discovery. World Wide
Web Journal 7(2) (2004)

16. Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., Miller, J.: METEOR-S
WSDI: A Scalable P2P Infrastructure of Registries for Semantic Publication and Discovery
of Web Services. Inf. Technol. and Management 6(1) (2005) 17–39

17. Vu, L.H., Hauswirth, M., Aberer, K.: Towards P2P-based Semantic Web Service Discovery
with QoS Support. In et al., C.B., ed.: Workshop on Business Processes and Services (BPS),
in conjunction with the Third International Conference on Business Process Management,
Nancy, France, September 6-7, 2005. Lecture Notes in Computer Science (LNCS) (2006)
18–31

18. Feigenbaum, J., Shenker, S.: Distributed algorithmic mechanism design: Recent results and
future directions. In: Proceedings of the 6th International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications, Atlanta, Georgia, USA (2002)
1–13

19. Manisterski, E., David, E., Kraus, S., Jennings, N.R.: Forming efficient agent groups for
completing complex tasks. In: 5th Int. Conf. on Autonomous Agents and Multi-Agent Sys-
tems, Hakodate, Japan (2006) 834–841

20. de Weerdt, M., Zhang, Y., Klos, T.: Distributed task allocation in social networks. In:
AAMAS ’07: Proceedings of the 6th international joint conference on Autonomous agents
and multiagent systems, Honolulu, Hawaii (2007) 1–8

21. Easwaran, A., Pitt, J.: Supply chain formation in open, market-based multi-agent systems.
International Journal of Computational Intelligence and Applications 2(3) (2002) 349 – 363

22. Walsh, W., Wellman, M.: Decentralized supply chain formation: A market protocol and
competitive equilibrium analysis (2003)

