
A Refinement Operator Based Learning
Algorithm for the ALC Description Logic

Jens Lehmann1? and Pascal Hitzler2??

1 Universität Leipzig, Department of Computer Science
Johannisgasse 26, D-04103 Leipzig, Germany,

lehmann@informatik.uni-leipzig.de
2 Universität Karlsruhe (TH), AIFB Institute

D-76128 Karlsruhe, Germany,
hitzler@aifb.uni-karlsruhe.de

Abstract With the advent of the Semantic Web, description logics have
become one of the most prominent paradigms for knowledge represen-
tation and reasoning. Progress in research and applications, however,
faces a bottleneck due to the lack of available knowledge bases, and it is
paramount that suitable automated methods for their acquisition will be
developed. In this paper, we provide the first learning algorithm based
on refinement operators for the most fundamental description logic ALC.
We develop the algorithm from thorough theoretical foundations and re-
port on a prototype implementation.

1 Introduction

The Semantic Web is gaining momentum. Semantic Technologies, based on the
same underlying principles, are being applied in adjacent areas such as Software
Engineering and Content Management, and industrial interest is rising rapidly.
Fundamental to these approaches is the modelling of knowledge by means of
ontologies, and the single most popular paradigm for this is by using the Web
Ontology Language OWL,3 which has been recommended by the World Wide
Web Consortium (W3C) since 2004.

Progress in research and applications, however, faces a bottleneck due to the
lack of available OWL knowledge bases. Considerable effort is therefore currently
being invested into developing automated means for the acquisition of ontolo-
gies. Most of the currently pursued approaches, however, neglect the expressive
power of OWL and are only capable of learning inexpressive ontologies, such
as taxonomic hierarchies. As such, they fail by far in leveraging the potential
inherent in the expressive features of the Web Ontology Language.
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From a logical perspective, OWL is basically an expressive description logic
(DL) [1]. It is therefore natural to attempt an adaptation of logic-based ap-
proaches to machine-learning for automated ontology acquisition. Inspired by
the success of Inductive Logic Programming (ILP), we pursue the transfer of
ILP methods [13] to DLs, and in this paper we report on a resulting learning
algorithm. Our approach is based on a thorough theoretical analysis of the po-
tential and limitations of refinement operators for DLs. We make the following
contributions:

1. development of a refinement operator, which conforms to theoretical findings
2. design of an algorithm handling the unavoidable limitations of this operator
3. provision of a preliminary evaluation

The algorithm was created with extensibility to additional (non-ALC) con-
cept constructors, e.g. number restrictions, in mind. In contrast to previous
approaches [6,7,8], we pay more attention to finding simple, non-overfitting so-
lutions of the learning problem.

The paper is structured as follows. After some preliminaries in Section 2, we
introduce our refinement operator in Section 3 and show that it conforms to the
desired theoretical properties. In Section 4 we extend this refinement operator to
a learning algorithm. In Section 5, we report on our prototype implementation
and preliminary evaluation. We discuss related work in Section 6 and conclude
in Section 7. Proofs had to be omitted for lack of space, but can be found in the
technical report [10].

2 Preliminaries

2.1 Description Logics

Description logics represent knowledge in terms of objects, concepts, and roles.
Objects correspond to constants, concepts to unary predicates, and roles to bi-
nary predicates in first order logic. In DL systems information is stored in a
knowledge base, which is a set of axioms. It is divided in (at least) two parts:
TBox (terminology) and ABox (assertions). The ABox contains assertions about
objects. It relates objects to concepts and roles. The TBox describes the termi-
nology by relating concepts and roles.

We briefly introduce the ALC description logic, which is the target language
of our learning algorithm and refer to [1] for further background on descrip-
tion logics. As usual in logics, interpretations are used to assign a meaning to
syntactic constructs. Let NI denote the set of objects, NC denote the set of
atomic concepts, and NR denote the set of roles. An interpretation I consists of
a non-empty interpretation domain ∆I and an interpretation function ·I , which
assigns to each object a ∈ NI an element of ∆I , to each concept A ∈ NC a set
AI ⊆ ∆I , and to each role r ∈ NR a binary relation rI ⊆ ∆I ×∆I . Interpre-
tations are extended to concepts as shown in Table 1, and to other elements of
a knowledge base in a straightforward way. An interpretation, which satisfies an



construct syntax semantics

atomic concept A AI ⊆ ∆I

role r rI ⊆ ∆I ×∆I

top > ∆I

bottom ⊥ ∅
conjunction C uD (C uD)I = CI ∩DI

disjunction C tD (C tD)I = CI ∪DI

negation ¬C (¬C)I = ∆I \ CI

existential ∃r.C (∃r.C)I = {a |
∃b.(a, b) ∈ rI and b ∈ CI}

universal ∀r.C (∀r.C)I = {a |
∀b.(a, b) ∈ rI implies b ∈ CI}

Table 1. ALC syntax and semantics

axiom (set of axioms) is called a model of this axiom (set of axioms). An ALC
concept is in negation normal form if negation only occurs in front of concept
names.

If C and D are concepts, then C v D and C ≡ D are terminological axioms.
The former axioms are called inclusions and the latter equalities. An equality
whose left hand side is an atomic concept is a concept definition.

It is the aim of inference algorithms to extract implicit knowledge from a
given knowledge base. Standard reasoning tasks include instance checks, retrieval
and subsumption. We will only explicitly define the latter. Let C, D be concepts
and T a TBox. C is subsumed by D, denoted by C v D, iff for any interpretation
I we have CI ⊆ DI . C is subsumed by D with respect to T (denoted by C vT D)
iff for any model I of T we have CI ⊆ DI . C is equivalent to D (with respect to
T ), denoted by C ≡ D (C ≡T D), iff C v D (C vT D) and D v C (D vT C).
C is strictly subsumed by D (with respect to T ), denoted by C @ D (C @T D),
iff C v D (C vT D) and not C ≡ D (C ≡T D).

2.2 Learning in Description Logics using Refinement Operators

Definition 1 (learning problem in description logics). Let a concept name
Target, a knowledge base K (not containing Target), and sets E+ and E−

with elements of the form Target(a) (a ∈ NI) be given. The learning problem
is to find a concept C such that Target does not occur in C and for K′ =
K ∪ {Target ≡ C} we have K′ |= E+ and K′ 6|= E−.

By Occam’s razor [3] simple solutions of the learning problem are to be pre-
ferred over more complex ones, because they have a higher predictive quality.
We measure simplicity as the length of a concept, which is defined in a straight-
forward way, namely as the sum of the numbers of concept, role, quantifier, and
connective symbols occurring in the concept.

The goal of learning is to find a correct concept with respect to the examples.
This can be seen as a search process in the space of concepts. A natural idea



is to impose an ordering on this search space and use operators to traverse it,
which is the purpose of refinement operators. Intuitively, downward (upward)
refinement operators construct specialisations (generalisations) of hypotheses.

A quasi-ordering is a reflexive and transitive relation. Let S be a set and �
a quasi-ordering on S. In the quasi-ordered space (S,�) a downward (upward)
refinement operator ρ is a mapping from S to 2S , such that for any C ∈ S we
have that C ′ ∈ ρ(C) implies C ′ � C (C � C ′). C ′ is called a specialisation
(generalisation) of C. Quasi-orderings can be used for searching in the space
of concepts. As ordering we can use subsumption. If a concept C subsumes a
concept D (D v C), then C covers all examples, which are covered by D, which
makes subsumption a suitable order.

Definition 2. A refinement operator in the quasi-ordered space (ALC,vT ) is
called an ALC refinement operator.

We need to introduce some notions for refinement operators. A refinement
chain of an ALC refinement operator ρ of length n from a concept C to a con-
cept D is a finite sequence C0, C1, . . . , Cn of concepts, such that C = C0, C1 ∈
ρ(C0), C2 ∈ ρ(C1), . . . , Cn ∈ ρ(Cn−1), D = Cn. This refinement chain goes
through E iff there is an i (1 ≤ i ≤ n) such that E = Ci. We say that D
can be reached from C by ρ if there exists a refinement chain from C to D.
ρ∗(C) denotes the set of all concepts, which can be reached from C by ρ. ρm(C)
denotes the set of all concepts, which can be reached from C by a refinement
chain of ρ of length m. If we look at refinements of an operator ρ, we will often
write C  ρ D instead of D ∈ ρ(C). If the used operator is clear from the context
it is usually omitted, i.e. we write C  D.

We will introduce the concept of weak equality of concepts, which is similar
to equality of concepts, but takes into account that the order of elements in
conjunctions and disjunctions is not important. We say that the concepts C and
D are weakly (syntactically) equal, denoted by C ' D iff they are equal up to
permutation of arguments of conjunction and disjunction. Two sets S1 and S2 of
concepts are weakly equal if for any C1 ∈ S1 there is a C ′

1 ∈ S2 such that C1 ' C ′
1

and vice versa. Weak equality of concepts is coarser than equality and finer than
equivalence (viewing the equivalence, equality, and weak equality of concepts as
equivalence classes). Refinement operators can have certain properties, which
can be used to evaluate their usefulness for learning hypothesis.

Definition 3. An ALC refinement operator ρ is called

– (locally) finite iff ρ(C) is finite for any concept C.
– redundant iff there exists a refinement chain from a concept C to a concept

D, which does not go through some concept E and a refinement chain from
C to a concept weakly equal to D, which does go through E.

– proper iff for all concepts C and D, D ∈ ρ(C) implies C 6≡ D.
– ideal iff it is finite, complete (see below), and proper.

An ALC downward refinement operator ρ is called



– complete iff for all concepts C,D with C @T D we can reach a concept E
with E ≡ C from D by ρ.

– weakly complete iff for all concepts C @T > we can reach a concept E with
E ≡ C from > by ρ.

The corresponding notions for upward refinement operators are defined dually.

3 Designing a Refinement Operator

To design a suitable operator, we first look at theoretical limitations. The follow-
ing theorem from [9] provides a full analysis of the properties of ALC refinement
operators:

Theorem 1 (Property Theorem). Considering the properties completeness,
weak completeness, properness, finiteness, and non-redundancy the following are
maximal sets of properties (in the sense that no other of the mentioned properties
can be added) of ALC refinement operators (see [9] for details):

1. {weakly complete, complete,finite}
2. {weakly complete, complete, proper}
3. {weakly complete,non-redundant,finite}
4. {weakly complete,non-redundant, proper}
5. {non-redundant,finite, proper}

Incomplete operators are not interesting, because we may then be unable to
find possible solutions, so we can ignore the fifth property combination. We can
see from the other combinations, that we can have either finity or properness
as a property of an ALC refinement operator – but not both at the same time.
Since we are able to handle infinity quite well, as we will describe in Section 4, we
will aim for properness. Our learning algorithm will perform a top-down search,
so the fourth combination seems to be desirable, because weak completeness is
sufficient in this case. However, an incomplete, but weakly complete operator
cannot support some of the features which we consider essential in our learning
algorithm. Hence, we decided to use the second combination.

We proceed as follows: First, we define a refinement operator and prove its
completeness. We then extend it to a complete and proper operator. Section 4
will show how we handle the problems of redundancy and infinity in the learning
algorithm.

For each A ∈ NC , we define nb↓(A) = {A′ | A′ ∈ NC , there is no A′′ ∈
NC with A′ @T A′′ @T A}. nb↑(A) is defined analogously. In the sequel, we will
analyse the refinement operator ρ↓ given by:

ρ↓(C) =

{
{⊥} ∪ ρ′↓(C) if C = >
ρ′↓(C) otherwise

where the operator ρ′↓ is defined as in Figure 1. The definition refers to a set M
which is inductively defined as follows: All elements in {A | A ∈ NC ,nb↑(A) = ∅}



(= most general atomic concepts), {¬A | A ∈ NC ,nb↓(A) = ∅} (= negated most
specific atomic concepts), and {∃r.> | r ∈ NR} are in M . If a concept C is in
M , then ∀r.C with r ∈ NR is also in M .

ρ′↓(C) =

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

∅ if C = ⊥
{C1 t · · · t Cn | Ci ∈ M (1 ≤ i ≤ n)} if C = >
{A′ | A′ ∈ nb↓(A)} ∪ {A uD | D ∈ ρ′↓(>)} if C = A (A ∈ NC)

{¬A′ | A′ ∈ nb↑(A)} ∪ {¬A uD | D ∈ ρ′↓(>)} if C = ¬A (A ∈ NC)

{∃r.E | E ∈ ρ′↓(D)} ∪ {∃r.D u E | E ∈ ρ′↓(>)} if C = ∃r.D
{∀r.E | E ∈ ρ′↓(D)} ∪ {∀r.D u E | E ∈ ρ′↓(>)} if C = ∀r.D

∪ {∀r.⊥ | D = A ∈ NC and nb↓(A) = ∅}
{C1 u · · · u Ci−1 uD u Ci+1 u · · · u Cn | if C = C1 u · · · u Cn

D ∈ ρ′↓(Ci), 1 ≤ i ≤ n} (n ≥ 2)

{C1 t · · · t Ci−1 tD t Ci+1 t · · · t Cn | if C = C1 t · · · t Cn

D ∈ ρ′↓(Ci), 1 ≤ i ≤ n} (n ≥ 2)

∪ {(C1 t · · · t Cn) uD | D ∈ ρ′↓(>)}

Figure 1. definition of ρ′↓

Proposition 1. ρ↓ is an ALC downward refinement operator.

A distinguishing feature of ρ↓ compared to other refinement operators for
learning concepts in DLs [2,6] is that it makes use of the subsumption hierarchy.
This is useful, since the operator can make use of knowledge contained implicitly
in the TBox. Note that ρ↓ is infinite. The reason is that the set M is infinite and,
furthermore, we put no boundary on the number of elements in the disjunctions,
which are refinements of the top concept.

3.1 Completeness of the Operator

To investigate the completeness of the operator, we define a set S↓ of ALC
concepts in negation normal form as follows:

Definition 4 (S↓ ). We define S↓ = S′
↓ ∪ {⊥}, where S′

↓ is defined as follows:

1. If A ∈ NC then A ∈ S′
↓ and ¬A ∈ S′

↓.
2. If r ∈ NR then ∀r.⊥ ∈ S′

↓, ∃r.> ∈ S′
↓.

3. If C,C1, . . . , Cm are in S′
↓ then the following concepts are also in S′

↓:
– ∃r.C, ∀r.C, C1 u · · · u Cm, and
– C1 t · · · tCm if for all i (1 ≤ i ≤ m) Ci is not of the form D1 u · · · uDn

where all Dj (1 ≤ j ≤ n) are of the form E1 t · · · t Ep.



In S↓, we do not use the > and ⊥ symbols directly and we make a restriction
on disjunctions, i.e. we do not allow that elements of a disjunction are conjunc-
tions, which in turn only consist of disjunctions. It can be shown that for any
ALC concept C there exists a concept D ∈ S↓ such that D ≡ C.

Lemma 1 (S↓). For any ALC concept C there exists a concept D ∈ S↓ such
that D ≡ C.

This allows us to show weak completeness by proving that every element in
S↓ can be reached from > by ρ↓.

Proposition 2 (weak completeness of ρ↓). ρ↓ is weakly complete.

Using this, we can prove completeness (again, we refer to [10] for proofs).

Proposition 3. ρ↓ is complete.

3.2 Achieving Properness

The operator ρ↓ is not proper, for instance it allows the refinement > ∃r.>t
∀r.A1 (≡ >) where A1 ∈ nb↓(>). Indeed, there is no structural subsumption
algorithm for ALC [1], which indicates that it is hard to define a proper operator
just by syntactic rewriting rules. One could try to modify ρ↓, such that it becomes
proper. Unfortunately, this is likely to lead to incompleteness. Say, we disallow
the refinement step just mentioned and consider the following refinement chain:

> ∃r.> t ∀r.A1  ∃r.A2 t ∀r.A1 (A1, A2 ∈ nb↓(>))

If we disallow the first step, we would have to ensure that we can reach ∃r.A2 t
∀r.A1 from >, otherwise the operator is weakly incomplete. In particular, there
can be infinite chains of improper refinements:

> ∃r.> t ∀r.A1  ∃r.(∃r.> t ∀r.A1) t ∀r.A1  . . .

This example illustrates that one would have to allow very complex concepts
to be generated as refinements of the top concept, if one wants to achieve weak
completeness and properness. So, instead of modifying ρ↓ directly, we allow it
to be improper, but consider the closure ρcl

↓ of ρ↓ [2].

Definition 5 (ρcl
↓ ). ρcl

↓ is defined as follows: D ∈ ρcl
↓ (C) iff there exists a re-

finement chain
C  ρ↓ C1  ρ↓ . . . ρ↓ Cn = D

such that C 6≡T D and Ci ≡ C for i ∈ {1, . . . , n− 1}.

ρcl
↓ is proper by definition. It also inherits the weak completeness of ρ↓, since

we do not disallow any refinement steps, but only check whether they are im-
proper. However, it is necessary to show that ρcl

↓ is a meaningful operator, which
we will do in the sequel. We already know that ρ↓ is infinite, so it is clear that



we cannot consider all refinements of a concept at a time. Therefore, in practise
we will always compute all refinements of a concept up to a given length. A
flexible algorithm will allow this length limit to be increased if necessary. Using
this technique, an infinite operator can be handled. However, we have to make
sure that all refinements up to a given length are computable in finite time. To
show this, we need the following lemma.

Lemma 2 (ρ↓ does not reduce length). D ∈ ρ↓(C) implies |D| ≥ |C|.
Furthermore, there are no infinite refinement chains of the form C1  ρ↓ C2  ρ↓

. . . with |C1| = |C2| = . . . , i.e. after a finite number of steps we reach a strictly
longer concept.

Proposition 4 (usefulness of ρcl
↓ ). For any concept C in negation normal

form and any natural number n, the set {D | D ∈ ρcl
↓ (C), |D| ≤ n} can be

computed in finite time.

Due to Proposition 4 we can use ρcl
↓ in a learning algorithm. For computing

ρcl
↓ up to n, it is sufficient to apply the operator until a non-equivalent concept

is reached. By a straightforward analysis of the refinement steps, one can show
that in the worst case after O(|NC | · |C|) steps a refinement of greater length
will be reached, which bounds the complexity of computing the closure.

4 The Learning Algorithm

So far, we have designed a complete and proper operator. Unfortunately, such an
operator has to be redundant and infinite by Theorem 1. We will now describe
how to deal with these problems and define the overall learning algorithm.

4.1 Redundancy Elimination

A learning algorithm can be constructed as a combination of a refinement op-
erator, which defines how the search tree can be built, and a search algorithm,
which controls how the tree is traversed. The search algorithm specifies which
nodes have to be expanded. Whenever the search algorithm encounters a node
in the search tree, it could check whether a weakly equal concept already exists
in the search tree. If yes, then this node is ignored, i.e. it will not be expanded
further and it will not be evaluated. This removes all redundancies, since every
concept exists at most once in the search tree.4 We can still reach any concept,
because we have ρcl

↓ (C) ' ρcl
↓ (D) if C ' D, i.e. ρcl

↓ handles weakly equal concepts
in the same way. However, this redundancy elimination approach is computa-
tionally expensive if performed naively. Hence, we considered it worthwhile to
investigate how it can be handled as efficiently as possible.

4 More precisely: For each concept there is at most one representative of the equiva-
lence class of weakly syntactical equal concepts in the search tree which is evaluated.



Note, that we consider weak equality instead of equality here, e.g. we have
A1uA2 6= A2uA1, but A1uA2 ' A2uA1. In conjunctions and disjunctions, we
have the problem that we have to guess which pairs of elements are equal to de-
termine whether two concepts are weakly equal. One way to solve this problem is
to define an ordering over concepts and require the elements of disjunctions and
conjunctions to be ordered accordingly. This eliminates the guessing step and
allows to check weak equality in linear time. There are different ways to define
a linear order � over ALC concepts, and we have shown that it is also possible
to do it in such a way that deciding � for two concepts is polynomial and trans-
forming a concept in negation normal form to � ordered negation normal form,
i.e. elements in conjunctions and disjunctions are ordered with respect to �, can
be done in polynomial time – for brevity we omit the details. It is thus reasonable
to assume that every concept occurring in our search tree can be transformed
to ordered negation normal form with respect to some linear order over ALC
concepts. We can then maintain an ordered set of concepts occurring in the
search tree. Checking weak equality of a concept C with respect to a search tree
containing n concepts will then only require log n comparisons (binary search),
where each comparison needs only linear time. Taking into account the com-
plexity of instance checks (PSPACE for ALC, NEXPTIME for SHOIN (D) and
OWL-DL), which we can avoid (compared to an algorithm without redundancy
check), redundancy elimination can be considered reasonable.

4.2 Creating a Full Learning Algorithm

Learning concepts in DLs is a search process. In our proposed learning algorithm,
the refinement operator ρcl

↓ is used for building the search tree, while a heuristics
decides which nodes to expand. To define a search heuristics for our learning
algorithm, we need some notions to be able to express what we consider a good
concept.

Definition 6 (quality). Let K be a knowledge base, E− the set of negative
examples, and E+ the set of positive examples of a learning problem. The quality
of a concept C is a function, which maps a concept to an element of Q with
Q = {0, . . . ,−|E−|} ∪ {tw}, defined by q(C) = tw if there is an e ∈ E+ with
K ∪ {C} 6|= e and q(C) = −|{e | e ∈ E−and K ∪ {C} |= e}| otherwise.

The quality of a concept is ”tw” if it is too weak, i.e. it does not cover all
positive examples. In all other cases, we assign a number n with n ≥ 0 to a
concept, which is the number of negative examples covered.

As mentioned before, we want to tackle the infinity of the operator by con-
sidering only refinements up to some length n at a given time. We call n the
horizontal expansion of a node. It is a node specific upper bound on the length of
child concepts, which can be increased dynamically by the algorithm during the
learning process. To deal with this, we formally define a node in a search tree to
be a quadruple (C, n, q, b), where C is an ALC concept, n ∈ N is the horizontal
expansion, q ∈ Q ∪ {-} is the quality (- stands for non-evaluated quality), and
b ∈ {true, false} is a boolean marker for the redundancy of a node.



The search heuristics selects the fittest node in the search tree at a given
time. We define fitness as a lexicographical order over quality and horizontal
expansion.

Definition 7 (fitness). Let N1 = (C1, n1, q1, b1) and N2 = (C2, n2, q2, b2) be
two nodes with defined quality (q1, q2 6= −, tw). N1 is fitter than N2, denoted by
N2 ≤f N1 iff q2 < q1 or q1 = q2 and n1 ≤ n2.

Note, that we use horizontal expansion instead of concept length as second
criterion, which makes the algorithm more flexible in searching less explored
areas of the search space. More sophisticated ways of ordering concepts are also
possible, e.g. tradeoffs between quality and horizontal expansion. Such fitness
heuristics enable the algorithm to handle noise. The fitness function can be
defined independently of the core learing algorithm.

We have now introduced all necessary notions to specify the complete learning
algorithm, given in Algorithm 1. checkRed is the redundancy check function and
transform the function to transform a concept to ordered negation normal form.

Algorithm 1: learning algorithm

Input: horizExpFactor in ]0,1]
ST (search tree) is set to the tree consisting only of the root node1

(>, 0, q(>), false)
minHorizExp = 02

while ST does not contain a correct concept do3

choose N = (C, n, q, b) with highest fitness in ST4

expand N up to length n + 1, i.e. :5

begin6

add all nodes (D, n,−, checkRed(ST, D)) with D ∈ transform(ρcl
↓ (C))7

and |D| = n + 1 as children of N
evaluate created non-redundant nodes8

change N to (C, n + 1, q, b)9

end10

minHorizExp = max(minHorizExp, dhorizExpFactor ∗ (n + 1))e)11

while there are nodes with defined quality and horiz. expansion smaller12

minHorizExp do
expand these nodes up to minHorizExp13

Return a correct concept in ST14

We see, that the usual expansion in a search algorithm is replaced by a one
step horizontal expansion. If we only expand the fittest node, we may not explore
large parts of the search space. In order to avoid this, a minimum horizontal
expansion factor is used, which specifies that all nodes have to be expanded at
least up to this length. This factor allows us to control the tradeoff between
expanding only the fittest nodes and exploring other parts of the search space.

Correctness of the algorithm can be shown:



Figure 2. Michalski trains

Proposition 5 (correctness). If a learning problem has a solution, then Al-
gorithm 1 terminates and computes a correct solution of the learning problem.

5 Preliminary Evaluation

We want to illustrate our algorithm using Michalski’s trains [12] as an example.
The data describes different features of trains, e.g. which cars are appended to a
train, whether they are short or long, closed or open, jagged or not, which shapes
they contain and how many of them. The positive examples are the trains on the
left and the negative examples are the trains on the right. Thus, the task of the
learner is to find characteristics of all the left trains, which none of the right trains
has. The learning algorithm first explores the concepts > and Train, which cover
all examples. Other atomic concepts are too weak to be considered for further
exploration. The exploration of the top concept leads to ∃hasCar.>, which is
then expanded to ∃hasCar.Closed. This covers all positives and two negatives.
The heuristic picks this node and extends it to ∃hasCar.(CloseduShort), which
is a possible (and shortest) solution for the problem.

Doubtless, there is a lack of evaluation standards in ontology learning from
examples. In order to overcome this problem, we converted the background
knowledge of several existing learning problems to OWL ontologies. Besides the
described train problem, we also investigated the problems of learning arches
[14], learning poker hands, and understanding the moral reasoning of humans.
The two latter examples were taken from the UCI Machine Learning repository5.
For the poker example, we defined two goals: learning the definition of a pair
and of a straight. Similarly, the moral reasoner examples were divided into two
learning tasks: the original one, where the intended solution is quite short, and
a problem, where we removed an important intermediate concept, such that the
smallest possible solution became more complex.

The arch problem is small in terms of size and complexity of the background
knowledge. The poker example is larger in terms of size, but still not very com-
plex. The moral reasoner, however, is an expressive ontology, which we derived
from a theory given as logic program. The solutions of the examples cover a range
of different concept constructors and are of varying length and complexity.
5 http://www.ics.uci.edu/˜mlearn/MLRepository.html



For all test runs we used a (non-optimised) horizontal expansion factor of
0.6. As a reasoner we used Pellet6 (version 1.4RC1), which was connected to the
learning program using the DIG 1.1 interface7 on a 1.4 GHz CPU machine. The
only system we could use for comparison is YinYang [8]. The system in [5] is no
longer available and the approach in [2] was not fully implemented.

Table 2 summarises the results we obtained. In all cases, our implementation
– called DL-Learner – was able to learn the shortest correct definition (which
coincides with the intended solution of these problems). YinYang produces longer
solutions and could not solve the second poker problem (it produces an error
after trying to compute most specific concepts for some time). It generated
an incorrect answer for both moral reasoner problems. The percentage of time
spent for reasoner requests increases with the complexity and size of background
knowledge and the number of examples (it is > 99% for the moral reasoner
problems), which shows that minimizing the number of reasoner requests, e.g.
by redundancy elimination, is an important issue.

problem axioms, concepts, roles DL-Learner YinYang
objects, examples runtime length correct runtime length correct

trains 252, 8, 5, 50, 10 1.1s 5 100% 2.3s 8 100%
arches 71, 6, 5, 19, 5 4.6s 9 100% 1.5s 23 100%
moral (simple) 2176, 43, 4, 45, 43 17.7s 3 100% 205.3s 69 67.4%
moral (complex) 2107, 40, 4, 45, 43 88.1s 8 100% 181.4s 70 69.8%
poker (pair) 1335, 2, 6, 311, 49 7.7s 5 100% 17.1s 43 100%
poker (straight) 1419, 2, 6, 347, 55 35.6s 11 100% - - -

Table 2. evaluation results for DL-Learner and YinYang

6 Related Work

An interesting paper close to our work is [2]. It suggests a refinement operator for
the ALER description logic. They also investigate some theoretical properties of
refinement operators. As we have done with the design of ρ↓, they favour the use
of a downward refinement operator to enable a top-down search. The authors use
ALER normal form (see the paper for a detailed description), which is easier to
handle than negation normal form, because ALER is not closed under boolean
operations. As a consequence, they obtain a simpler refinement operator, for
which it is not clear how it could be extended to more expressive DLs. Our
operator, in contrast, lends itself much easier to such extensions. We also deal
quite differently with infinity, show how the subsumption hierarchy of atomic
concepts can be used, and describe how redundancy can be avoided efficiently.

6 http://pellet.owldl.com
7 http://dl.kr.org/dig/



A second area of ongoing related work is described in [6,7,8]. They take
a different approach for solving the learning problem by using approximated
MSCs (most specific concepts). A problem of these algorithms is that they tend
to produce unnecessarily long concepts. One reason is that MSCs for ALC and
more expressive languages do not exist and hence can only be approximated.
Previous work [4,5] in learning in DLs has mostly focused on approaches using
least common subsumers, which face this problem to an even larger extent.

In our approach, we also cannot guarantee that we obtain the shortest possi-
ble solution of a learning problem. However, the learning algorithm was carefully
designed to produce short solutions. The produced solutions will be close to the
shortest solution in negation normal form and, thus, overfitting is unlikely.

Another related area of research are approaches for learning in the hybrid
language AL-log [11], which combines ALC with the function free Horn clause
language Datalog.

7 Conclusions and Further Work

To the best of our knowledge, our work presents the first refinement operator
based learning algorithm for expressive DLs which are closed under boolean
operations.8 It is based on thorough theoretical investigations concerning the
potential of using refinement operators for DLs, and we have shown formally
that our operator satisfies the desirable properties which are achievable. We
also showed how the problems of redundancy and infinity can be solved in a
satisfiable manner, allowing us to specify a learning algorithm which we proved
to be correct. We implemented the algorithm and an evaluation showed the
feasibility of our approach.

Future work will focus on increasing the expressiveness of the learned lan-
guage, integrating the learning algorithm in an ontology editor, creating bench-
mark datasets, and testing on real world data sets.
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