Three Dimensions of Knowledge Represen-

tation in WonderWeb

WonderWeb has been an EU IST project funded by the
initiative on Future and Emerging Technologies (FET).
WonderWeb has been conceived for developing founda-
tions of and infrastructure for the Semantic Web. In this
article we discuss WonderWeb results to which the Uni-
versity of Karlsruhe has contributed. Our work consid-
ered three different dimensions of knowledge representa-
tion in the Semantic Web: first, we have contributed to
the W3C recommendation process for OWL, a descrip-
tion logics-based language, and we have investigated its
relationship to logic programming; second, the definition
of reusable ontologies for common purposes like Web
service descriptions in OWL; and, third, the use of such
ontologies and reasoning mechanisms to support core
Semantic Web infrastructure tasks. Eating our own dog
food in the latter case, we have applied Semantic Web
techniques inside a general and extensible middleware
framework.

1 Representation Languages for
the Semantic Web

Representation Languages for the Semantic Web and Seman-
tic Web ontologies encounter the typical trade-off between
expressivity and efficiency. As the Semantic Web targets a
broad audience of developers, its languages must in addition
fulfill criteria of usability.

In the process of standardizing the Web Ontology Lan-
guage, OWL, the search for expressivity has been an elabo-
rate process of finding consensus on what knowledge repre-
sentation capabilities might be required most urgently by
potential users. Requirements for more expressivity were
traded off against results of efficiency or decidability as
known from research in description logics [10]. The resulting
language OWL, thus, comes in three increasingly powerful
flavors OWL lite, OWL-DL and OWL full [2].

Investigating requirements for large-scale Semantic Web
applications, we have in addition felt the urgent need to deal
with more efficient, though less expressive subsets of OWL
and their efficient implementations — especially with regard
to data complexity, which is already NP complete for OWL
lite.

Figure 1 illustrates the expressivity of languages (or even
language families). Languages from the family of description
logics (DL) are strict subsets of First-Order Logic. If cho-
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sen carefully like OWL lite and OWL-DL, they are decidable
and have an overall complexity of Exptime and Nexptime,
respectively.

First-Order \
Logic i

l o f—‘\“\/_ Yy

Description,” . Horn Logic |
Logic //' “Programs

b

,«‘f Description "“\
Logic
\ Programs

Logic
Programs /

Figure 1: Expressive overlap of DL with LP.

The second major paradigm (that has unfortunately
been completely ignored in the OWL standardization pro-
cess), comes from the tradition of Logic Programming (LP).
Though logic programming often uses a syntax comparable
to First-Order Logics, it assumes a different interpretation
of axioms. Unlike a Tarski-style model theory, logic pro-
gramming selects only a subset of models to judge semantic
entailment of sentences. There are different ways to select
subsets of models resulting in different semantics — all of
them geared to deal more efficiently with larger sets of data
than common approaches based on First-Order Logic. One
of the most prominent differences resulting from this differ-
ent style of logical models is that expressive logic program-
ming axiomatizations become non-monotonic.

An interesting well-known case is horn logic without
negation and without function symbols (HL; sometimes re-
ferred to by datalog, too) as it is completely contained in
First-Order Logic and in the family of Logic Programming
approaches and as it has polynomial data efficiency. In order
to achieve good data efficiency and wide-spread agreement
on language primitives, we have investigated the intersection
of OWL lite and horn logic/Logic Programming, i.e. Descrip-
tion Logic Programs (DLP). In [4] we show how to perform
the bidirectional translation of premises and inferences (in-
cluding typical kinds of queries) from the DLP fragment of
OWL lite to horn logics, and vice versa from the DLP frag-
ment of horn logics to OWL lite. Description Logic Programs
inherit the good data efficiency of horn logics. In addition,
it is interesting, because it allows for adding new capabili-
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ties to improve the usability of the DLP language. We have
investigated in particular how to
e use rules for querying the ontology and knowledge
base,
e define views (comparable to database views) using log-
ical rules [15],
e maintain materializations of queries to improve effi-
ciency [14],
e map between existing relational databases and Seman-
tic Web data [13].

WonderWeb
Ontology Infrastructure for the Semantic Web
http://wonderweb.semanticweb.org

WonderWeb has run from January 2002 to December 2004.
Four academic partners (the University of Manchester, the
Vrije Universiteit Amsterdam, the Laboratory for Applied
Ontology, National Research Council, Italy and the Univer-
sity of Karlsruhe) have participated and were advised by
a board of about 20 industrial partners. The project was
funded by the European Union IST programme (Informa-
tion Society Technologies) under contract number 2001-
33052.

The aim of the project was to develop the infrastructure
required for the large-scale deployment of ontologies as the
foundation for the Semantic Web. For this purpose, Won-
derWeb was split in four work packages (WP) with each
providing research on a different dimension:

WP1 (language dimension) The development of OWL
[2] — the standard ontology web language — as well
as proposals for rule extensions maintaining back-
wards compatibility.

WP2 (runtime infrastructure dimension) the develop-
ment of a comprehensive technical infrastructure
and tool support that will be required by real world
applications in the Semantic Web [5, 6, 8].

WP3 (ontology content dimension) The development
of a set of foundational ontologies covering a range
of application domains. Each provides a carefully
crafted taxonomic backbone with a sound high
level structure that can be used as the basis for the
development of more detailed domain ontologies [7].

WP4 (build and modification infrastructure dimension)
The development of a framework of techniques and
methodologies that provide an engineering approach
to the building and use of ontologies. This included
research on ontology change management as well as
on the logical foundations of distributed ontologies

[9].

2 Reusable Ontologies

Semantic Web applications depend on ontologies and corre-
sponding semantic metadata conforming to these ontologies.
While some applications already benefit from low quality

of ontologies and corresponding metadata (cf., e.g., [11]),
many applications will only generate interest when the prob-
lem of high quality ontologies and metadata has been solved
to sufficient extent. For the foreseeable future, such high
quality may only be provided manually and not by tech-
niques like ontology learning [12]. This is however a rather
cumbersome and error-prone work. Hence, it has been our
first intent to enable the reuse of existing ontologies in such
a way that high quality can be rather easily achieved by
just re-using a proven foundational ontology. Foundational
ontologies are conceptualizations that contain specifications
of domain independent concepts and relations. Typically
they feature an extensive axiomatization based on principles
known from philosophy, linguistics and mathematics. Sec-
ondly, a high-quality foundational ontology should be gen-
eral enough to allow for mediation between many interesting
(meta)data sources. Thirdly, a foundational ontology that
attracts wide-spread agreement from its community may also
lead to a wide-spread understanding of its definitions — and
correspondingly to more concise semantic (meta)data.

To explain how we tackle these objectives in a more con-
crete way, we discuss two use cases that we have drawn from
the third dimension of knowledge representation described
here (Section 3). In WonderWeb we have considered a par-
ticularly relevant and interesting use case that requires high
quality ontologies and metadata, i.e. the case of managing
distributed systems composed of a middleware system and
many subsystems. The concrete middleware we consider are
an Application Server and Web services. While we describe
the idea underlying these use cases in particular in the fol-
lowing section, in this section we report on the principle of
re-usable ontology libraries and their development.

In order to construct ontologies for the two use cases, we
have pursued a modularized and layered approach that adds
ontological commitment in a piece-wise manner for maxi-
mum possibility of ontology re-use at all layers. Figure 2
depicts the ontology modules working inside our two use

cases. The responsibilities are distributed as follows:
1. DOLCE (Descriptive Ontology for Linguistic and Cog-

nitive Engineering) [7] is part of the WonderWeb
Foundational Ontology Library and has been chosen
as the library’s basis. Being a foundational ontology,
it features a rich axiomatization of domain indepen-
dent concepts, explicit construction principles, careful
reference to interdisciplinary literature and it strives
to model human common sense. DOLCE is axiom-
atized in a modal logic (S5), but it is maintained
also in other languages, used according to the partic-
ular trade-off between expressivity and computational
complexity that is required by a certain application.
An OWL-DL version is currently maintained for Se-
mantic Web applications.

DOLCE is based on the fundamental distinction be-
tween enduring and perduring entities. The main re-
lation between Endurants (i.e. objects or substances)
and Perdurants (i.e. events or processes) is that of
participation: an endurant “lives” in time by partici-
pating in a perdurant. For example, a person, which
is an endurant, may participate in a discussion, which
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is a perdurant. A person’s life is also a perdurant,
in which a person participates throughout its dura-
tion. DOLCE introduces Qualities as another category
that can be seen as the basic entities we can perceive
or measure: shapes, colors, sizes, sounds, smells, as
well as weights, lengths or electrical charges. Spatial
and temporal qualities encode the spatio-temporal at-
tributes of objects or events. Finally, Abstracts do
not have spatial or temporal qualities, and they are
not qualities themselves, e.g. (quality) regions or sets.
In particular, regions are used to encode the measure-
ment of qualities as conventionalized in some metric
or conceptual space.

. Several additional theories exist for DOLCE that come

in the form of ontology modules. Descriptions & Sit-
uations (D & S) is such a module and axiomatizes a
theory of ontological contexts. It is capable of describ-
ing various notions of context or frame of reference
(non physical situations, topics, plans, beliefs, etc.)
as entities.

D & S introduces a distinction between descriptive
and ground entities. Parameters, Functional Roles
and Courses of Events belong to the first kind and de-
scribe the ground entities of DOLCE in the following
way: Parameters are valued-by Regions, Functional
Roles are played-by Endurants and Courses of Events
sequence Perdurants. A DOLCE physical endurant,
e.g. a hammer, could play the functional role of a
murder weapon or a tool depending on the context
described.

D & S shows its practical value when applied as an
ontology design pattern for (re)structuring application
ontologies that require contextualization.

. The descriptions of services show a clear contextual
nature, one may only have to consider the number of
different views that may exist on a service: the view
of a service provider, that of the service requestor or
the legal view of a contract etc. The concepts used to
formulate any given view are clearly separate from the
actual objects they act upon and often independent
from the concepts appearing in other views.

Hence, we have applied both DOLCE and the addi-
tional modelling capabilities of D & S to formalize core
ontologies for components and for services. While the
first axiomatizes typical concepts in an Application
Server (most prominently software components and
their interrelationships) the second deals with simi-
lar aspects of services. Currently, we consider five
frequently occurring descriptions of a service, where
each represents a separate viewpoint: (Service) Of-
fering, Request, Agreement, Assessment and Norms
(more views may be added in the future when needs
arise)

. Domain and application ontologies can finally reuse
the core ontologies. The first enrich the core ontolo-
gies, which are generic within a domain, by additional
domain dependent knowledge. E.g., in the tourism
domain, we might specialize a Service Offering De-
scription to a Flight Offering Description and corre-

sponding axioms, e.g. that a functional role Operator
is played by an airline.

Application ontologies are the ones that are finally
implemented in a running system. While the ontolo-
gies discussed so far are typically heavy-weight, i.e.
they feature a rich axiomatization, one has to sac-
rifice some of the axioms and use a less expressive
ontology language that is executable, too®. E.g., the
domain ontology might be in modal logic S5 inheriting
all the axioms of DOLCE. As no decidable reasoning
algorithm is known, the developer has to compromise,
use the less expressive OWL-DL and restrain the ax-
iomatization accordingly.

[Descriptions & Situations|

Core Ontology ||Core Ontology
of Components|| of Services

(Domain and application ontologies |

Figure 2: Ontology Library.

The usage of a common foundational ontology also al-
lows to harmonize both ontologies for a simpler translation
acknowledging the fact that most services will be exposures
of components residing in an Application Server. [3]

3 Semantic Middleware

Besides research on the representation language itself, Won-
derWeb also addressed its usage in applications. The two
use cases we present apply knowledge representation in Ap-
plication Servers and Service Oriented Architectures, respec-
tively. They both aim at facilitation and improvement of the
management and administration of complex distributed ap-
plications and systems.

3.1 Application Servers

Application Servers provide many functionalities urgently
needed for the development of a complex distributed appli-
cation. Therefore, Application Servers are nowadays widely
used in industrial applications.

Up to now, the functionalities of an Application Server
have mostly been developed and managed with the help of
administration tools and corresponding configuration files,
recently in XML. Though this allows a flexible way of devel-
oping and administrating an Application Server with its com-
ponents, the disadvantage is that the conceptual model un-
derlying the different configurations is only implicit. Hence,
its bits and pieces are difficult to retrieve, survey, check for
validity and maintain.

To remedy such problems, we have taken an ontology-
based approach to support the development and administra-
tion of software components in an Application Server. The

IThe typical trade-off between expressivity and efficiency.
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ontology captures properties of, relationships between and
behaviors of the components that are required for develop-
ment and administration purposes. As the ontology is an ex-
plicit conceptual model with formal logic-based semantics,
its descriptions of components may be queried, may fore-
sight required actions, e.g. preloading of indirectly required
components, or may be checked to avoid inconsistent system
configurations — during development as well as during run
time. Thus, the ontology-based approach retains the original
flexibility in configuring and running an Application Server,
but it adds new capabilities for the developer and user of the
system (cf. [6] for details). By using the ontology infrastruc-
ture we are able to reason with e.g.

Component Dependencies Libraries often depend on other
libraries and a certain archive can contain several li-
braries at once. Given this information, the ontology
infrastructure can assist the developer in locating all
the required libraries.

Capability Descriptions Database interfaces typically offer
some method to execute an SQL command. However,
the behavior of specific database implementations can
vary dramatically. Earlier versions of MySQL do not
support transactions or subqueries. In this case, com-
ponent capabilities adhering to standard interfaces can
be made explicit to the developer.

Service Classifications Given APIs with similar functional-
ity, one will find different methods and services with
essentially the same functionality. A common service
ontology will allow the user to discover implementa-
tions for a certain ontology entry and to classify a
given service.

Access Rights The access control mechanisms of Applica-
tion Servers are based on users and roles to whom ac-
cess can be granted for certain resources and services.
In addition, services can be run using the credentials
of the caller or those of another user that runs the ser-
vice on behalf of the caller. We are able to assist the
user in suggesting suitable settings and in determining
potential flaws in the security design.

The proposed scheme resulted in an infrastructure called
Application Server for the Semantic Web that was also used
as the technical infrastructure of the project [5]. It addi-
tionally facilitates plug'n’play engineering of ontology-based
modules and, thus, the development and maintenance of
comprehensive Semantic Web applications. The infrastruc-
ture is implemented in a system called KAON SERVER
which is part of the KArlsruhe ONtology and Semantic Web
Toolsuite (KAON, cf. http://kaon.semanticweb.org).

3.2 Web Services

Service Oriented Architectures (SOA) allow for factorizing
functionality into loosely-coupled and independent services
rather than in components like done in Application Servers.
The Web-based middleware for such systems is called “Web
services” subsuming a set of protocols and XML-languages
for invocation, discovery, and interface description of ser-
vices.

Building a distributed system using a Service Oriented
Architecture lets the developer reap advantages roughly sim-
ilar to the ones found in Application Servers — however it
also implies analogous problems.? For instance, Web ser-
vices are described by a multitude of files in (more or less)
standardized formats (e.g., WSDL® documents for the in-
terface description, BPEL4WS* for composition purposes or
security®). All these descriptions must be provided by the
developers of these services, they must be understood by
other developers building an integrated application and the
individual services must interact tightly in ways that could
not be foreseen by their developers nor fully checked by their
integrators.

As a still ongoing effort in the remainder of WonderWeb
(and beyond), we investigate how to support the develop-
ment and administration of Web services based systems. For
this purpose, we have drafted an ontology that may partially
capture relevant aspects of Web services (interface descrip-
tion, etc.) in a harmonizing explicit conceptual model that
can be queried or checked for consistency in order to

e ask for Web services that work under certain configu-
rations (e.g. certain conditions of payment);

e find violation of configuration constraints (e.g. a Web
service requiring a particular version of application
data formatting);

e ascertain Web service policies (e.g. only users that
have a valid public key and whose mail-addresses are
not contained in a public spam-list are allowed to use
the service);

e find security holes (e.g. in a chain of Web service in-
vocations there might be a service that does not use
secure protocols);

e ask for depending services (e.g. when the output for-
mat of a service is changed).

4 Conclusion

In this project report we have discussed some of the major
results of the EU IST project WonderWeb as seen from the
Karlsruhe perspective. Results have been achieved in three
different dimensions. First, we described the — still ongoing
— effort of finding sweet spots of knowledge representa-
tion languages for the Semantic Web located in the strings
tied between expressivity, efficiency and usability. Second,
we have considered efforts towards a harmonized concep-
tual model for Web services. Third, this harmonized model
has been implemented in a Semantic Middleware to support
common needs of industry practice when building distributed
systems.

20nly the problems in Service Oriented Architectures tend to
be even worse than in Application Servers, because Service Ori-
ented Architectures target more widely distributed applications.

3Web Service Description Language, cf. http://www.w3.org/
TR/wsdl

“Business Process Execution Language for Web Ser-
vices, cf. http://www-106.ibm.com/developerworks/library/
ws-bpel/

SWS-Security, cf. http://www-106.ibm.com/
developerworks/webservices/library/ws-secure/
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Though WonderWeb is rapidly approaching its end, work
on these topics continues in multiple projects that have just
been started, e.g. the BMBF project “SmartWeb” or the EU
IST project “Adaptive Services Grid” — to name just two in
which the first two authors participate, respectively.
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