
Flag & Check: Data Access with
Monadically Defined Queries
(Extended Technical Report)

Technical Report 3030, Institute AIFB, Karlsruhe Institute of Technology

Sebastian Rudolph
Fakultät Informatik

Technische Universität Dresden, DE
sebastian.rudolph@tu-dresden.de

Markus Krötzsch
Department of Computer Science

University of Oxford, UK
markus.kroetzsch@cs.ox.ac.uk

ABSTRACT
We introduce monadically defined queries (MODEQs) and nested
monadically defined queries (NEMODEQs), two querying forma-
lisms that extend conjunctive queries, conjunctive two-way regular
path queries, and monadic Datalog queries. Both can be expressed
as Datalog queries and in monadic second-order logic, yet they
have a decidable query containment problem and favorable query
answering complexities: a data complexity of P, and a combined
complexity of NP (MODEQs) and PSpace (NEMODEQs).

We show that (NE)MODEQ answering remains decidable in the
presence of a well-known generic class of tuple-generating depen-
dencies. In addition, techniques to rewrite queries under depen-
dencies into (NE)MODEQs are introduced. Rewriting can be ap-
plied partially, and (NE)MODEQ answering is still decidable if the
non-rewritable part of the TGDs permits decidable (NE)MODEQ
answering on other grounds.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—query languages;
F.4.1 [Mathematical Logic and Formal Languages]: Mathemat-
ical Logic—computational logic

Keywords
query containment; tuple-generating dependencies; Datalog

1. INTRODUCTION
Query languages are fundamental to the design of database sys-

tems. A good query language should be able to express a wide
range of common information needs, and allow queries to be an-
swered efficiently with limited computational resources. Moreover,
databases are often considered in combination with dependencies,
e.g., in the form of tuple-generating dependencies (TGDs), which
are also playing an important role in data exchange, information in-
tegration, and database integrity checking [1]. While query answer-
ing under dependencies is undecidable in general, there are many

This is the extended version of the following conference paper: S. Rudolph
and M. Krötzsch. Flag & check: data access with monadically defined
queries. In R. Hull and W. Fan, editors, Proceedings of the 32nd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS 2013, New York, NY, USA - June 22 - 27, 2013,
pages 151–162. ACM, 2013.

decidable cases, and a query language should be robustly applica-
ble to such extensions [40]. Another important task in database
management and optimization is to check query containment, that
is, to determine whether the answers of one query are contained in
the answers of another query over arbitrary databases, possibly un-
der the additional assumption that certain constraints are satisfied.
A query language should therefore allow for such checks.

Unfortunately, these basic requirements are in conflict. Very
simple query languages like conjunctive queries (CQs, [17]) allow
for efficient query answering (NP combined/AC0 data1) and con-
tainment checking, but have very limited expressivity. First-order
logic (FOL) queries extend expressivity, but are still restricted to
“local” queries, excluding, e.g., the transitive closure of a relation.
Query containment is undecidable for FOL, and query answering
becomes PSpace-complete for combined complexity [45], but re-
mains AC0 for data [32]. Another extension of CQs is Datalog,
which introduces rule-based recursion. The price are higher com-
plexities (ExpTime combined/P data), and undecidability of query
containment [23, 44]. FOL and Datalog are incomparable; both are
subsumed by second-order logic (SO), which is more expressive
but also more complex (ExpSpace combined/PH data) [32, 46].

To find more tractable query languages, various smaller frag-
ments of Datalog have been considered. Linear Datalog allows
only one inferred predicate per rule body, which significantly re-
duces query complexity (PSpace combined/ NLogSpace data) [29].
Still, query containment remains undecidable. Widely known query
languages for which containment is decidable are monadic Datalog
and conjunctive 2-way regular path queries (C2RPQs) [27, 15].
The query complexity of C2RPQs (NP combined/NLogSpace data)
is slightly lower than that of monadic Datalog (NP combined/P
data), but the expressivity of the languages is incomparable. In
particular, monadic Datalog cannot express transitive closure. Two
well-known query languages subsuming both monadic Datalog and
C2RPQs are Datalog and monadic second-order logic (MSO) [37].
Query containment is decidable for neither of these. These lan-
guages are incomparable, even regarding query complexities (MSO
has PSpace combined/PH data [45, 47, 37]), their common upper
bound being SO.

This reveals a glaring gap in the landscape of known query lan-
guages: no formalism that captures monadic Datalog and C2RPQs
ensures tractable data complexity and decidable query containment.
To address this, we propose monadically defined queries (MO-
DEQs) and nested monadically defined queries NEMODEQs as
novel query formalisms that combine these desirable properties.

1As usual, query complexities refer to the problem of deciding
whether a query has a particular certain answer. Combined com-
plexity is the complexity for arbitrary queries and databases; data
complexity is the complexity if the query is fixed or bounded.

data complexi ty of query answer ing
NLogSpace PTime PH AC0

NP

PSpace

ExpTime

ExpSpace

Datalog

linear
Datalog

monadic
Datalog

C2RPQ

FOL

MSO

SO

NEMODEQ

CQ

co
m

b
in

ed
 co

m
p

lex
ity

 o
f q

u
ery

 an
sw

erin
g

models
 closed
 not closed
under homomorphisms

MODEQ

q
u

ery
 co

n
tain

m
en

t

u
n

d
ecid

ab
le

d
ecid

ab
le

Figure 1: Overview of complexities and relations of monadically de-
fined queries to other query formalisms as established in this paper;
information indicated for conjunctive queries (CQ) and conjunctive
2-way regular path queries (C2RPQ) also hold when allowing unions
(UCQ and UC2RPQ); all other formalisms are closed under unions

Their relationship to the aforementioned languages is also illus-
trated in Fig. 1.

The contribution of this paper can be split in two parts. In the
first part, we introduce the new querying formalism and clarify its
relations to established query notions and the complexity for query
answering. More precisely:

• We define MODEQs, discuss the underlying intuition, and pro-
vide examples demonstrating their expressivity.

• We show that MODEQs capture (unions of) CQs, C2RPQs, and
monadic Datalog queries.

• We prove MODEQ answering to be NP-complete for combined
complexity (i.e., on par with CQs) and P-complete for data com-
plexity, ensuring data-tractability as one of the central desiderata
for querying large data sets.

We then extend MODEQs with nested subqueries, leading to a
broader class of NEMODEQs that generalize MODEQs.

• We show that NEMODEQs (thus MODEQs) are expressible by
both Datalog queries and MSO formulae.

• We prove NEMODEQ answering to be PSpace-complete for com-
bined complexity (on par with FOL-based query languages like
SQL) and P-complete for data complexity.

• We show that, unlike for Datalog and MSO queries, query con-
tainment for (NE)MODEQs is decidable.

In the second part of the paper, we study (NE)MODEQs in the
context of dependencies and ontology-based data access. To this
end, an important tool are (finite or infinite) universal models, which
represent solutions to data exchange and constraint repair problems
in the presence of TGDs [24]. As models of (NE)MODEQ are
closed under homomorphisms, we find that universal models can
be used to answer such queries, making them very robust to a wide
class of TGDs.

• We immediately obtain decidability of query answering under all
TGDs that admit a finite universal model. This property of TGDs
is undecidable, but can be approximated by various notions of
acyclicity [25, 26, 24, 39, 30, 35].

• More generally, we show that MODEQ answering is decidable
in the presence of rules giving rise to (possibly infinite) universal
models of bounded treewidth. This applies to many lightweight
ontology languages as well as guarded TGDs and generalizations
thereof [9, 4, 35, 5].

• In analogy to the popular notion of first-order rewritability, we
introduce (NE)MODEQ rewritability, and we identify basic cri-
teria for rewriting Datalog rules.

• Finally, we show that query answering is decidable under any set
of TGDs that can be decomposed into one that is (NE)MODEQ-
rewritable and one with the bounded-treewidth-model property.

Proofs omitted in the main paper are given in the Appendix.

2. PRELIMINARIES
We consider a standard language of first-order predicate logic,

based on an infinite set C of constant symbols, an infinite set P
of predicate symbols, and an infinite set V of first-order variables.
Each predicate p ∈ P is associated with a natural number ar(p)
called the arity of p. The list of predicates and constants forms
the language’s signature S = 〈P,C〉. We generally assume S =
〈P,C〉 to be fixed, and only refer to it explicitly if needed.

Databases, Rules, and Queries. A term is a variable x ∈ V
or a constant c ∈ C. We use symbols s, t to denote terms, x, y, z, v,w
to denote variables, a, b, c to denote constants. Expressions like t,
x, c denote finite lists of such entities. We use the standard pred-
icate logic definitions of atom and formula, using symbols ϕ, ψ
for the latter. A formula is ground if it contains no variables. A
database, usually denoted by D, is a finite set of ground atoms.
We write ϕ[x] to emphasize that a formula ϕ has free variables x;
we write ϕ[c/x] for the formula obtained from ϕ by replacing each
variable in x by the respective constant in c (both lists must have
the same length). A formula without free variables is a sentence.

A conjunctive query (CQ) is a formula Q[x] = ∃y.ψ[x, y] where
ψ[x, y] is a conjunction of atoms. A tuple-generating dependency
(TGD) is a formula of the form ∀x, y.ϕ[x, y] → ∃z.ψ[x, z] where
ϕ and ψ are conjunctions of atoms, called the body and head of the
TGD, respectively. TGDs never have free variables, so we usually
omit the universal quantifier when writing them. We use the symbol
Σ, possibly with subscripts, to denote sets of TGDs. A Datalog rule
is a TGD without existentially quantified variables; sets of Datalog
rules will be denoted by symbols P,R,S.

We use the standard semantics of first-order logic (FOL). An in-
terpretation I consists of a (possibly infinite) set ∆I called domain
and a function ·I that maps constants c to domain elements cI ∈ ∆I

and predicate symbols p to relations pI ⊆ (∆I)ar(p), thereby pI is
called the extension of p. A variable assignment for I is a function
Z : V → ∆I. Conditions for I and Z to satisfy a FOL formula
ϕ (i.e., to be a model of ϕ, written I,Z |= ϕ) are defined as usual.
If ϕ is a sentence, then Z is irrelevant for satisfaction and can be
omitted. An answer to a CQ Q[x] over a database D and set Σ of
TGDs is a list of constants c for which D ∪ Σ |= Q[c/x].

Given an interpretation I and a formula ϕ[x] with free variables
x = 〈x1, . . . , xm〉, the extension of ϕ[x] is the subset of (∆I)m con-
taining all those tuples 〈δ1, . . . , δm〉 for which I, {xi 7→ δi | 1 ≤ i ≤
m} |= ϕ[x]. Two formulae ϕ[x] and ψ[x] with the same free vari-
ables x are called equivalent if their extensions coincide for every
interpretation I.

Homomorphisms and Universal Models. Given interpre-
tations I, J , a homomorphism π from I to J is a function π :

∆I → ∆J such that: (i) for all constants c, we have π(cI) = cJ ,
and (ii) for all predicate symbols p and list of domain elements δ,
we have δ ∈ pI implies π(δ) ∈ pJ .

Finding query answers is facilitated in practice since one may
focus on universal models. A universal model of a set of sentences
Ψ is an interpretation I such that (i) I |= Ψ, and (ii) for every in-
terpretation J with J |= Ψ, there is a homomorphism from I to
J . For TGDs (and for plain databases), there is always a universal
model if there is any model at all. It can be defined by a (possibly
infinite) construction process called the chase. In particular, we let
I(D ∪ Σ) denote the universal model, for which every homomor-
phism into any other model of D ∪ Σ is injective. I(D ∪ Σ) always
exists for satisfiable D∪Σ, and it is unique up to isomorphism [24].

For a wide range of queries, entailment of query answers can be
reduced to model checking in the universal model:

Fact 1 (Entailment via model checking). If Q[x] is a query for
which the set of models of ∃x.Q[x] is closed under homomorphisms,
then, for every database D and set Σ of TGDs, D ∪ Σ |= Q[c/x] if
and only if either D ∪ Σ is inconsistent or I(D ∪ Σ) |= Q[c/x].

This applies to CQs and to all other query languages studied herein.
The case Σ = ∅ shows that one can equivalently represent databases
using models I(D) instead of sets of facts D. Our perspective is
more natural when using TGDs.

3. MONADICALLY DEFINED QUERIES
We now introduce a new query formalism, called monadically

defined queries (MODEQs), and state complexity results on query
answering in this language. To deepen our understanding for the
expressivity of MODEQs, we show that they strictly generalize the
well-known query formalisms of conjunctive 2-way regular path
queries (Section 3.1) and monadic Datalog queries (Section 3.2).

The heart of our query formalism is a mechanism for defining
new predicates based on existing ones. This mechanism – which we
refer to as “flag & check” – specifies new predicates by providing a
procedure for testing if a particular tuple δ=〈δ1, . . . , δm〉 ∈ (∆I)m is
in the predicate’s extension or not. To this end, the candidate tuple
is first “flagged” by associating each δi with an auxiliary constant
name λi that represents this element. The “check” is performed
by running a Datalog program with this fixed interpretation of the
constants λi. The check succeeds if a special fact hit is derived.

Example 1. To illustrate the idea, we consider a typical tran-
sitive closure query. Suppose that the binary predicate certifiedBy
represents the direct certification of one entity by another, e.g., in
a security application. We are interested in certification chains,
which could be expressed in Datalog as follows:

certifiedBy(x, y)→ certChain(x, y) (1)
certChain(x, y) ∧ certifiedBy(y, z)→ certChain(x, z) (2)

Corresponding Datalog rules P1 for “flag & check” are:

certifiedBy(λ1, y)→ U1(y) (3)
U1(y) ∧ certifiedBy(y, z)→ U1(z) (4)

U1(λ2)→ hit (5)

We define certChain to contain all pairs 〈δ1, δ2〉 for which P1 entails
hit when interpreting λ1 as δ1 and λ2 as δ2.

As in Example 1, the Datalog rules that we consider for the check-
ing phase only use hit or new, unary predicates Ui in rule heads.
Such unary predicates can be imagined as “colors” that are assigned
to elements of the domain, and the check thus is a deterministic, re-
cursive procedure of coloring the domain, starting from the flagged
candidate elements. This idea is defined formally as follows.

ce
rt

ifi
ed

B
y

w

ce
rt

ifi
ed

B
y

x

w

linkedTo linkedTo linkedTo linkedTo

ce
rti

fie
dB

y

certifiedBy

ce
rt

ifi
ed

B
y

certifiedB
y

w

alice bob

linkedTo linkedTo linkedTo linkedTo

ce
rti

fie
dB

y

ce
rti

fie
dB

y

certifiedB
y

certifiedB
y

certifiedBy

certifiedBy

ce
rt

ifi
ed

B
y

ce
rt

ifi
ed

B
y

bobalice

Figure 2: Structure recognized by MODEQ Q2 in Example 2

Definition 1 (MODEQ syntax and semantics). Given a signa-
ture S , a monadically defined predicate (MODEP) of arity m is
based on a signature S ′ that extends S with m fresh constant
symbols λ1, . . . , λm, a fresh nullary predicate hit, and k ≥ 0 fresh
unary predicates U1, . . . , Uk. A MODEP is a set P of Datalog rules
over S ′ where only U1, . . . , Uk, and hit occur in rule heads.

Let I be an interpretation over S . The extension PI of P is
the set of all tuples 〈δ1, . . . , δm〉 ∈ (∆I)m for which I′ |= P implies
I′ |= hit, for all interpretations I′ that extend I to the symbols in
S ′ such that 〈λI

′

1 , . . . , λ
I′

m 〉 = 〈δ1, . . . , δm〉.
A monadically defined query (MODEQ) is a conjunctive query

that uses both normal predicates and monadically defined predi-
cates in its atoms. The semantics of MODEQs is defined in the
obvious way via the semantics of MODEPs.

Example 2. The rules (3)–(5) define a binary MODEP P1, so
the query of Example 1 can be written as a MODEQ Q1[v,w] =
P1(v,w). For another example, assume there are entities certify-
ing the security of message handling in certain nodes of a net-
work. We are interested in entities y that can (directly) certify se-
cure treatment of the message at all nodes on some path from Alice
to Bob, as illustrated in Fig. 2. This is expressed by the MODEQ
Q2[w] = P2(w), where P2 consists of the following rules:

certifiedBy(x, λ1)→ U3(x) (6)
linkedTo(alice, x)→ U2(x) (7)

U2(x) ∧ U3(x) ∧ linkedTo(x, x′)→ U2(x′) (8)
U2(bob)→ hit (9)

This new query notion is rather powerful. It is easy to see that
it subsumes conjunctive queries (CQs) as well as unions of CQs.
Indeed, given k CQs ∃yi.Qi[x, yi] with i ∈ {1, . . . , k}, their union
is expressed as the MODEQ {Qi[λ, yi] → hit | 1≤i≤k}(x). Be-
fore showing that MODEQs also capture more powerful query lan-
guages, we observe closure under homomorphism (see Fact 1) and
state a basic complexity result.

Theorem 2. For every MODEQ Q[x], the set of all models of
∃x.Q[x] is closed under homomorphisms.

Theorem 3 (MODEQ answering complexity). Testing if c is
an answer to a MODEQ Q[x] over a database D is P-complete
in the size of D, and NP-complete in the combined size of D and Q.

Hardness follows from the fact that MODEQs subsume monadic
Datalog, shown in Section 3.2 below. P membership for data com-
plexity is a consequence of the fact that Datalog subsumes MO-
DEQs, demonstrated in Section 4.1. Membership in NP for com-
bined complexity is established directly by showing that every query
match is witnessed by a proof of polynomial size that can be guessed
and verified in polynomial time.

3.1 MODEQs Capture Regular Path Queries
We now show that MODEQs subsume conjunctive two-way reg-

ular path queries (C2RPQs), which generalize CQs by regular ex-
pressions over binary predicates [27, 15]. Variants of this type of
queries are used, e.g., by the XPath query language for querying
semi-structured XML data. Recent versions of the SPARQL 1.1
query language for RDF also support some of regular expressions
that can be evaluated under a similar semantics.

C2RPQs are defined like MODEQs, but with MODEPs replaced
by another form of defined predicates based on regular expressions
over binary predicates and their inverses:

Definition 2 (C2RPQ syntax and semantics). A two-way reg-
ular path predicate (2RPP) is a regular expression over the alphabet
Γ = {p, p− | ar(p) = 2} of normal and inverse binary predicate sym-
bols. All 2RPPs are of arity 2. Consider an interpretation I. For
inverse predicates p−, we define (p−)I B {〈δ2, δ1〉 | 〈δ1, δ2〉 ∈ pI}.
For a 2RPP P, we set 〈δ, δ′〉 ∈ PI if there is a word γ1 . . . γn match-
ing the regular expression P, and a sequence δ0 . . . δn of domain
elements such that δ0 = δ, δn = δ′, and 〈δi, δi+1〉 ∈ γ

I
i for every

i ∈ {0, . . . , n − 1}.
A conjunctive two-way regular path query (C2RPQ) is a con-

junctive query that uses both normal predicates and 2RPPs in its
atoms. The semantics of C2RPQs is defined in the obvious way
based on the semantics of 2RPPs.

Example 3. The query of Example 1 is expressed by the C2RPQ
certifiedBy∗(x, y). Another C2RPQ with inverses is

mountain(x) ∧ continent(y) ∧ (locatedIn|hasPart−)∗(x, y). (10)

Query answering for C2RPQs is NP-complete regarding the size
of the database and query, which is the same as for CQs. In terms
of data complexity, C2RPQs are NLogSpace-complete, and thus
harder than CQs (AC0). One can show hardness via graph reacha-
bility, and membership via a translation to linear Datalog [13].

Definition 3 (C2RPQ toMODEQ translation). Consider a
2RPP P and a finite automatonAP = 〈Γ, S , I, F,T 〉 that recognizes
P. The binary MODEP modep(P) consists of the rules

→ Us(λ1) for every initial state s ∈ I,
Us(z) ∧ p(z, z′)→ Us′ (z′) for every transition 〈s, p, s′〉 ∈ T,
Us(z) ∧ p(z′, z)→ Us′ (z′) for every transition 〈s, p−, s′〉 ∈ T,

Us(λ2)→ hit for every final state s ∈ F.

Given a C2RPQ Q, a MODEQ modeq(Q) is obtained by replacing
every 2RPP P in Q by modep(P).

The intuition behind the translation of C2RPQs to MODEQs is to
find bindings for x and y in P(x, y) by simulating all possible runs of
the automaton corresponding to a C2RPQ. Colors Us are associated
to states s of the automaton to record which domain elements can
be reached in which states when starting in an initial state at x. The
success criterion is that y is colored by a final state. One can thus
show the following:

Theorem 4 (MODEQs capture C2RPQs). For every C2RPQ
Q, the MODEQ modeq(Q) can be constructed in linear time, and
is equivalent to Q. In particular, the answers for Q and modeq(Q)
coincide.

Example 4. Let Q be the regular path query (10). The corre-
sponding MODEQ modeq(Q) is mountain(x)∧continent(y)∧P(x, y)
where P = modep((locatedIn|hasPart−)∗) consists of the rules:

→ U(λ1) (11)
U(z) ∧ locatedIn(z, z′)→ U(z′) (12)
U(z) ∧ hasPart(z′, z)→ U(z′) (13)

U(λ2)→ hit. (14)

Here we only need one “color” U that is propagated over locatedIn
and inversely over hasPart. The pairs in P are those for which this
process, started at the first element, will eventually color the second
argument.

However, the expressivity of MODEQs goes well beyond that of
C2RPQs, even when considering only binary predicates. This fol-
lows from the easy observation that for every C2RPQ Q there is
an integer n, such that whenever Q matches into a graph G, it also
matches into a graph G′ where all vertices have degree ≤ n and from
which there is a homomorphism into G. It is easy to see that the
MODEQ Q2 from Example 2 does not have this property.

3.2 MODEQs Capture Monadic Datalog
Monadic Datalog queries are another type of query language that

enjoys favorable computational properties. They are used, e.g., for
information extraction from the Web [28]. We now show that MO-
DEQs can express monadic Datalog queries, which is another way
to see that they are strictly more general than C2RPQs.

Definition 4 (Monadic Datalog query). Given a signature S ,
a Datalog query is based on a signature S ′ that extends S with ad-
ditional predicates, called intensional database (IDB) predicates. A
Datalog query is a pair 〈goal,S〉, where goal is an IDB predicate,
and S is a set of Datalog rules over S ′ where only IDB predicates
occur in rule heads and goal does not occur in rule bodies. A
monadic Datalog query is a query where all IDB predicates other
than goal have arity 1.

Given an interpretation I, the extension of 〈goal,S〉 is the set
of tuples δ over ∆I for which every extension I′ of I to S ′ which
satisfies S must also satisfy δ ∈ goalI

′

.

Note that sometimes in the literature, the arity of goal is restricted
to 1. Allowing it to be arbitrary does not affect the complexity of
the formalism.

Definition 5 (Monadic Datalog toMODEQ). Given a mon-
adic Datalog query Q = 〈goal,S〉, we let modeq(Q) denote the
MODEQ P(x) where P is obtained from S by

• replacing each rule ϕ[x, y]→ goal(x) by ϕ[λ, y]→ hit,
• replacing each IDB predicate, uniformly and injectively, by a

predicate U j.

Theorem 5 (MODEQs capture monadic Datalog). For every
monadic Datalog query Q, the MODEQ modeq(Q) can be con-
structed in linear time, and is equivalent to Q. In particular, the
answers for Q and modeq(Q) coincide.

From the correspondence thus established it follows that the lower
complexity bounds of monadic Datalog carry over and MODEQ
answering on databases must thus be P-hard for data complexity
and NP-hard for combined complexity [28], showing one direc-
tion of Theorem 3. MODEQs are strictly more expressive than
monadic Datalog queries, shown by the fact that even a simple con-
nectedness query like the one in Example 1 cannot be expressed in
monadic Datalog.

We would like to specifically note that, although the rules used in
the definitions of MODEPs are in fact monadic Datalog rules, the
query evaluation schemes underlying monadic Datalog and MO-
DEQs are fundamentally different: while in the case of monadic
Datalog, all elements of the extension can be obtained at once by
a forward chaining saturation process on the given interpretation
(or database), the flag & check strategy that underlies the seman-
tics definition of MODEPs crucially hinges on each potential ex-
tension element being verified in a separate saturation process. In
Section 4.1, we will see that this idea can be captured by Datalog
queries, but not by monadic ones.

ce
rt

ifi
ed

B
y

w

ce
rt

ifi
ed

B
y

x

w

linkedTo linkedTo linkedTo linkedTo

ce
rti

fie
dB

y

certifiedBy

ce
rt

ifi
ed

B
y

certifiedB
y

w

alice bob

linkedTo linkedTo linkedTo linkedTo

ce
rti

fie
dB

y

ce
rti

fie
dB

y

certifiedB
y

certifiedB
y

certifiedBy

certifiedBy

ce
rt

ifi
ed

B
y

ce
rt

ifi
ed

B
y

bobalice

Figure 3: Structure recognized by Q3 in Example 5

4. NESTED MODEQS
Query nesting is the process of using an n-ary subquery instead

of an n-ary predicate symbol within a query, with the obvious se-
mantics. In this section, we use this mechanism to extend MO-
DEQs, leading to the more general language of nested monadi-
cally defined queries (NEMODEQs). We then show that queries
of this type can be expressed in Datalog (Section 4.1) and monadic
second-order logic (Section 4.2). These results extend to MODEQs
as a special case of NEMODEPs, and help to establish some addi-
tional upper bounds for complexity.

It is interesting to ask if nesting of queries actually leads to a new
query language or not. A query language is closed under nesting
if every query with nested subqueries can be expressed by some
non-nested query. Many query languages are trivially closed under
nestings as they allow nesting as part of their syntax (e.g., CQs,
FOL, MSO, and SO), other languages require more or less complex
reformulations to eliminate nested queries (e.g., UCQs, Datalog,
and monadic Datalog), others are not closed under nestings (e.g.,
linear Datalog). Example 6 below shows that MODEQs are not
closed under nestings, motivating the following definition.

Definition 6 (NEMODEQ syntax & semantics). Let S be the
underlying signature. A nested monadically defined predicate (NE-
MODEP) of degree 1 over S is a MODEP over S . Consider a
finite set Pi (i = 1, . . . , k) of NEMODEPs of degree ≤ d over S . A
NEMODEP of degree d + 1 is a MODEP over a signature S ′ that
extends S with additional predicate names Pi that have the same
arity as the respective queries.

The semantics of NEMODEPs of degree d > 1 is defined as for
MODEPs, based on the (recursively defined) semantics of NEMO-
DEPs of degree < d. A nested monadically defined query (NEMO-
DEQ) is a conjunctive query that uses both normal predicates and
nested monadically defined predicates in its atoms. The semantics
of NEMODEQs is defined in the obvious way.

Note that the auxiliary symbols λi, U j, and hit do not need to be
distinct in different subqueries, or in queries and their subqueries.
This does not cause semantic interactions.

Example 5. Consider again Example 2, and assume that we
are now also interested in entities that can certify the security of
a communication indirectly, i.e., through a chain of certifications,
as shown in Fig. 3. This can be expressed by nesting MODEP P1 in
Q2, leading to a NEMODEQ of degree 2 Q3 = P3(w), where P3 co-
incides with P2 except that rule (6) is replaced by P1(x, λ1)→ U3(x).

However, even if a query is more easily expressed as a NEMO-
DEQ, it might still be expressible as a MODEQ. The next example
shows that this is the case for Q3 above, and presents a query that
cannot be expressed by any MODEQ.

Example 6. Q3 of Example 5 can equivalently be expressed by
the MODEQ Q4[w] = P4(w), where P4 consists of the following

rules:

certifiedBy(x, λ1)→ U3(x) (15)
U3(y) ∧ certifiedBy(x, y)→ U3(x) (16)

linkedTo(alice, x)→ U2(x) (17)
U2(x) ∧ U3(x) ∧ linkedTo(x, x′)→ U2(x′) (18)

U2(bob)→ hit (19)

To define a NEMODEQ that cannot be expressed as a MODEQ,
we first modify this example to ask for all pairs of persons who are
connected by a communication chain that is certified by a single
entity, i.e., we query for the possible pairs of “alice” and “bob.”
Let P5 be the ternary MODEP that consists of the following rules:

certifiedBy(x, λ1)→ U3(x) (20)
U3(y) ∧ certifiedBy(x, y)→ U3(x) (21)

linkedTo(λ2, x)→ U2(x) (22)
U2(x) ∧ U3(x) ∧ linkedTo(x, x′)→ U2(x′) (23)

U2(λ3)→ hit (24)

We now form a NEMODEQ that asks for all pairs of persons who
can communicate through a chain of such secure channels that goes
via multiple people. Moreover, we require that all of these people
are “friends,” that is, trustworthy in the context of the application.
Let P6 be the binary NEMODEP with the following rules:

→ U1(λ1) (25)
U1(y) ∧ P5(x, y, z) ∧ friend(z)→ U1(z) (26)

U1(y) ∧ P5(x, y, λ2)→ hit (27)

The NEMODEQ Q4 = P6(v,w) (see Fig. 4) cannot be expressed as
a MODEQ. To show this, one assumes the existence of such a MO-
DEQ and constructs a database where it must accept a match that
is not accepted by Q4. A formal proof is given in Proposition 22 in
the Appendix.

4.1 Expressing NEMODEQs in Datalog
We now show that NEMODEQs of arbitrary degree can be ex-

pressed as Datalog queries. To this end, the auxiliary predicates
have to be “contextualized,” which increases their arity. Hence the
translation usually does not lead to monadic Datalog queries.

Definition 7 (NEMODEQ to Datalog). Given a MODEP P of
arity m, the set datalog(P) of Datalog rules over an extended signa-
ture contains, for each rule in P, a new rule obtained by replacing

• each constant λi with a variable xλi ,
• each atom Ui(z) with the atom Ûi(z, xλ1 , . . . , xλm) where Ûi is a

fresh predicate of arity m + 1,
• each atom hit with the atom pP(xλ1 , . . . , xλm) where pP is a fresh

predicate symbol of arity m.

For a NEMODEP P of degree d > 1, let P′ be the MODEP obtained
by replacing each direct sub-NEMODEP Q of P with the predicate
pQ. The Datalog translation of P is recursively defined as:

datalog(P) B datalog(P′) ∪
⋃

Q a direct sub-NEMODEP of P

datalog(Q).

Given a NEMODEQ Q[x] = ∃y.ϕ[x, y], we define its translation
datalog(Q) as datalog({ϕ[λ, y] → hit}), where the predicate used
to replace hit will be denoted by pQ.

Note that the predicates Ûi must be globally fresh, even if multiple
subqueries use the same Ui. The rules in datalog(Q) might be un-
safe, i.e., they may contain universally quantified variables in the
head that do not occur in the body. This is no problem with the
logical semantics we consider.

Theorem 6 (Datalog expressibility of NEMODEQs). For any
NEMODEQQ, datalog(Q) can be constructed in linear time. More-
over, the queries Q[x] and 〈pQ, datalog(Q)〉 are equivalent, i.e.,
their answers coincide.

Example 7. The Datalog translation for the MODEQ Q3 from
Example 5 is as follows:

datalog(Q3)
datalog(P3)
datalog(P1) certifiedBy(xλ1 , y)→ Û1(y, xλ1 , xλ2)

Û1(y, xλ1 , xλ2) ∧ certifiedBy(y, z)→ Û1(z, xλ1 , xλ2)
Û1(xλ2 , xλ1 , xλ2)→ pP1 (xλ1 , xλ2)

pP1 (x, xλ1)→ Û3(x, xλ1)
linkedTo(alice, x)→ Û2(x, xλ1)

Û2(x, xλ1) ∧ Û3(x, xλ1) ∧ linkedTo(x, x′)→ Û2(x′, xλ1)
Û2(bob, xλ1)→ pP3 (xλ1)

pP3 (xλ1)→ pQ3 (xλ1)

Using backward-chaining, the goal pQ(x) can be expanded under
the rules datalog(Q) to obtain a (possibly infinite) set of CQs that
do not contain auxiliary predicates pQ′ . Thus Q can be considered
as a union of (possibly infinitely many) conjunctive queries.

The linear translation of NEMODEQs (and thus also MODEQs)
to Datalog leads to various results. First, NEMODEQs inherit Dat-
alog’s PTime upper bound for data complexity of query answering
[23]. The results of Section 3.2 show that this bound is tight. Sec-
ond, we find that the models of NEMODEQs are closed under ho-
momorphisms, since Datalog has this property. Again, this shows
that query entailment coincides with model checking (Fact 1).

Theorem 7. For any NEMODEQ Q[x], the set of models of
∃x.Q is closed under homomorphisms.

4.2 Expressing NEMODEQs in MSO Logic
In this section, we show that NEMODEQs can also be expressed

in monadic second-order logic (MSO), the extension of first-order
logic with set variables, used like predicates of arity 1. To dis-
tinguish them from object variables x, y, z, we denote set variables
by the uppercase letter U, possibly with subscripts, hinting at their
close relation to the unary coloring predicates U. We adhere to the
standard semantics of MSO that we will not repeat here.

To simplify the presentation of the next definition, we henceforth
assume that every variable x, constant λi, or monadic predicate U j
is used in at most one (sub-)predicate P of any NEMODEQ or NE-
MODEP we consider. This can always be achieved by renaming
variables and predicates.

Definition 8 (NEMODEQ toMSO). For a MODEP P of ar-
ity m with auxiliary unary predicates U1, . . . , Uk, and a list of terms
t = 〈t1, . . . , tm〉, we define an MSO formula

mso(P(t)) B ∀U1, . . . ,Uk.¬
∧
ρ∈P

mso(ρ, t)

where mso(ρ, t) is the rule obtained from rule ρ by replacing each
occurrence of a constant λi by ti, each occurrence of hit by ⊥ (the
falsity atom), and each occurrence of a unary predicate Ui by a set
variable Ui. We extend mso to NEMODEPs of higher degree by
applying it recursively to NEMODEP atoms. For a NEMODEQ Q,
we obtain mso(Q) by replacing every NEMODEP atom P(t) in Q
by mso(P(t)).

By replacing hit with ⊥, the derivation of a query match becomes
the derivation of an inconsistency. The formula mso(P(t)) evaluates

to true if this occurs for all possible interpretations of the predicates
U j, expressed here by universal quantification over the set variables
U j. The interpretation of t corresponds to the flagged tuple λ that
is to be checked. It is thus easy to see that the translation captures
the semantic conditions of Definitions 1 and 6.

Theorem 8 (MSO expressibility of NEMODEQs). For every
NEMODEQQ[x], mso(Q[x]) can be constructed in linear time and
is equivalent to Q[x].

Example 8. Consider NEMODEQ Q3 from Example 5. Then
mso(Q3) is the MSO formula

∀U2,U3.¬

∀v.
(
∀U1.¬

∀y.

(
certBy(v,y)→ U1(y)

)
∧∀y, z.

(
U1(y) ∧ certBy(y,z)→ U1(z)

)
∧

(
U1(w)→⊥

)
 → U3(v)

)
∧ ∀x.

(
linkedTo(alice, x)→ U2(x)

)
∧ ∀x,x′.

(
U2(x) ∧ U3(x) ∧ linkedTo(x, x′)→ U2(x′)

)
∧

(
U2(bob)→⊥

)

with free variable w (using certBy to abbreviate certifiedBy). The
framed subformula is mso(P1(v,w)).

Expressibility of NEMODEQs (and thus also MODEQs) in MSO
is a useful feature, which we will further exploit below. For the mo-
ment, we just note the direct consequence that the PSpace combined
complexity of model checking in MSO directly gives us PSpace-
membership of query answering for NEMODEQs and MODEQs.

The following theorem closes the gap w.r.t. the combined com-
plexity of query answering by showing PSpace hardness for NE-
MODEQs by a reduction from the validity problem of quantified
Boolean formulae.

Theorem 9 (Complexity of NEMODEQ answering). The task
of checking if c is an answer to a NEMODEQQ[x] over a database
D is P-complete in the size of D, and PSpace-complete in the size of
D and Q.

Figure 1 gives an overview of the relationships established so far,
regarding both expressivity and complexity. MODEQs feature the
same complexities as monadic Datalog, while providing a signifi-
cant extension of expressivity. The step to NEMODEQs leads to in-
creased combined complexity. Nevertheless, combined complexity
is still lower than for Datalog and data complexity is still lower than
for MSO. In addition, in the next sections, we will show that NE-
MODEQs (and MODEQs) are also more well-behaved than these
two when it comes to checking containment or interaction with rule
sets that give rise to infinite structures.

5. DECIDING QUERY CONTAINMENT
Checking query containment is an essential task in database man-

agement, facilitating query optimization, information integration
and exchange, and database integrity checking. The containment
or subsumption problem of two queries P and Q is the question
whether the answers of Q are contained in the answers of P over
any database. In this section, we show that this problem is decid-
able for NEMODEQs. At its core, this result is based on previous
work by Courcelle [20], from which we can derive the following
general theorem, which is interesting in its own right:

Theorem 10 (Deciding Datalog Containment inMSO). There
exists an algorithm that decides, given any Datalog query 〈goal,P〉
and any MSO query ϕ whose set of models is closed under homo-
morphisms, if the query 〈goal,P〉 is contained in ϕ.

linkedTo linkedTo linkedTo linkedTo

ce
rti

fie
dB

y

ce
rti

fie
dB

y

certifiedB
y

certifiedB
y

certifiedBy

certifiedBy

ce
rt

ifi
ed

B
y

ce
rt

ifi
ed

B
y

friendv
linkedTo linkedTo linkedTo linkedTo

ce
rti

fie
dB

y

ce
rti

fie
dB

y

certifiedB
y

certifiedB
y

certifiedBy

certifiedBy

ce
rt

ifi
ed

B
y

ce
rt

ifi
ed

B
y

friend w

Figure 4: Structure recognized by Q4 in Example 6

The underling result in [20] is formulated for queries without
free variables and without constant symbols, using a variant of
multi-sorted monadic second-order logic and a notion of graph gram-
mar derived from Datalog queries. The appendix recalls the rele-
vant notions and relates them to our setting to prove Theorem 10.

By Theorems 6, 7, and 8, NEMODEQs can be considered as Dat-
alog queries and as MSO queries whose models are closed under
homomorphisms. This shows the following:

Theorem 11 (Deciding NEMODEQ containment). The query
containment problem for NEMODEQs is decidable.

The complexity of NEMODEQ containment remains to be de-
termined. A lower bound is the 2ExpTime-hardness of monadic
Datalog containment shown recently [7].

6. QUERYING UNDER DEPENDENCIES
Dependencies play an important role in many database applica-

tions, be it to formulate constraints, to specify views for data inte-
gration, or to define relationships in data exchange. Dependencies
can be viewed as logical implications, like the TGDs introduced
in Section 2, and one is generally interested in answering queries
w.r.t. to their logical entailments. Universal models (Section 2) can
be viewed as solutions to data exchange problems or as minimal
ways of repairing constraint violations over a database. Querying
under dependencies thus corresponds to finding certain answers, as
is common, e.g., in data integration scenarios.

Example 9. Consider the following set of TGDs:

hasAuthor(x, y) → publication(x)
cites(x, y) → publication(x) ∧ publication(y)

publication(x) → ∃y.hasAuthor(x, y)

For a database {hasAuthor(a, c), cites(a, b)}, the conjunctive query
∃z.(hasAuthor(x, z)) has x 7→ a as its only answer. When taking the
above dependencies into account, the certain answers additionally
contain x 7→ b.

The extension of TGDs with equality is known as embedded de-
pendencies, a special case of which are equality-generating depen-
dencies [1]. We will not focus on equality here, and state most of
our results for TGDs.

The problem of computing CQ answers under TGDs is undecid-
able in general [16, 6]. A practical approach for computing certain
answers is to compute a finite universal model, if possible. All
combinations of TGDs and databases have universal models, but it
is undecidable whether any such model is finite; the core chase is
a known semi-decision procedure that computes a finite universal
model whenever it exists [24]. Many other variants of the chase
have been proposed to compute (finite) universal models in certain
cases.

One can compute certain answers under TGDs even in cases
where no finite universal model exists, as long as there is a universal

model that is sufficiently “regular” to allow for a finite representa-
tion. One of the most general criteria is based on the well-known
notion of treewidth (see, e.g., [4] for a formal definition). A rule
set Σ is called bounded treewidth set (bts) if for every database D,
there is a universal model I(D ∪ Σ) of bounded treewidth. The
treewidth bound in each case can depend on Σ and D. Recognizing
whether a rule set has this property is undecidable in general [4],
but many sufficient conditions have been identified. This includes
the case of rule sets with finite models as a special case of mod-
els with bounded treewidth. TGDs without existential quantifiers,
called full dependencies or Datalog rules [1], trivially have finite
models. More elaborate are various notions of acyclicity based on
analyzing the interaction of TGDs [25, 26, 38, 39, 4, 35].

Cases where I(D∪Σ) may be infinite but treewidth-bounded are
also manifold. A basic case are guarded TGDs, inspired by the
guarded fragment of first-order logic [2]. These have been gener-
alized to weakly guarded TGDs [9] and frontier-guarded rules [4],
both of which are subsumed by weakly frontier-guarded TGDs [4].
The most expressive currently known bts fragments are greedy bts
TGDs [5] and glut-guarded TGDs [35].

Another type of dependencies comes from the area of Descrip-
tion Logics (DLs). Originally conceived as ontology languages,
DLs have also been applied to express database constraints [14].
DLs use a different syntax, but share a similar first-order seman-
tics that makes them compatible with TGDs. Most DLs considered
in database applications are Horn logics (that allow for universal
models), and can thus be presented as rules [10].

Example 10. The set of TGDs in Example 9 can equivalently be
expressed by the DL-Lite ontology

∃hasAuthor v publication
publication v ∃hasAuthor

∃cites v publication
∃cites− v publication.

Many DLs enjoy tree-model properties, but some expressive DLs
are not bounded treewidth. This mainly applies to DLs that support
transitivity or its generalizations [36, 41].

As mentioned before, the entailment problem D,Σ |= Q is known
to be decidable if Σ is bts and Q is a conjunctive query. Our main
result of this section is that this extends to NEMODEQs provided
that the following holds.

Conjecture 12. Satisfiability of monadic second-order logic
on countable interpretations of bounded treewidth is decidable.

This statement is often taken for granted and proof sketches have
been communicated. A similar result was shown in [19] for a dif-
ferent notion of width. A modern account of the relevant proof
techniques that uses our notion of treewidth is given in [22] for fi-
nite graphs. Formulating the proof of [19] in these terms, one could
show Conjecture 12 [21]. We cautiously characterize this statement
as a conjecture since no full proof has been published.

Theorem 13 (NEMODEQ answering under bts). Let D be a
database and let Σ be a set of rules for which the treewidth of I(D∪
Σ) is bounded. Let Q[x] be a NEMODEQ.

1. D∪Σ |= Q[c/x] if and only if D∪Σ∪{¬Q[c/x]} has no countable
model with bounded treewidth.

2. If Conjecture 12 holds, then D ∪ Σ |= Q[c/x] is decidable.

The proof of this theorem exploits universality of I(D ∪ Σ) and
preservation of NEMODEQ matches under homomorphisms (The-
orem 7). The second claim follows from the first by applying
Conjecture 12 and the observation that the MSO theory D ∪ Σ ∪
{¬mso(Q[c/x])} is equivalent to D∪Σ∪{¬Q[c/x]} by Theorem 8.

7. MODEQ REWRITABILITY
Query rewriting is an important technique for answering queries

under dependencies, and the main alternative to the chase. The
general idea is to find “substitute queries” that can be evaluated di-
rectly over the database, without taking TGDs into account, and
yet deliver the same answer. We now extend this approach to MO-
DEQs and NEMODEQs, and we establish basic cases where Data-
log queries can be rewritten to MODEQs, which we extend further
in Section 8.

The most common notion is first-order rewritability, where a
conjunctive query and a set of TGDs is rewritten into a first-order
query – typically a union of conjunctive queries [1]. Importantly,
the rewriting does not depend on the underlying database but only
on the inital query and TGDs.

Example 11. Given the rule set from Example 9 and the con-
junctive query ∃v,w.(hasAuthor(v,w)), an appropriate first-order
rewriting is

∃v,w.(hasAuthor(v,w)) ∨ ∃v,w.(cites(v,w)) ∨ ∃v.(publication(v)).

First-order rewritability is a desirable property as there are ef-
ficient implementations for evaluating first-order queries (that is,
SQL). First-order rewritable sets of TGDs are also called finite
unification sets [4]. It is undecidable whether a set of TGDs be-
longs to this class, but an iterative backward chaining algorithm
can be defined that terminates on FO-rewritable rule sets and pro-
vides the rewritten FO formula [4]. Known sufficient conditions
for FO-rewritability led to the definition of atomic-hypothesis rules
and domain restricted rules [4], linear Datalog+/– [10], as well
as sticky sets of TGDs and sticky-join sets of TGDs [11, 12]. These
criteria were recently found to be subsumed by an efficiently check-
able condition that gives rise to the class of weakly recursive TGDs
[18]. Important FO-rewritable description logics include the DL-
Lite family of logics [14]. However, many useful TGDs can not be
expressed as first-order queries.

Example 12. First-order logic cannot express transitive closure,
so there is no first-order rewriting for the CQ s(v) ∧ r(v,w) ∧ s(w)
under the TGD r(x, y) ∧ r(y, z)→ r(x, z).

This motivates the consideration of more expressive query lan-
guages in query rewriting.

Example 13. The TGD and query of Example 12 can be rewrit-
ten as a Datalog query

r(x, y)→ rIDB(x, y) (28)
rIDB(x, y) ∧ rIDB(y, z)→ rIDB(x, z) (29)

s(v) ∧ rIDB(v,w) ∧ s(w)→ goal, (30)

but also as a conjunctive regular path query

∃v,w.s(v) ∧ r∗(v,w) ∧ s(w).

Rewriting CQs under TGDs into Datalog queries is interesting, but
the evaluation of Datalog queries remains complex. The undecid-
ability of Datalog query containment also makes it intrinsically dif-
ficult to determine if such a query captures a set of TGDs. The use

of C2RPQs is more interesting. Yet, to the best of our knowledge,
rewriting of conjunctive queries into C2RPQs has been addressed
only very implicitly by now [41]. Moreover, as discussed in Sec-
tion 3.1, C2RPQs are still rather constrained: besides further struc-
tural restrictions, they only allow for recursion over binary predi-
cates. We therefore consider query rewritability under MODEQs
and NEMODEQs, defined as follows:

Definition 9 (NEMODEQ rewritability). Let Σ be a set of
TGDs and let Q[x] be a CQ. A (NE)MODEQ QQ,Σ is a rewriting of
Q under Σ if, for all databases D and potential query answers c,
we have D ∪ Σ |= Q[c/x] iff D |= QQ,Σ[c/x]. Σ is called (NE)MO-
DEQ-rewritable if every conjunctive query Q has a (NE)MODEQ
rewriting for Σ and Q.

Rewritability of conjunctive queries entails rewritability of MO-
DEQs, so the conditions of Definition 9 hold even when consider-
ing MODEQs instead of CQs. This is shown by replacing CQs in
rule bodies with MODEQs, where care must be taken that the exis-
tentially quantified variables in the CQ are not used anywhere else
in the rule body:

Lemma 14 (Replacement Lemma). Consider a set Σ of TGDs,
a conjunctive query Q = ∃y.ψ[x, y], and a NEMODEQQ[x] that is
a rewriting for Σ and Q. Then Q andQ are equivalent in all models
of Σ, i.e., Σ |= ∀x.Q[x]↔ Q[x].

Let ψ[t/x, y′/y] be the conjunction of Q with variables x re-
placed by terms t and variables y replaced by variables y′. We
say that ψ[t/x, y′/y] is a match in a Datalog rule ρ if ρ is of the
form ψ[t/x, y′/y]∧ϕ→ χ where the y′ occur neither in ϕ nor in χ.

Given some NEMODEQ P[z] over Σ, let P′[z] denote a NEMO-
DEQ obtained by replacing a match ψ[t/x, y′/y] of Q in some rule
of P by Q[t/x], where the bound variables in Q do not occur in
P. Then P and P′ are equivalent in all models of Σ, i.e., Σ |=
∀z.P[z]↔ P′[z].

All known FO-rewritable classes are rewritten to unions of CQs.
Since every union of CQs can be expressed as MODEQ, all such
rule sets are also MODEQ-rewritable. Moreover, Section 3.2 im-
plies that every set of monadic Datalog rules is MODEQ-rewritable.
Since MODEQs are strictly more expressive than monadic Data-
log queries, one would expect to find larger classes of MODEQ-
rewritable TGDs. An appropriate generalization of monadic Data-
log is as follows:

Definition 10 (j-oriented rule set). We call a set of Datalog
rules Σ j-oriented for the integer j if all head predicates have the
same arity n, and 1 ≤ j ≤ n, and we have: if a rule’s body contains
an atom p(t) for some head predicate p and the rule’s head con-
tains an atom q(t′), then t and t′ agree on all positions other than
possibly j.

Intuitively speaking, recursive derivations in j-oriented rule sets
can only modify the content of a single position j while keeping all
other arguments fixed in all derived facts.

Example 14. The following rule set Σfamily is 3-oriented. We use
atoms parentsSon(x, y, z) and parentsDghtr(x, y, z) to denote that z
is the son and daughter of x and y, respectively.

parentsSon(x, y, z)∧hasBrother(z, z′)→ parentsSon(x, y, z′)

parentsSon(x, y, z)∧hasSister(z, z′)→ parentsDghtr(x, y, z′)

parentsDghtr(x, y, z)∧hasBrother(z, z′)→ parentsSon(x, y, z′)

parentsDghtr(x, y, z)∧hasSister(z, z′)→ parentsDghtr(x, y, z′)

Definition 11 (Single predicate rewriting). For a j-oriented
set Σ of Datalog rules and a head predicate p of Σ, a MODEP Pp,Σ

is defined as follows. Let Uq be an auxiliary unary predicate for
each head predicate q in Σ, let Vi be a auxiliary unary predicate
for each i ∈ {1, . . . , ar(p)} with i , j, and let z̃ j be an additional
variable not occurring in Σ. Then Pp,Σ contains the following rules:

• a rule Up(λ j)→hit;
• for each set variable Vi, a rule→Vi(λi) with empty body;
• for each ψ→q(t1, . . . , tn) ∈ Σ, a rule ψ′→Uq(t j) where ψ′ is ob-

tained from ψ by replacing each atom q′(t1, . . . , t′j, . . . , tn) (with
q′ a head predicate) by Uq′ (t′j), and by adding for each term ti
with i, j a new body atom Vi(ti);

• a rule q′(λ1, . . . , z̃ j, . . . , λn)→ Uq′ (z̃ j) for each head predicate q′.

For a list z of ar(p) variables, the MODEQ Qp,Σ[z] is defined as
Pp,Σ(z).

This operation allows us to express the extension of a predicate
p by means of a MODEQ.

Theorem 15 (Single predicate rewriting correctness). If Σ is
j-oriented and p is a head predicate, then Qp,Σ[z] is a rewriting for
Σ and p(z).

Example 15. For the rule set in Example 14, we obtain the rewrit-
ing QparentsSon,Σ[z1, z2, z3] = PparentsSon,Σ(z1, z2, z3) with rules

UparentsSon(λ3)→ hit → V1(λ1) → V2(λ2)

V1(x)∧V2(y)∧UparentsSon(z)∧hasBrother(z, z′)→ UparentsSon(z′)

V1(x)∧V2(y)∧UparentsSon(z)∧hasSister(z, z′)→ UparentsDghtr(z′)

V1(x)∧V2(y)∧UparentsDghtr(z)∧hasBrother(z, z′)→ UparentsSon(z′)

V1(x)∧V2(y)∧UparentsDghtr(z)∧hasSister(z, z′)→ UparentsDghtr(z′)

parentsSon(λ1, λ2, z̃3)→ UparentsSon(z̃3)

parentsDghtr(λ1, λ2, z̃3)→ UparentsDghtr(z̃3).

The V predicates are not really needed here, since rule bodies do
not impose any conditions on the respective variables. If no con-
stants from C occur, one could always replace V with the respective
λs, but expressions like V1(c) would require an equality predicate to
state λ1 ≈ c. For the semantics of NEMODEQs to be meaningful,
constants λi must always be allowed to be equal to other constants,
even if a unique name assumption is adopted for constants in C.

Using the Replacement Lemma 14, we can extend Theorem 15 to
arbitrary conjunctive queries:

Theorem 16 (j-orientedness implies rewritability). Every j-
oriented rule set is MODEQ-rewritable.

8. REWRITING LAYERS OF TGDS
In the previous section, we have identified a first criterion for

MODEQ-rewritability, and thus decidability of query entailment.
However, there are many cases where only some of the given TGDs
are rewritable. On the other hand, our results from Section 6 guar-
antee that NEMODEQ answering is still decidable in the presence
of TGDs that are in bts, based on techniques that do not require
rewriting. We now show how to combine both results by applying
query rewriting to a subset of TGDs that is suitably “layered above”
the remaining TGDs. This allows us to define a class of fully ori-
ented rule sets that generalizes j-oriented rule sets to cover the full
expressiveness of NEMODEQs. More generally, the combination
of bts and NEMODEQ-rewritability captures some of the most ex-
pressive ontology languages for which query answering is known
to be decidable.

Given a set of TGDs, we first clarify which subsets of TGDs
can be rewritten into queries that can be evaluated over the remain-
ing TGDs and databases without loosing results. To this end, we

consider a notion of rule dependency. Related notions were first
described in [3], and independently in [24]. Our presentation is
closely related to [4].

Definition 12 (rule dependency, cut). Let ρ1 = B1 → H1 and
ρ2 = B2 → H2 be two TGDs. We say that ρ2 depends on ρ1, written
ρ1 ≺ ρ2, if there is
• a database D,
• a substitution θ of all variables in B1 with terms in D such that
θ(B1) ⊆ D, and

• a substitution θ′ of all variables in B2 with terms in D ∪ θ(H1)
such that θ′(B2) ⊆ D ∪ θ(H1) but θ′(B2) * D.

We say that ρ2 strongly depends on ρ1, written ρ1 ≺≺ ρ2, if H1
contains a predicate that occurs in B2.

A (strong) cut of a set of rules Σ is a partition Σ1 ∪ Σ2 of Σ such
that no rule in Σ1 (strongly) depends on a rule in Σ2. It is denoted
Σ1 B Σ2 (Σ1 BB Σ2).

The notion of rule dependencies encodes which rule can possibly
trigger which other rule. Checking if a rule depends on another is
an NP-complete task [4]. We thus introduce the simpler notion of
strong dependency that can be checked in polynomial time. Clearly,
dependency implies strong dependency, but the converse might not
be true.

Example 16. Consider the following Datalog rules:

A(x) ∧ B(x)→ C(x) (31)
C(x)→ ∃v.p(x, v), A(v) (32)

Rule (32) strongly depends on (31) and vice versa. Moreover, (32)
depends on (31), where the database of Definition 12 could be D =
{A(c), B(c)} using θ = θ′ = {x 7→ c}. However, (31) does not depend
on (32): a substitution θ′ can map x to v (introduced as a new term
when applying (32)), but the required fact B(v) is not derived by
(32) and cannot be in any initial database D (since it is not ground).

Intuitively speaking, we can evaluate a TGD set Σ of the form
Σ1 BΣ2 by first applying the rules in Σ1, and then applying the rules
of Σ2. This is the essence of the following theorem, shown in [4].

Theorem 17 (Baget et al.). Let Σ be a set of rules admitting a
cut Σ1BΣ2. Then, for every database D and every conjunctive query
Q[x] we have that D ∪ Σ |= Q[x/c] exactly if there is a Boolean
conjunctive query Q′ such that D ∪ Σ1 |= Q′ and Q′,Σ2 |= Q[x/c].

We can thus rewrite queries in “layers” based on cuts:

Lemma 18 (Query rewriting with cuts). Let D be a database
and let Σ1 B Σ2 be two sets of TGDs.

1. If QQ,Σ2 [x] is a NEMODEQ-rewriting of a conjunctive query
Q[x], then:

D ∪ Σ1 ∪ Σ2 |= Q[c/x] if and only if D ∪ Σ1 |= QQ,Σ2 [c/x].

2. If Σ1 and Σ2 are NEMODEQ-rewritable, then so is Σ1∪Σ2.

This observation has two useful implications. The second item
outlines an approach of extending and combining rewriting proce-
dures that we will elaborate on in the remainder of this section. The
first item hints at a very general approach for constructing TGD lan-
guages for which query answering is decidable, as expressed in the
next theorem.

Theorem 19 (Query answering with cuts). Consider rule sets
Σ1BΣ2, such that NEMODEQ answering is decidable under Σ1, and
NEMODEQ rewriting is decidable under Σ2. Then NEMODEQ an-
swering is decidable under Σ1 ∪ Σ2.

Using Theorem 13, this result specifically applies in cases where
Σ1 is a bounded treewidth set. We have noted that there are a
number of effectively checkable criteria for this general class of
TGDs. Much less is known about NEMODEQ rewritability be-
yond rewritability to unions of CQs. For a more general criterion,
we can extend j-oriented rules along the lines of Lemma 18 (2).

Definition 13 (Fully oriented rule set). Let≈≺≺ be the reflex-
ive symmetric transitive closure of ≺≺. The set Σ is fully oriented
if, for every ρ ∈ Σ, the equivalence class [ρ]≺≺ = {ρ′ ∈ Σ | ρ ≈≺≺ ρ

′}

is j-oriented (not necessarily for the same j and predicate arity).

Given a fully oriented rule set, we can construct NEMODEQ
rewritings for individual classes [ρ]≺≺ as in Definition 11, and com-
bine these rewritings using Lemma 14:

Theorem 20 (Fully oriented rule sets are rewritable). For a
rule set Σ, it can be detected in polynomial time if Σ is fully ori-
ented. Every fully oriented set Σ is MODEQ-rewritable.

The use of ≺≺ instead of ≺ is relevant for deciding full oriented-
ness in polynomial time. Even with this restriction, fully oriented
Datalog queries have the same expressivity as NEMODEQs. More-
over, every NEMODEQ-rewritable TGD set can be expressed as a
set of rules that can be transformed into a MODEQ using Theo-
rem 20.

Theorem 21 (NEMODEQs = fully oriented Datalog). For
every NEMODEQ Q, the rule set datalog(Q) of Definition 7 is
fully oriented. Moreover, for every NEMODEQ-rewritable set Σ
of TGDs, there is a fully oriented set of Datalog rules Σ′ such that:

• every predicate p in Σ has a corresponding head predicate qp in
Σ′ that does not occur in Σ,

• for every database D and conjunctive query Q[x] that do not
contain predicates of the form qp, and for every list of constants
c, D ∪ Σ |= Q[c/x] iff D ∪ Σ′ |= Q′[c/x] where Q′ is obtained
from Q by replacing all predicates p by qp.

Another interesting criterion for NEMODEQ rewritability has
been studied for Description Logics (DLs), where all predicates are
of arity one or two. Expressive DL ontologies consist of two kinds
of terminological axioms: concept inclusion axioms and role inclu-
sion axioms. A role inclusion axiom is a Datalog rule of the form
R1(x0, x1) ∧ . . . ∧ Rn(xn−1, xn)→ R(x0, xn), which can be viewed as
a generalized transitivity statement. Even in relatively inexpressive
DLs, role inclusion axioms lead to undecidability of CQ answer-
ing [36]; in more expressive DLs they even lead to undecidability
of simpler reasoning problems [31]. To overcome this, syntactic
restrictions are imposed on role inclusions, to ensure that all role
inclusions can be captured using finite automata [31, 34]. This is
equivalent to rewriting role inclusions to regular path queries, and
has indeed been exploited to decide CQ answering over expressive
DLs [41]. This can be viewed as an implicit application of The-
orem 19.2 Many reasoning procedures for DLs are based on tree-
like models, so various approaches to DL CQ answering can indeed
be viewed as special combinations of bounded treewidth sets and
NEMODEQ rewritable sets of TGDs [36, 41]. This supports the
relevance of the general relationships observed here, and it moti-
vates the further study of criteria for NEMODEQ rewritability. The
rewriting methods used in DLs are based on regular languages, so
it seems promising to consider their generalizations to graph gram-
mars when dealing with arbitrary TGDs [22].

2DL concept and role inclusion axioms are not always separated by
a cut. There are well known rewriting methods to achieve this [33].

9. CONCLUSION
Monadically defined queries and their nested extension achieve

a balance between expressivity and computability. They capture
and significantly extend the query capabilities of (unions of) con-
junctive queries as well as (unions of) conjunctive two-way regular
path queries and monadic Datalog queries, the prevailing query-
ing paradigms for structured and semi-structured databases. At the
same time, they are conveniently expressible both in Datalog and
monadic second-order logic. Yet, as opposed to these two, they
ensure decidability of query containment and of query answering
in the presence of depdendencies that allow for universal models
with bounded treewidth – a property shared by many of the known
decidable TGD classes.

The novel notions of MODEQ-rewritability and NEMODEQ-
rewritability significantly extend first-order rewritability, which has
been proven useful for theoretical considerations and practical real-
ization of query answering alike. This extension allows for captur-
ing much larger classes of TGD sets covering features like transi-
tivity, which are considered difficult to handle within the known de-
cision frameworks. Moreover, (NE)MODEQ-rewritable TGD sets
can smoothly be integrated with bounded treewidth TGD sets as
long as certain dependency constraints are obeyed. This provides
a valuable perspective on rule-based data access as a task that can
be solved by combining bottom-up techniques like the chase with
top-down techniques like query rewriting.

Our work raises a number of interesting questions for future re-
search: How general are (NE)MODEQs? Are there larger, more
expressive fragments which jointly satisfy all the established prop-
erties? Is every rewriting for a TGD set and a given CQ that is
expressible in MSO logic equivalent to a NEMODEQ? What is the
precise complexity of deciding query containment? Which more
general syntactic criteria ensure NEMODEQ-rewritability? Can all
fragments of TGDs (including those considered in description log-
ics) for which conjunctive query answering is known to be decid-
able be captured as a combination of bts and NEMODEQ-rewriting?
Answering these questions will not only contribute to our under-
standing of NEMODEQs, but also provide a more unified view on
query answering under dependencies in general.

Acknowledgments. We acknowledge contributions of various
people: Bruno Courcelle and Detlef Seese gave very helpful com-
ments on their work on MSO and structures of bounded treewidth;
Diego Calvanese helped clarifying complexities of C2RPQs; Pierre
Bourhis provided feedback leading to our formulation of Theo-
rem 10; various anonymous reviewers gave valuable input on ear-
lier versions of this work.

This work was supported by the Royal Society, the Seventh Frame-
work Program (FP7) of the European Commission under Grant
Agreement 318338, ‘Optique’, and the EPSRC projects ExODA,
Score! and MaSI3.

10. REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison Wesley, 1994.

[2] H. Andréka, I. Németi, and J. van Benthem. Modal
languages and bounded fragments of predicate logic. Journal
of Philosophical Logic, 27(3):217–274, 1998.

[3] J.-F. Baget. Improving the forward chaining algorithm for
conceptual graphs rules. In D. Dubois, C. A. Welty, and
M.-A. Williams, editors, KR, pages 407–414. AAAI Press,
2004.

[4] J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. On
rules with existential variables: Walking the decidability line.
Artificial Intelligence, 175(9–10):1620–1654, 2011.

[5] J.-F. Baget, M.-L. Mugnier, S. Rudolph, and M. Thomazo.
Walking the complexity lines for generalized guarded
existential rules. In Walsh [48], pages 712–717.

[6] C. Beeri and M. Y. Vardi. The implication problem for data
dependencies. In Proceedings of the 8th Colloquium on
Automata, Languages and Programming, pages 73–85.
Springer, 1981.

[7] M. Benedikt, P. Bourhis, and P. Senellart. Monadic datalog
containment. In A. Czumaj, K. Mehlhorn, A. M. Pitts, and
R. Wattenhofer, editors, ICALP (2), volume 7392 of LNCS,
pages 79–91. Springer, 2012.

[8] G. Brewka and J. Lang, editors. Proceedings of the 11th
International Conference on Principles of Knowledge
Representation and Reasoning (KR’08). AAAI Press, 2008.

[9] A. Calì, G. Gottlob, and M. Kifer. Taming the infinite chase:
Query answering under expressive relational constraints. In
Brewka and Lang [8], pages 70–80.

[10] A. Calì, G. Gottlob, and T. Lukasiewicz. A general
datalog-based framework for tractable query answering over
ontologies. In Paredaens and Su [42], pages 77–86.

[11] A. Calì, G. Gottlob, and A. Pieris. Advanced processing for
ontological queries. Proceedings of VLDB 2010,
3(1):554–565, 2010.

[12] A. Calì, G. Gottlob, and A. Pieris. Query answering under
non-guarded rules in Datalog+/-. In P. Hitzler and
T. Lukasiewicz, editors, Web Reasoning and Rule Systems,
volume 6333 of LNCS, pages 1–17. Springer, 2010.

[13] D. Calvanese. Personal communication, September 2011.
[14] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and

R. Rosati. Tractable reasoning and efficient query answering
in description logics: The DL-Lite family. Journal of
Automated Reasoning, 39(3):385–429, 2007.

[15] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y.
Vardi. Reasoning on regular path queries. SIGMOD Record,
32(4):83–92, 2003.

[16] A. K. Chandra, H. R. Lewis, and J. A. Makowsky. Embedded
implicational dependencies and their inference problem. In
Conference Proceedings of the 13th Annual ACM
Symposium on Theory of Computation (STOC’81), pages
342–354. ACM, 1981.

[17] A. K. Chandra and P. M. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In J. E.
Hopcroft, E. P. Friedman, and M. A. Harrison, editors,
Proceedings of the 9th Annual ACM Symposium on Theory
of Computing (STOC’77), pages 77–90. ACM, 1977.

[18] C. Civili and R. Rosati. A broad class of first-order
rewritable tuple-generating dependencies. In P. Barceló and
R. Pichler, editors, Proceedings of the 2nd Workshop on the
Resurgence of Datalog in Academia and Industry (Datalog
2.0, 2012), volume 7494 of LNCS. Springer, 2012.

[19] B. Courcelle. The monadic second-order logic of graphs, ii:
Infinite graphs of bounded width. Mathematical Systems
Theory, 21(4):187–221, 1989.

[20] B. Courcelle. Recursive queries and context-free graph
grammars. Theoretical Computer Science, 78(1):217–244,
1991.

[21] B. Courcelle. Personal communication, August 2011.
[22] B. Courcelle and J. Engelfriet. Graph structure and monadic

second-order logic, a language theoretic approach.
manuscript, to be published at Cambridge University Press;
available at
http://www.labri.fr/perso/courcell/Book/TheBook.pdf, April
2011.

[23] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov.

Complexity and expressive power of logic programming.
ACM Computing Surveys, 33(3):374–425, 2001.

[24] A. Deutsch, A. Nash, and J. B. Remmel. The chase revisited.
In M. Lenzerini and D. Lembo, editors, Proc. 27th
Symposium on Principles of Database Systems (PODS’08),
pages 149–158. ACM, 2008.

[25] A. Deutsch and V. Tannen. Reformulation of XML queries
and constraints. In D. Calvanese, M. Lenzerini, and
R. Motwani, editors, Proceedings of the 9th International
Conference on Database Theory (ICDT 2003), volume 2572
of LNCS, pages 225–241. Springer, 2003.

[26] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: semantics and query answering. Theoretical
Computer Science, 336(1):89–124, 2005.

[27] D. Florescu, A. Levy, and D. Suciu. Query containment for
conjunctive queries with regular expressions. In Proceedings
of the seventeenth ACM symposium on Principles of
database systems, PODS ’98, pages 139–148. ACM, 1998.

[28] G. Gottlob and C. Koch. Monadic datalog and the expressive
power of languages for web information extraction. J. ACM,
51(1):74–113, 2004.

[29] G. Gottlob and C. H. Papadimitriou. On the complexity of
single-rule datalog queries. Inf. Comput., 183(1):104–122,
2003.

[30] S. Greco and F. Spezzano. Chase termination: A constraints
rewriting approach. Proceedings of VLDB 2010,
3(1):93–104, 2010.

[31] I. Horrocks, O. Kutz, and U. Sattler. The even more
irresistible SROIQ. In P. Doherty, J. Mylopoulos, and C. A.
Welty, editors, Proceedings of the 10th International
Conference on Principles of Knowledge Representation and
Reasoning (KR’06), pages 57–67. AAAI Press, 2006.

[32] N. Immerman. Languages that capture complexity classes.
SIAM J. Comput., 16(4):760–778, 1987.

[33] Y. Kazakov. RIQ and SROIQ are harder than SHOIQ. In
Brewka and Lang [8], pages 274–284.

[34] Y. Kazakov. An extension of complex role inclusion axioms
in the description logic SROIQ. In Proceedings of the 5th
International Joint Conference on Automated Reasoning
(IJCAR 2010), LNCS. Springer, 2010.

[35] M. Krötzsch and S. Rudolph. Extending decidable existential
rules by joining acyclicity and guardedness. In Walsh [48],
pages 963–968.

[36] M. Krötzsch, S. Rudolph, and P. Hitzler. Conjunctive queries
for a tractable fragment of OWL 1.1. In K. Aberer et al.,
editor, Proceedings of the 6th International Semantic Web
Conference (ISWC’07), volume 4825 of LNCS, pages
310–323. Springer, 2007.

[37] L. Libkin. Elements of Finite Model Theory. Springer, 2004.
[38] B. Marnette. Generalized schema-mappings: from

termination to tractability. In Paredaens and Su [42], pages
13–22.

[39] M. Meier, M. Schmidt, and G. Lausen. On chase termination
beyond stratification. Proceedings of VLDB 2009,
2(1):970–981, 2009.

[40] M.-L. Mugnier. Ontological query answering with existential
rules. In S. Rudolph and C. Gutierrez, editors, Web
Reasoning and Rule Systems (RR 2011), volume 6902 of
LNCS, pages 2–23. Springer, 2011.

[41] M. Ortiz, S. Rudolph, and M. Simkus. Query answering in
the Horn fragments of the description logics SHOIQ and
SROIQ. In Walsh [48], pages 1039–1044.

[42] J. Paredaens and J. Su, editors. Proc. 28th Symposium on
Principles of Database Systems (PODS’09). ACM, 2009.

http://www.labri.fr/perso/courcell/Book/TheBook.pdf

[43] S. Rudolph and M. Krötzsch. Flag & check: data access with
monadically defined queries. In R. Hull and W. Fan, editors,
Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2013,
New York, NY, USA - June 22 - 27, 2013, pages 151–162.
ACM, 2013.

[44] O. Shmueli. Equivalence of DATALOG queries is
undecidable. J. Log. Program., 15(3):231–241, 1993.

[45] L. J. Stockmeyer. The Complexity of Decision Problems in
Automata Theory and Logic. PhD thesis, Massachusetts
Institute of Technology, 1974.

[46] L. J. Stockmeyer. The polynomial-time hierarchy. Theor.
Comput. Sci., 3(1):1–22, 1976.

[47] M. Y. Vardi. The complexity of relational query languages.
In H. R. Lewis, B. B. Simons, W. A. Burkhard, and L. H.
Landweber, editors, STOC, pages 137–146. ACM, 1982.

[48] T. Walsh, editor. Proc. 22nd Int. Joint Conf. on Artificial
Intelligence (IJCAI’11). AAAI Press/IJCAI, 2011.

APPENDIX
This appendix provides proofs that have been omitted in the main
paper for reasons of space.

Proofs for Section 3
Theorem 2. For every MODEQ Q[x], the set of all models of

∃x.Q[x] is closed under homomorphism.

Proof. As MODEQs are a special case of NEMODEQs, the re-
sult follows from Theorem 7.

Theorem 3 (MODEQ answering complexity). Testing if c is
an answer to a MODEQ Q[x] over a database D is P-complete in
the size of D, and NP-complete in the combined size of D and Q.

Proof. P membership for data complexity is a direct consequence
of the fact that MODEQs are subsumed by NEMODEQs which in
turn can be polynomially translated to Datalog queries for which
the problem is known to be in P [23, Theorem 4.4].

While P hardness is a consequence of the fact that MODEQs
subsume monadic Datalog (shown later in Theorem 5), we provide
a direct proof by reducing entailment in propositional Horn logic to
MODEQ answering. Given a setH of propositional Horn clauses,
we introduce for every propositional atom a occurring therein a
constant ca. We also introduce one additional constant nil. More-
over, for every Horn clause C ∈ H with C = a1 ∧ . . . ∧ an → a, we
introduce constants bC,1, . . . , bC,n and ground atoms entails(bC,1, ca),
first(bC,i, cai) for all i ∈ {1, . . . , n}, as well as rest(bC,n, nil), and
rest(bC,i, bC,i+1) for all i ∈ {1, . . . , n − 1}. Then the a propositional
atom is entailed by H exactly if it is an answer for the MODEQ
Qtrue[x] = P(x) with P consisting of the rules

→ U1(nil)
first(y, z) ∧ U1(z) ∧ rest(y, z′) ∧ U1(z′) → U1(y)

U1(y) ∧ entails(y, z) → U1(z)
U1(λ1) → hit.

NP hardness for combined complexity is a straightforward con-
sequence of the fact that MODEQs capture CQs for which the prob-
lem is known to be NP-hard.

We prove NP membership by showing that each query match
gives rise to a witness which can be verified in polynomial time.
For a database D and a MODEQQ[x] = ∃y.ψ[x, y] (with ψ being a
conjunction containing normal atoms and MODEP atoms), c is an
answer iff there exists a tuple d of constants, such that D |= ψ[c, d].
As ψ[c, d] is a conjunction of (normal and MODEP) ground atoms,

we can check this for every conjunct separately. For normal ground
atoms p(e), we have D |= p(e) iff p(e) ∈ D, which can be checked in
polynomial time. For MODEP ground atoms P(e), we find that D |=
P(e) iff there is a Datalog derivation of hit from D via applying
rules from P[e/λ]. Due to the arity restriction of head predicates in
P there are only polynomially many atoms that can be derived via
P[e/λ], therefore there must be a proof for P(e) of polynomial size.

Hence, we define the witness for c being an answer for D and
Q[x] = ∃y.ψ[x, y] to contain the tuple d providing us with bind-
ings to the existentially quantified variables and a polynomial-size
proof for every MODEP atom P(e) contained in ψ[c, d]. Clearly
this witness can be verified in polynomial time.

Theorem 4 (MODEQs capture C2RPQs). For every
C2RPQ Q, the MODEQ modeq(Q) can be constructed in linear
time, and is equivalent to Q. In particular, the answers for Q and
modeq(Q) coincide.

Proof. The linear construction time follows directly from the
definition (taking into account that for every regular expression,
the corresponding automaton can be obtained in linear time). The
rest of the claim is an immediate consequence of the fact that P and
modep(P) are equivalent for every conjunctive 2-way regular path
predicate P. This can be seen as follows (letting I be an arbitrary
interpretation):

To see that PI ⊆ modep(P)I we recap that PI contains those
pairs 〈δ, δ′〉 where δ′ can be reached from δ over a path δ = δ0

γ1
→

· · ·
γn
→ δn = δ′ such that γ1 . . . γn satisfies the regular expression P.

The latter is the case exactly if the corresponding automaton AP
accepts γ1 . . . γn, i.e., there is a sequence 〈s0, . . . , sn〉 of states with
s0 being an initial and sn being a final state such that 〈si−1, γi, si〉 ∈

T for all i ∈ {1, . . . , n}. We can now show that 〈δ, δ′〉 must be in
modep(P)I by noting that in every extension I′ of I satisfying the
rules from modep(P) as well as δ = λI

′

1 and δ′ = λI
′

2 (1) we have
δ ∈ Us0 due to the according initial-state-rule, (2) we can thus infer
by induction that δi ∈ Usi by the according transition rules (3) we
hence arrive at δ′ ∈ Usn and can apply the final-state-rule to prove
that hit must hold.

The proof of modep(P)I ⊆ PI is very similar: starting from a
derivation sequence for hit, we can easily construct an according
path from δ to δ′.

Theorem 5 (MODEQs capture monadic Datalog). For every
monadic Datalog query Q, the MODEQ modeq(Q) can be con-
structed in linear time, and is equivalent to Q. In particular, the
answers for Q and modeq(Q) coincide.

Proof. The linear construction time follows directly from the
definition. For showing the equivalence claim between the monadic
Datalog query Q = (goal,S) and modeq(Q), we assume w.l.o.g.
that all unary IDB predicates in Q are already of the shape U j and
therefore the rule sets of S and modeq(Q) coincide on all rules not
referring to goal or hit. Given an interpretation I, let I′′ denote
the extended interpretation obtained by saturating I under these
rules. Then, a tuple δ from I is in the extension of Q if I′′ |=
B[δ/x] for the body of some rule B → goal[x] from S. Yet, since
modeq(Q) contains a rule B[λ/x] → hit this is exactly the case if
δ is in the extension of modeq(Q).

Proofs for Section 4
Proposition 22. The NEMODEQ Q4 of Example 6 cannot be

expressed as a MODEQ.

Proof. Suppose for a contradiction that there is a MODEQ Q
that expresses the query Q4. Without loss of generality, assume
that no MODEP occurs more than once in Q (if it does, we can
replace it by a copy that is defined by the same rules). Moreover, we

assume that the MODEPs inQ use distinct names for their auxiliary
unary predicates U and for their constants λ, again without loss of
generality. Let ` be the maximal number of variables in any of the
rules used (in MODEPs) in Q, and let m be the total number of
constants λ (in MODEPs) in Q (i.e., the sum of the arities of all
MODEPs in Q).

We first define a structure S of the shape illustrated in Fig. 3 to
contain exactly the following relations:

• S contains a chain of relations a
linkedTo
→ e1

linkedTo
→ . . .

linkedTo
→

e2`
linkedTo
→ b;

• for each ei (i = 1, . . . , 2`), S contains a chain ei
certifiedBy
→ fi1

certifiedBy
→

. . .
certifiedBy
→ fi`

certifiedBy
→ c;

• the elements a and b are in the unary relation friend.

Thus S has 2`(`+1)+3 elements. We now use multiple copies of S
to define a structure T of the shape that is illustrated in Fig. 4. The
structure T consists of m+1 copies of S , connected in a chain. For-
mally, T is defined as the disjoint union of m + 1 copies S 0, . . . , S m
of S , factorized by the equivalence relation {bi ≈ ai+1 | 0 ≤ i < m},
where we use ai and bi to denote the elements a and b, respectively,
from S i.

Clearly, {v 7→ a0,w 7→ bm} is an answer to Q4 over T . Thus, by
assumption, {v 7→ a0,w 7→ bm} is also an answer to Q over T . This
match is therefore entailed in every model of T . By Theorem 2
and Fact 1, we only need to consider the universal model I(T),
the elements of which are in one-to-one correspondence with the
elements of T . Thus, the validity of the answer {v 7→ a0,w 7→ bm} is
witnessed by a query match on I(T), which is based on a particular
match for each MODEP in Q. We can consider these matches as a
list of m elements of I(T) (and thus also of T) which were used to
interpret the constants λ in Q. We call these the matched elements
of T . Since there are only m constants λ in Q, there are at most m
matched elements. Hence, there is some So in T which does not
contain any matched elements, other than possibly ao and bo (since
they also belong to adjacent substructures).

We construct a new structure T ′ from T as follows:
• For all (ei)o in the substructure So with i = 2, . . . , 2`, add a chain

(ei)o
certifiedBy
→ (f ′i1)o

certifiedBy
→ . . .

certifiedBy
→ (f ′i`)o

certifiedBy
→ c′o, where c′o

and the (f ′i j)o are fresh elements distinct from any element in T .
• Delete all elements (f(2`)1)o, . . . , (f(2`)`)o.

T ′ no longer contains a chain of links from ao to bo that is certified
by a single authority: only the first 2` − 1 elements are certified by
co, and only the last 2` − 1 elements are certified by c′o. Likewise,
it is not possible to split the chain between ao and bo into multiple
chains of links, since none of the intermediate elements belongs to
the class friend. Thus {v 7→ a0,w 7→ bm} is not an answer to Q4.

Nevertheless, we can show that {v 7→ a0,w 7→ bm} is an answer
to Q, which yields the required contradiction. To do this, it suf-
fices to show that the matches of MODEPs in Q that witness the
answer {v 7→ a0,w 7→ bm} ofQ over T are still valid. Thus consider
some MODEP P in Q with auxiliary constants λ1, . . . , λar(P) that
have been matched to elements δ = δ1, . . . , δar(P) of T (or, equiva-
lently, I(T)). By construction of T ′, the elements δ are also in T ′
and I(T ′). We show that δ ∈ PI(T ′).

By our assumption, every extension I of I(T) with λIi = δi and
I |= P satisfies hit. Hence there is a sequence of applications of
rules from P by which hit can be derived (using the pre-defined
interpretation of λi). The same sequence of rules can be used to
derive hit for extensions I′ of I(T ′) with λI

′

i = δi. Indeed, rules
of P have at most ` variables, hence their applicability does only
depend on a substructure of size at most `. It is easy to see that
I(T) and I(T ′) have the same substructures of size `, up to renam-
ing of elements that are not referred to by any constants in P. It can
be shown by induction that this property is preserved when consid-

ering unary predicates derived by any number of rule applications.
This shows that I′ |= P implies I′ |= hit.

Theorem 6 (Datalog expressibility of NEMODEQs).
For any NEMODEQ Q, datalog(Q) can be constructed in linear
time. Moreover, the queries Q[x] and 〈pQ, datalog(Q)〉 are equiva-
lent. In particular, their answers coincide.

Proof. The claimed linear time bound is immediate from the
definition.

The claimed equivalence is a straightforward consequence of the
following claim, which we will prove in the sequel: ∀x.P(x) ↔
(pP, datalog(P))[x] for all NEMODEPs P of degree ≥ 1. We show
this by induction on the degree of P.

We first show ∀x.P(x)→ (pP, datalog(P))[x] for all NEMODEPs
P. Consider an interpretation I for which I |= datalog(P) and a
variable assignment Z such that I,Z |= P(x1, . . . , xm). By defini-
tion, the latter means that all I′ with λI

′

i = Z(xi) and I′ |= P must
satisfy hit. (∗)

We define such an I′ as follows:
• I′ has the same domain as I and the two interpretations coincide

on I’s vocabulary,
• λI

′

i = Z(xi) for all i ∈ {1, . . . ,m}
• UI

′

i = {δ | 〈δ,Z(x1), . . . ,Z(xm)〉 ∈ ÛIi }
• hitI

′

= {〈〉} if 〈Z(x1), . . . ,Z(xm)〉 ∈ pIP and hitI
′

= ∅ other-
wise.

We now show that indeed I′ |= ρ for all ρ ∈ P. Let ρ = ∀y.B1 ∧

. . . ∧ B` → H and assume for some Z′ that I′,Z′ |= B for all
B ∈ {B1, . . . , B`}. Let now ρ′ = ∀y′.B′1 ∧ . . . ∧ B′` → H′ be the rule
from datalog(P) corresponding to ρ and let Z′′ = {xλi 7→ λI

′

i | 1 ≤
i ≤ m}. Then we find that I,Z′′ ∪Z′ |= B′ for all B′ ∈ {B′1, . . . , B

′
`}

because
• for B a normal atom, we have B′ = B[λ1/x1 . . . λm/xm] as well as
λI
′ ,Z′

i = xI,Z
′′∪Z′

i for all i ∈ {1, . . . ,m} and the extensions of the
corresponding predicate in I′ and I coincide by construction,

• for B an atom of degree ≥ 1, the coincidence follows from the
induction hypothesis,

• for B = U j(t), we have B′ = Û j(t, xλ1 , . . . , xλm) and satisfaction
coincides by construction

Now, since I |= datalog(P), we obtain I,Z∪Z′ |= H′. Therefrom
follows I′,Z′ |= H since
• for H′ = Û j(t, xλ1 , . . . , xλm) we have H = U j(t) and satisfaction

coincides by construction,
• for H′ = pP(xλ1 , . . . , xλm) we have H = hit and satisfaction

coincides by construction.

Now, having constructed an I′ with I′(λi) = Z(xi) and I′ |= P we
can infer I′ |= hit via (∗) and therefore I,Z |= pP(x1, . . . , xm),
which finishes the first direction.

We proceed by showing |= ∀x.(pP, datalog(P))[x] → P(x). To
this end, consider an interpretation I and a variable assignment Z
such that I,Z |= (pP, datalog(P))[x]. The latter means that in every
extension J of I that satisfies all rules from datalog(P) must also
hold J ,Z |= pP(x). (∗∗)

Let now I′ be an arbitrary extension of I satisfying λI
′

i = Z(xi)
for all i ∈ {1, . . . ,m} and I′ |= ρ for all ρ ∈ P.

We now construct an extension J ′ of I, as follows
• J ′ has the same domain as I and the two interpretations coin-

cide on the vocabulary of the latter,
• ÛJ

′

i = {〈δ,Z(x1), . . . ,Z(xm)〉 | δ ∈ UI
′

i } ∪ {〈δ0, δ1, . . . , δn〉 | δ0 ∈

∆I, 〈δ1, . . . , δm〉 , 〈Z(x1), . . . ,Z(xm)〉}
• pJ

′

P = ∆I if hitI
′

= {〈〉} (i.e. if I′ satisfies hit), otherwise
pJ

′

P = ∆I \ {〈Z(x1), . . . ,Z(xm)〉}.

By construction, J ′ satisfies datalog(P) and therefore, by (∗∗), fol-
lows J ′,Z |= pP(x), i.e., 〈Z(x1), . . . ,Z(xm)〉 ∈ pJ

′

P . Again by
construction of J , this is the case only if hitI

′

= {〈〉}, whence we
have shown I′ |= hit, which finishes the second direction.

Theorem 7. For any NEMODEQ Q[x], the set of models of
∃x.Q is closed under homomorphisms.

Proof. As established in Theorem 6, NEMODEQs are express-
ible as Datalog queries. However, for the latter, preservation under
homomorphisms is well known and easy to show.

Theorem 8 (MSO expressibility of NEMODEQs). For
every NEMODEQ Q[x], mso(Q[x]) can be constructed in linear
time and is equivalent to Q[x].

Proof. We show the equivalence for NEMODEPs by an induc-
tion on their degree. From this, the general claim is a straightfor-
ward consequence.

Let I be an arbitrary interpretation andZ a variable assignment
for x. Then we can establish the following sequence of equivalent
propositions:
• I,Z |= P(x)
• every extension I′ of Iwith λI

′

i = Z(xi) and I′ |= Pmust satisfy
hit

• every extension I′ of I with λI
′

i = Z(xi) and I′ |= P′ with
P′ = P[⊥/hit] must satisfy⊥; in other words, no such extension
exists

• (via induction hypothesis) no extension I′ of I with λI
′

i = Z(xi)
simultaneously satisfies mso(ρ) for all ρ ∈ P

• no extension I′ of I with λI
′

i = Z(xi) satisfies
∧
ρ∈P

mso(ρ)

• all extensions I′ of I with λI
′

i = Z(xi) satisfy ¬
∧
ρ∈P

mso(ρ)

• letting Iλ denote I extended by {λi 7→ Z(xi) | 1 ≤ i ≤ m},
Iλ,Ξ |= ¬

∧
ρ∈P

mso(ρ) holds for every set-variable assignment Ξ :

{U1, . . . ,Uk} → 2∆I

• Iλ |= ∀U1, . . . ,Uk.¬
∧
ρ∈P

mso(ρ)

• I,Z |=
(
∀U1, . . . ,Uk.¬

∧
ρ∈P

mso(ρ)
)
[x/λ]

• I,Z |= mso(P)[x]

Thus we have shown the claimed correspondence.

Theorem 9 (complexity of NEMODEQ answering).
Checking if c is an answer to a NEMODEQ Q[x] over a database
D is P-complete in the size of D, and PSpace-complete in the size of
D and Q.

Proof. PSpace membership for combined complexity is a di-
rect consequence of PSpace completeness of model checking in
monadic second-order logic [45, 47], keeping in mind that due to
Fact 1, entailment coincides with model checking if the premise is
a set of ground facts.

We show PSpace hardness by providing a reduction from the
validity problem of quantified Boolean formulae (QBFs). We recap
that for any QBF, it is possible to construct in polynomial time an
equivalent QBF that has the specific shape

Q1 x1Q2 x2 . . .Qn xn

∨
L∈L

∧
`∈L

`,

with Q1, . . .Qn ∈ {∃,∀} and L being a set of sets of literals over the
propositional variables x1, . . . , xn. In words, we assume our QBF
to be in prenex form with the propositional part of the formula in
disjunctive normal form. For every literal set L = {xk1 , . . . , xki ,

¬xki+1 , . . . ,¬xk j }, we now define the n-ary MODEP pL = {t(λk1) ∧
. . . ∧ t(λki) ∧ f (λki+1) ∧ . . . ∧ f (λk j) → hit}. Moreover, we define
the n-ary MODEP pL = {pL(λ1, . . . , λn) → hit | L ∈ L}. Letting
pL = pn we now define MODEPs pn−1 . . . p0 in descending order.
If Qi = ∃, then the i−1-ary MODEP pi−1 is defined as the single-
ton rule set {pi−1(λ1, . . . , λi−1, y) → hit}. In case Qi = ∃, we let
pi−1 = {pi−1(λ1, . . . , λi−1, y)→ U(y) U(y)∧ f (y)∧U(z)∧ t(z)→ hit}.
Now, let D be the database containing the two individuals 0 and 1
and the facts f (0) and t(1). We now show that the considered QBF is
true exactly if D |= p0(). To this end, we first note that by construc-
tion the extension of pL contains exactly those n-tuples 〈δ1, . . . , δn〉

for which the corresponding truth value assignment val, sending xi
to true iff δi = 1, makes the formula

∧
`∈L ` true. In the same way,

the extension of pL represents the set of truth value assignments
satisfying

∨
L∈L

∧
`∈L `. Then, by descending induction, we can

show that the extensions of pi encode the assignments to free propo-
sitional variables of the subformula Qi+1 xi+1 . . .Qn xn

∨
L∈L

∧
`∈L `

that make this formula true. Consequently, p0 has a nonempty ex-
tension if the entire considered QBF is true.

For data complexity, P membership follows from expressibility
in Datalog shown in Theorem 6, for which the problem is known
to be in P [23]. P hardness follows from the respective result for
MODEQs established in Theorem 3.

Proofs for Section 5
In this section, we establish the proof of Theorem 10, which we
repeat here for convenience.

Theorem 10 (Deciding Datalog Containment inMSO). Con-
sider a Datalog query 〈goal,P〉 and an MSO query ϕ. If the mod-
els of ϕ are closed under homomorphism, then it is decidable if the
query 〈goal,P〉 is contained in ϕ.

We establish this by transferring earlier results of Courcelle [20].
To do this in a self-contained way, we recall the main notions used
in said work, and relate them to our present formalism. Further
details and examples can be found in [20]. The results in [20] only
apply to Datalog queries and MSO formulae without free variables
and without constant symbols. The next two results show how one
can lift this to the general case.

Lemma 23. There is a linear time algorithm, that takes as an
input an arbitrary Datalog query 〈goal,P〉 and an arbitrary MSO
query ϕ, and that returns a Boolean Datalog query 〈goal′,P′〉 and
a Boolean MSO query ϕ′ such that 〈goal,P〉 is contained in ϕ iff
〈goal′,P′〉 is contained in ϕ′.

Proof. Let 〈goal,P〉 and ϕ be as in the claim. Assume that
ϕ has ar(goal) free first-order variables and no free second-order
variables – if this is not the case, then query containment is trivially
impossible and one can easily find queries that satisfy the claim.

We reduce the containment problem to a containment problem
of Boolean queries. To this end, let result be a fresh predicate
symbol with ar(result) = ar(goal). We define a new Boolean
Datalog query 〈goal′,P′〉 by introducing a new nullary IDB predi-
cate goal′ and setting

P′ B P ∪ {goal(y) ∧ result(y)→ goal′}.

We define a new Boolean MSO query ϕ′ by setting ϕ′ B ∃x.ϕ[x]∧
result(x), where x is the list of free variables of ϕ. It is easy to see
that 〈goal,P〉 is contained in ϕ (over all databases with signature
P) if and only if 〈goal′,P′〉 is contained in ϕ′ (over all databases
with signature P ∪ {result}).

Lemma 24. For every Datalog query 〈goal,P〉 and MSO query
ϕ, one can construct in linear time a Datalog query 〈goal,P′〉
and MSO query ϕ′ that do not contain constant symbols such that
〈goal,P〉 is contained in ϕ iff 〈goal,P′〉 is contained in ϕ′.

Proof. Let 〈goal,P〉 and ϕ be as in the claim. For every constant
c ∈ C, let oc denote a fresh unary predicate symbol, and let xc be a
fresh variable.

The set P′ is defined to contain, for every rule ψb → ψh ∈ P, the
rule ψ′b∧

∧
c∈C oc(xc)→ ψ′h ∈ P, where ψ′b and ψ′h are obtained from

ψb and ψh, respectively, by replacing each c ∈ C by xc.
To define ϕ′, let ϕ̂ denote the formula obtained by replacing every

c ∈ C by xc. Let ψ be the conjunction of all formulae of the form

oc(x) ∧ oc(x′) ∧ p(x1, . . . , xi−1, x, xi+1, . . . , xar(p))
→ p(x1, . . . , xi−1, x′, xi+1, . . . , xar(p))

where c ∈ C, p ∈ P, and i ∈ {1, . . . , ar(p)}. We define ϕ′ to be the
formula

∀xc.

∧
c∈C

(
∃x.oc(x) ∧ oc(xc)

)
∧ ∀x.ψ

→ ϕ̂

 ,
where xc is the list of all variables xc with c ∈ C, and x is the list
of all variables in ψ.

By this definition, the premise of ϕ′ requires that each oc is non-
empty, and that all elements in oc (if there is more than one) are
indistinguishable by predicates in P (∗). For databases that do not
satisfy (∗), the premise is false, and ϕ′ entails all possible answers,
and thus certainly contains 〈goal′,P′〉.

Every interpretation I′ over the new signature (with predicates
oc) that satisfies (∗) induces an interpretation I of the original sig-
nature (with constants C), obtained by identifying all domain el-
ements in oI

′

c with cI. Note that it is possible for two constants
to have the same interpretation. Conversely, every interpretation
I over the original signature induces an interpretation I′ over the
new signature with oI

′

c = {cI}. It is easy to see that the answers
of 〈goal,P〉 over I are contained in the answers of ϕ over I if
and only if the answers of 〈goal,P′〉 over I′ are contained in the
answers of ϕ′ over I′, as required.

In the remainder of this section, we thus consider only Boolean
queries that do not contain constant symbols.

Essential to the discussion in [20] are specific notions of (hy-
per)graphs and a monadic second-order logic that we will introduce
first. These definitions depend on a set P of predicates; constant
symbols, considered in our earlier signatures, do not feature here.

Definition 14. A concrete graph over P is a tuple of the form
〈V, E, lab, vert〉 where V is a set of vertices, E is a set of edges,
lab : E → P is an edge labelling function, and vert is a total
function from edges e ∈ E to tuples vert(e) of length ar(lab(e)).

Given graphs G1 and G2, a homomorphism h : G1 → G2 is
a pair of mappings hv : V1 → V2 and he : E1 → E2 such that
lab2 = he ◦ lab1 and vert2 = hv ◦vert1 (where we apply hv to a tuple
of vertices by applying it to each component). An isomorphism is a
bijective homomorphism.

Two concrete graphs are isomorphic if there is an isomorphism
between them, and this defines an equivalence relation on concrete
graphs. A graph is an equivalence class of this relation, i.e., a
maximal set of isomorphic concrete graphs over P (and some base
set of vertex names). A homomorphism between graphs G1 and
G2 is a homomorphism from a concrete graph in G1 to a concrete
graph in G2.

Abstracting from concrete graphs is relevant when generating
expansion graphs from Datalog queries below, where the naming of
vertices should not have any impact. For most practical purposes,
one can still work with some concrete graph that represents a graph.
Courcelle further considers graphs that have distinguished nodes,
called sources, which we do not require here (i.e., we consider only
graphs with an empty list of sources).

To state properties of graphs logically, Courcelle uses a specific
notion of two-sorted monadic second-order logic.

Definition 15. The multi-sorted monadic second-order logic
MSOG is defined over two sorts: the vertex sort v and the edge
sort e. Given a set of predicate symbols P, the set PG of two-sorted
predicates is defined as PG B {edgp | p ∈ P} where ar(edgp) =
〈e, v, . . . , v〉 with ar(p) occurrences of v (recall that arities in multi-
sorted logic are tuples of sorts).

An MSOG formula (MSOG interpretation) over a signature of
(unsorted) predicate symbols P is a formula (interpretation) of two-
sorted monadic second-order logic over the signature of predicate
symbols PG. The term unsorted formula (unsorted interpretation) is
used to emphasize that a formula (interpretation) is not MSOG.

In the following, we consider the predicate signature P to be
fixed and do not mention it explicitly. MSOG interpretations J
can be considered as graphs G in an obvious way, with each tu-
ple 〈ε, δ〉 ∈ edgJp corresponding to a p-labelled edge between the
vertices δ in (any concrete graph representing) G. We will freely
switch between these perspectives. Both can capture structures
with multiple edges that have the same label and the same list of
vertices. By forgetting the multiplicity of edges, we can transform
graphs into unsorted interpretations:

Definition 16. For an MSOG interpretationJ , the unsorted in-
terpretation F(J) is defined as follows:

• ∆F(J) B ∆
J
v ,

• for all p ∈ P and δ ∈ (∆Jv)ar(p), set δ ∈ pF(J) iff 〈ε, δ〉 ∈ edgJp for
some ε ∈ ∆

J
e .

Given a homomorphism of graphs h : J1 → J2 = 〈hv, he〉, the ho-
momorphism of interpretations F(h) : F(J1) → F(J2) is defined
as F(h) B hv.

Conversely, for an unsorted interpretation I, the MSOG inter-
pretation G(I) is defined as follows:

• ∆
G(I)
v B ∆I,

• ∆
G(I)
e B {〈p, δ〉 | p ∈ P, δ ∈ pI},

• for all p ∈ P, set edgG(I)
p B {〈ε, δ〉 | ε = 〈p, δ〉 ∈ ∆

G(I)
e }.

Given a homomorphism of interpretations h : I1 → I2, the homo-
morphism of graphs G(h) : G(I1) → G(I2) consists of the map-
pings G(h)v B h and G(h)e, defined as 〈p, δ〉 7→ 〈p, h(δ)〉 (applying
h to the tuple δ component-wise).

It is easy to verify that F and G are well-defined, in particu-
lar that F(h) and G(h) are indeed homomorphisms. Algebraically
speaking, F and G thus define functors between the categories of
unsorted interpretations (with their homomorphisms) and graphs
(with their homomorphisms). G has also been defined in [20, Defi-
nition 3.2]. The following is immediate from the definition:

Lemma 25. I = F(G(I)) for all interpretations I.

An MSOG formula ϕ is insensitive to multiple edges if J |= ϕ if
and only if G(F(J)) |= ϕ. We can also transform MSO formulae to
MSOG formulae:

Definition 17. Given an MSO formula ϕ, the MSOG formula
g(ϕ) is obtained by the following replacements:

• replace each unsorted (first-order or second-order) variable υ in
ϕ by a fresh (first-order or second-order) variable υ′ of sort v;

• replace each atomic subformula p(x) in ϕ with p ∈ P by the
formula ∃z.edgp(z, x) where z is a fresh first-order variable of
sort e.

Lemma 26. For all MSOG interpretationsJ and MSO formulae
ϕ, we have J |= g(ϕ) iff F(J) |= ϕ.

Proof. Every unsorted variable assignment Z corresponds to a
sorted variable assignment g(Z) defined over variables of sort v in
an obvious way. The following is an easy consequence of the defi-
nitions: for every unsorted atom ϕ = p(x) and variable assignment
Z, we have J , g(Z) |= g(ϕ) iff F(J),Z |= ϕ (∗). The equivalence
(∗) can be extended to arbitrary unsorted formulae ϕwith a straight-
forward induction. From this, the claim follows. Note that all free
variables in g(ϕ) are of sort v by definition, so it suffices to restrict
attention to variable assignments of the form g(Z) here.

Lemma 27. Every formula of the form g(ϕ) is insensitive to mul-
tiple edges.

Proof. Given any MSOG interpretation J , by Lemma 26, J |=
g(ϕ) iff F(J) |= ϕ. By Lemma 25, the latter is equivalent to
F(G(F(J))) |= ϕ. This is equivalent to G(F(J)) |= g(ϕ), again
by Lemma 26. Hence J |= g(ϕ) iff G(F(J)) |= g(ϕ).

Lemma 28. If the models of ϕ are closed under homomorphisms,
then so are the models of g(ϕ).

Proof. Consider a homomorphism h : J1 → J2 between MSOG
interpretations, and assume that J1 |= g(ϕ). By Lemma 26, J1 |=
g(ϕ) implies F(J1) |= ϕ. By Definition 16, F(h) : F(J1)→ F(J2)
is a homomorphism of interpretations. Since the models of ϕ are
closed under homomorphisms, F(J1) |= ϕ implies F(J2) |= ϕ. By
Lemma 26, J2 |= g(ϕ), as claimed.

This completes our analysis of the relationship between our no-
tion of MSO and Courcelle’s MSOG defined on graphs in the sense
of Definition 14. We can relate Datalog queries to graphs as fol-
lows:

Definition 18. Let 〈goal,P〉 be a Boolean Datalog query. A
partial expansion is a conjunction of first-order atoms, with the set
of partial expansions of 〈goal,P〉 defined inductively as follows:

• The atom propositional goal() is a partial expansion.
• If there is a partial expansion of form p(y) ∧ ϕ and a rule ψ →

p(x) ∈ P, then ψσθ ∧ ϕθ is a partial expansion, where σ is a
renaming that bijectively maps variables in ψ → p(x) to fresh
variable names not used in p(y) ∧ ϕ yet, and θ is a most-general
unifier of p(x)σ and p(y).

Moreover, a (complete) expansion of 〈goal,P〉 is a partial expan-
sion of 〈goal,P〉 that contains no IDB predicates.

Every expansion corresponds to a concrete graph that has vari-
ables for its vertices and atoms labelled by predicates for its edges.
This induces a set L(goal,P) of expansion graphs of 〈goal,P〉.

Expansion graphs are called computation graphs in [20]. It is
well-known that every Datalog query is equivalent to the (infinite)
disjunction of its expansions, where all variables are existentially
quantified. Restating this in terms of expansion graphs and univer-
sal models, we obtain:

Lemma 29. A database D entails a Boolean Datalog query
〈goal,P〉 iff there is some G ∈ L(goal,P) for which there is a
homomorphism G → G(I(D)).

Using the above terminology, we can reformulate part of Theo-
rem 5.5 of [20] as follows:

Theorem 30 (Courcelle). If ϕ is an MSOG formula that is in-
sensitive to multiple edges and whose models are closed under ho-
momorphisms, then it is decidable whether G |= ϕ for all G ∈

L(goal,P).

Note that we identify graphs and MSOG interpretations when
writing G |= ϕ.

Lemma 31. Theorem 10 holds for Boolean queries without con-
stant symbols.

Proof. Let 〈goal,P〉 and ϕ be as in the claim. We claim that
〈goal,P〉 is contained in ϕ if and only if G |= g(ϕ) for all G ∈
L(goal,P) (∗). By Lemma 28, the models of g(ϕ) are closed under
homomorphisms, and, by Lemma 27, g(ϕ) is insensitive to dupli-
cate edges. Hence, by Theorem 30, (∗) is decidable.

It remains to show that query containment is equivalent to (∗).
For the “if” direction, assume that (∗) holds. Consider an arbi-
trary database D that entails 〈goal,P〉. By Lemma 29, this is
equivalent to the existence of an expansion graph G ∈ L(goal,P)
for which exists a homomorphism G → G(I(D)). By (∗) we
have G |= g(ϕ). Therefore, G(I(D)) |= g(ϕ) by Lemma 28. By
Lemma 26, I(D) |= ϕ, and thus D entails ϕ. Since D was arbitrary,
this shows the claimed query containment.

For the “only if” direction, assume that 〈goal,P〉 is contained in
ϕ. Let G ∈ L(goal,P) be arbitrary. By Definition 18, F(G) satisfies
the expansion of 〈goal,P〉 that induced G. Therefore, F(G) |= P→
goal. It is easy to see that the (finite) interpretation F(G) is equal
to I(D) for a database D. Thus D entails 〈goal,P〉, and, by the
assumed containment, D also entails ϕ. Hence, I(D) = F(G) |= ϕ
Thus, by Lemma 26, G |= g(ϕ). Since G was arbitrary, this shows
(∗).

Proof of Theorem 10. According to Lemmas 23 and 24, the con-
tainment problem can be reduced to the containment problem of
Boolean queries without constants. It is important to note that the
constructions in both cases preserve the closure of an MSO for-
mula under homomorphisms. The claim is then a consequence of
Lemma 31.

Proofs for Section 6
Theorem 13 (NEMODEQ answering under bts). Let D be a

database and let Σ be a set of rules for which the treewidth of I(D∪
Σ) is bounded. Let Q[x] be a NEMODEQ.

1. D∪Σ |= Q[c/x] if and only if D∪Σ∪{¬Q[c/x]} has no countable
model with bounded treewidth.

2. If Conjecture 12 holds, the problem D∪Σ |= Q[c/x] is decidable.

Proof. We start by proving the first claim. For the “only if”
direction, it is obvious that D ∪ Σ |= Q[c/x] implies that D ∪
Σ ∪ {¬Q[c/x]} can have no model (and therefore no model with
bounded treewidth).

For proving the “if” direction, we assume that D∪Σ∪{¬Q[c/x]}
has no countable model with bounded treewidth. Then it must
be unsatisfiable for the following reason: toward a contradiction
assume it has a model I. Since I |= D ∪ Σ, there must be a
homomorphism from I(D ∪ Σ) to I. Thus, by contraposition of
the closedness of models of Q[c/x] under homomorphisms (Theo-
rem 7), I(D ∪ Σ) itself satisfies ¬Q[c/x] and is therefore a model
of D ∪ Σ ∪ {¬Q[c/x]}. Moreover, since Σ is bts, we obtain that
I(D ∪ Σ) has bounded treewidth. Obviously it is also countable,
which yields the desired contradiction and ensures unsatisfiability
of D ∪ Σ ∪ {¬Q[c/x]}.

For the second claim we start from the previous claim and note
that, since D and Σ are first-order theories and ¬Q[c/x] is express-
ible as an MSO formula, D ∪ Σ ∪ {¬Q[c/x]} is expressible as an
MSO theory. Thus, we can invoke Conjecture 12 to obtain the de-
sired result.

Proofs for Section 7
For the following considerations we capitalize on the fact that a
set of Datalog rules can be viewed as a (possibly infinite) collec-
tion of conjunctive queries that are obtained by expanding rules by
repeated backward-chaining (cf. Definition 18). Every expansion

ϕ[x] with variables x can naturally be associated with an interpre-
tation structure I(ϕ): its domain ∆I(ϕ) is x ∪ C, for each constant
c ∈ C we set cI(ϕ) B c, and we have t ∈ pI(ϕ) exactly if p(t) occurs
in ϕ.

Lemma 14 (Replacement Lemma). Consider a set Σ of
TGDs, a conjunctive query Q = ∃y.ψ[x, y], and a NEMODEQ
Q[x] that is a rewriting for Σ and Q. Then Q and Q are equiv-
alent in all models of Σ, i.e., Σ |= ∀x.Q[x]↔ Q[x].

Let ψ[t/x, y′/y] be the conjunction of Q with variables x re-
placed by terms t and variables y replaced by variables y′. We
say that ψ[t/x, y′/y] is a match in a Datalog rule ρ if ρ is of the
form ψ[t/x, y′/y]∧ϕ→ χ where the y′ occur neither in ϕ nor in χ.

Given some NEMODEQ P[z] over Σ, let P′[z] denote a NEMO-
DEQ obtained by replacing a match ψ[t/x, y′/y] of Q in some rule
of P by Q[t/x], where we assume w.l.o.g. that the bound variables
inQ do not occur inP. ThenP andP′ are equivalent in all models
of Σ, i.e., Σ |= ∀z.P[z]↔ P′[z].

Proof. We first show that Σ |= ∀x.Q[x]↔ Q[x]. For the one di-
rection, consider a model I |= Σ and a variable assignmentZ such
that I,Z |= Q[x]. According to Theorem 6, there is an expan-
sion ϕ[y] of datalog(Q) such that I,Z |= ϕ[y] (where we assume
w.l.o.g. thatZ assigns the appropriate domain elements to the fresh
variables that ϕ may contain). Using notation as in Section 5, we
find a model I(ϕ) to which ϕ matches under the variable assign-
mentZid withZid(y) = y for each y in ϕ. Then I(ϕ),Zid |= Q[x].

Let D(I(ϕ)) be the model I(ϕ) considered as a database contain-
ing a fact for each of the finitely many relations in I(ϕ). Introduc-
ing finitely many new constants for this purpose is not a problem.
Let cx denote the constants in D(I(ϕ)) that correspond to Zid(x).
Then D(I(ϕ)) |= Q[cx/x].

Since Q is a rewriting of Q under Σ, we have D(I(ϕ)),Σ |=
Q[cx/x]. Consider a universal model J of D(I(ϕ)),Σ. Then J |=
Q[cx/x]. Moreover, there is a homomorphism from J to I. In-
deed, the mapping Z induces a homomorphism π from I(ϕ) to I.
This mapping can be extended to a homomorphism π′ fromJ to I,
since I is a model of Σ. Due to Theorem 7, the query match J |=
Q[cx/x] implies J |= Q[π′(cx)/x]. Since π′(cx) = π(cx) = Z(x),
this shows the claim I,Z |= Q[x].

The other direction can be shown in a similar way, somewhat
simplified due to the fact that one does not need to construct an
intermediate model J of Σ to obtain the match for Q.

Now the rest of the claim follows from Theorem 6. It remains to
show the claimed equivalence for datalog(P) and datalog(P′). This
is a direct consequence of the Replacement Theorem of first-order
logic that allows us to replace the sub-formula ∃y′.ψ[t/x, y′/y] by
pQ(t), both of which have just shown to be equivalent.

Theorem 15 (Single predicate rewriting correctness). If Σ is
j-oriented and p is a head predicate, then Qp,Σ[z] is a rewriting for
Σ and p(z).

Proof. We consider the Datalog rewriting datalog(Qp,Σ) of Def-
inition 7. By Theorem 6, it suffices to show that, for every database
D and list of constants c = c1, . . . , cn, we have D ∪ Σ |= p(c) iff
D, datalog(Qp,Σ) |= pQp,Σ (c).

To establish this, we show that, for every database D, list of con-
stants c = c1, . . . , cn, and predicate Ûq of datalog(Qp,Σ), we have
D ∪ Σ |= q(c) if and only if D ∪ datalog(Qp,Σ) |= Ûq(c j, c1, . . . , cn).
The proof is by an easy induction over the derivation of q(c). Clearly,
datalog(Qp,Σ) |= V̂i(d) iff d is of the form di, d1, . . . , di, . . . , dn. More-
over, whenever there is a rule ψ → q(t1, . . . , tn) ∈ Σ that has an
instance ψc → q(c1, . . . , cn), then datalog(Qp,Σ) contains a rule
ψ′ → Ûq(t j, t1, . . . , tn) with an instance ψ′c → Ûq(c j, c1, . . . , cn).
It is easy to verify the claim.

Theorem 16 (j-orientedness implies rewritability). Every
j-oriented rule set is MODEQ-rewritable.

Proof. A rewriting for a j-oriented rule set Σ and a CQ Q[x] =
∃y.p1(t1)∧ . . .∧ pm(tm) is obtained from Q[x] by replacing all head
atoms pi(t i) with the MODEQ Qpi ,Σ[t i/x] as in Definition 11. We
assume a fixed sequence of replacement steps in the construction
of the rewriting. Let Q0 denote the original query Q[x], let Qi with
1 ≤ i denote the result after each subsequent replacement step, and
let Q be the final result.

One can show Σ |= ∀x.Q[x] ↔ Qi[x] by induction over i. The
base case follows sinceQ0 is clearly equivalent to Q. The induction
steps follow from Lemma 14 and Theorem 15.

Hence Σ |= ∀x.Q[x]↔ Q[x], i.e., for every interpretation I |= Σ
and every variable assignment Z for I, we have I,Z |= Q[x] iff
I,Z |= Q[x] (∗).

We show the condition of Definition 9. Thus consider an arbi-
trary database D and a potential query answer c. Without loss of
generality, we assume that D contains no fact of the form q′(d) for
some head predicate q′ of Σ. Indeed, if it does, we can replace q′
by a fresh predicate q′D and add a rule ∀x.q′D(x)→ q′(x) to Σ. This
modification clearly preserves j-orientedness.

If D |= Q[c/x] then clearly D ∪ Σ |= Q[c/x] and thus D ∪ Σ |=
Q[c/x] by (∗). Conversely, assume that D ∪ Σ |= Q[c/x]. Then
D∪Σ is satisfiable since Σ contains no constraints (rules with empty
head). More precisely, for every interpretation I |= D, there is an
interpretation I′ |= Σ,D that coincides with I on all constants and
all predicates that are not head predicates in Σ, where we use that D
contains no head predicates of Σ. By the assumption I′ |= Q[c/x].
By (∗) I′ |= Q[c/x]. Besides the auxiliary unary predicates U, Q
contains only predicates for which I and I′ agree. Hence I |=
Q[c/x]. Since I was arbitrary, this establishes the claim.

Proofs for Section 8
Lemma 18 (Query rewriting with cuts). Let D be a database

and let Σ1 B Σ2 be two sets of TGDs.
1. If QQ,Σ2 [x] is a NEMODEQ-rewriting of a conjunctive query

Q[x], then:

D ∪ Σ1 ∪ Σ2 |= Q[c/x] if and only if D ∪ Σ1 |= QQ,Σ2 [c/x].
2. If Σ1 and Σ2 are NEMODEQ-rewritable, then so is Σ1∪Σ2.

Proof. We start by proving the first claim. For the “only if”
direction, assume D ∪ Σ1 ∪ Σ2 |= Q[c/x]. By Theorem 17 there is
a conjunctive query Q′ with D ∪ Σ1 |= Q′ and Q′ ∪ Σ2 |= Q[c/x].
By the definition of rewritability, we obtain Q′ |= QQ,Σ2 [c/x]. Due
to D ∪ Σ1 |= Q′, we obtain D ∪ Σ1 |= QQ,Σ2 [c/x].

For the “if” direction, we assume D ∪ Σ1 |= QQ,Σ2 [c/x] and con-
clude I(D∪Σ1) |= QQ,Σ2 [c/x], which in turn means that there must
be an expansion ϕ[y] of QQ,Σ2 [c/x] such that I(D∪Σ1) |= ∃y.ϕ[y].
Due to universality of I(D ∪ Σ1) and homomorphism-closedness
of models of ∃y.ϕ[y], we thus find D ∪ Σ1 |= ∃y.ϕ[y]. Since
∃y.ϕ[y] |= QQ,Σ2 [c/x], we can conclude {∃y.ϕ[y]} ∪ Σ2 |= Q[c/x]
by the definition of rewriting. Combining these observations, we
obtain D ∪ Σ1 ∪ Σ2 |= Q[c/x].

Consider any conjunctive query Q[x] and its rewriting QQ,Σ2 .
For every rule ρ in QQ,Σ2 , the conjunction of all body atoms that
do not use any of the auxiliary unary predicates U can be consid-
ered as a conjunctive query Q′, that contains no existentially quan-
tified variables. This query constitutes a match for ρ in the sense of
Lemma 14. By this lemma, we can thus replace Q′ by its rewriting
QQ′ ,Σ1 . The query QQ,Σ1∪Σ2 is obtained by performing this replace-
ment in all rules of QQ,Σ2 . It is not hard to see that QQ,Σ1∪Σ2 is a
rewriting for Q and Σ1 ∪ Σ2, using a similar argument as in the
proof of Theorem 16.

Theorem 19 (Query answering with cuts). Consider rule
sets Σ1 B Σ2, such that NEMODEQ answering is decidable under
Σ1, and NEMODEQ rewriting is decidable under Σ2. Then NEMO-
DEQ answering is decidable under Σ1 ∪ Σ2.

Proof. This is a direct consequence of Lemma 18 (1). Given
any conjunctive query Q, we can compute the rewriting QQ,Σ2 , and
compute its answers over D ∪ Σ1.

Theorem 20 (Fully oriented rule sets are rewritable). For a
rule set Σ, it can be detected in polynomial time if Σ is fully ori-
ented. Every fully oriented set Σ is MODEQ-rewritable.

Proof. Clearly, the relation ≈≺≺ can be constructed in polyno-
mial time by checking ρ ≺≺ ρ′ for each pair of rules and con-
structing the reflexive symmetric transitive closure. The equiva-
lence classes [ρ]≺≺ are obtained from this in linear time. It is clear
that j-orientedness can be checked for each set of rules in polyno-
mial time.

It remains to show the second part of the claim. We say that [ρ]≺≺
is maximal if, for all ρ′ ∈ Σ, we have that ρ ≺≺ ρ′ implies ρ′ ∈ [ρ]≺≺.
If Σ is fully oriented and [ρ]≺≺ is maximal, then Σ1 B Σ \ [ρ]≺≺ and
Σ2 B [ρ]≺≺ are such that Σ1 BB Σ2, and thus Σ1 B Σ2. Moreover,
Σ1 again is fully oriented. Thus, one can apply Theorem 16 and
Lemma 18 (2) to obtain the required rewriting.

Theorem 21 (NEMODEQs = fully oriented Datalog). For
every NEMODEQ Q, the rule set datalog(Q) of Definition 7 is
fully oriented. Moreover, for every NEMODEQ-rewritable set Σ
of TGDs, there is a fully oriented set of Datalog rules Σ′ such that:
• every predicate p in Σ has a corresponding head predicate qp in

Σ′ that does not occur in Σ,
• for every database D and conjunctive query Q[x] that do not

contain predicates of the form qp, and for every list of constants
c, we have D ∪ Σ |= Q[c/x] iff D ∪ Σ′ |= Q′[c/x] where Q′ is
obtained from Q by replacing all predicates p with qp.

Proof. The first part of the claim follows by induction over the
degree d ofQ. The case of d = 1 follows by observing that the rules
with head predicate pQ in datalog(Q) cannot be ≺-smaller than any
other rule, and thus form a maximal j-oriented (for any position j
in pQ) subset of datalog(Q). Likewise, the set of rules with head of
the form Ûi(y, z) is clearly 1-oriented. To show the claim for d > 1,
we observe that no rule in datalog(Q) is ≺-smaller than any rule
in datalog(Q′) for some subquery Q′ of Q. The claim follows by
induction.

For the second part of the claim, let Qp[y] be the CQ p(y) for
each predicate p that is not of the form qp′ . There is a rewrit-
ing Qp[y] for Qp[y] and Σ. By Lemma 14, we have that Σ |=
∀y.Qp[y] ↔ Qp[y]. From Theorem 6 follows |= ∀y.Qp[y] ↔
(datalog(Qp) → pdatalog(Qp)(y)). Therefore, Σ |= ∀y.Qp[y] ↔
(datalog(Qp)→ pdatalog(Qp)(y)).

Using arguments as in the proof of Theorem 16, we find that D |=
∀y.(Σ→Qp[y])↔ (datalog(Qp)→ pdatalog(Qp)(y)) whenever D∪Σ

is consistent. To cover the case that D∪Σ is inconsistent, letQ⊥ be a
MODEQ without free variables such that, for all databases D′, D′∪
Σ is inconsistent iff D′ |= Q⊥. To find such a Q⊥, consider Qp for
a predicate p that does not occur in Σ and delete from datalog(Qp)
all rules that use the predicate p (these rules check for occurrences
of p in the input database). Q⊥ can easily be obtained from this.

By the first part of the claim, datalog(Qp) and datalog(Q⊥) are
fully oriented. We set qp B pdatalog(Qp). Let Σ⊥ be the fully
oriented rule set obtained from datalog(Q⊥) by replacing each rule
∀y.ϕ → that has an empty head by new rules ∀x, y.ϕ → qp(x)
for each of the predicates qp where x is a list of fresh variables
of the appropriate length. Thus, Σ⊥ entails all possible facts over
predicates qp from D whenever D ∪ Σ is inconsistent.

Now we can set Σ′ B Σ⊥ ∪
⋃

p datalog(Qp) where we assume
w.l.o.g. that any two datalog(Qp) and datalog(Qp′) use mutually
disjoint sets of head predicates. It is easy to verify that the claim is
satisfied for this choice.

