
Second-Order Queries for Rule-Based Data Access

Technical Report No. 3019
Karlsruhe Institute of Technology

November 2011

Markus Krötzsch
Department of Computer Science

University of Oxford, UK
markus.kroetzsch@cs.ox.ac.uk

Sebastian Rudolph
Institute AIFB

Karlsruhe Institute of Technology, DE
sebastian.rudolph@kit.edu

ABSTRACT
Rules and ontologies can be used to enrich a database system with
advanced data access capabilities. The success of this paradigm
has led to a number of languages such as DL-Lite, Datalog+/- and
OWL RL. The two major approaches to answering queries under
constraints expressed in such languages are forward-chaining (ma-
terialization) and backward-chaining (query rewriting). The latter
is typically focused on first-order queries that have only limited ex-
pressivity. We propose a querying formalism based on monadic
second-order logic which subsumes and goes beyond conjunctive
queries and regular path queries, but still has a decidable query
subsumption problem. We devise methods for rewriting rule sets to
queries in this new formalism and we show that query entailment
in most of the established rule-based approaches can be decided by
combining two methods: (i) bottom-up forward-chaining computa-
tion w.r.t. a rule set with the bounded treewidth model property and
(ii) top-down second-order query rewriting w.r.t. a rewritable rule
set.

1. INTRODUCTION
Expressive querying capabilities are a crucial requirement in in-

telligent database systems. One of the major approaches to extend
the classical framework of evaluating conjunctive queries against
relational databases is to introduce an inference layer on the schema
level. Then, query answering would take not only the relation in-
stances of the database into account, but also those which can be
inferred.

Two main paradigms for specifying the inference layer can be
distinguished.

Rule-based approaches are rooted in deductive databases and
logic programming. Recent approaches accommodate the capabil-
ity of value invention, that is, ways to assert the existence of do-
main entities which are not in the active domain [13]. Thereby,
they have also become very similar to the framework of tuple-
generating-dependencies (TGDs), initially introduced for informa-
tion exchange and information integration.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS ’12 Scottsdale, Arizona, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Example 1. Consider a database with the relation instances

hasAuthor(a,c) and cites(a,b)

as well as the inference rules

hasAuthor(x, y) → publication(x)
cites(x, y) → publication(x) ∧ publication(y)

publication(x) → ∃y.hasAuthor(x, y)

Then a rule-enhanced database would entail the conjunctive query
∃z.(hasAuthor(a, z)) but also the query ∃z.(hasAuthor(b, z)).

Mainstream ontological approaches rest on the logical frame-
work of description logics (DLs, [4]). Ontologies, initially devel-
oped in the field of the Semantic Web, are currently gaining influ-
ence in the database areas of data integration and modeling. This
trend is supported by the current concentration of DL research on
so-called tractable fragments – light-weight logics which allow for
quick inferencing and query answering on large data sets (cf. the
approaches to ontology-based data access based on DL-Lite, [17]).
Thereby it becomes apparent that most of the logics thus consid-
ered are structurally close to Horn-style rule formalisms (in partic-
ular they allow for universal models), and can partially be recast
into a rule-based representation [13].

Example 2. The set of inference rules in Example 1 can equiv-
alently be expressed by the DL-Lite ontology

∃hasAuthor v publication
∃cites v publication
∃cites− v publication

publication v ∃hasAuthor.

Since query answering in databases extended by an expressive
inference layer can easily lead to undecidable problems [20, 11],
much work has been spent on identifying restrictions on the struc-
ture of the inference layer that ensure decidability and even allow
for efficient processing. Next to bottom-up materialization under
inference rules (commonly referred to as the chase in databases),
the central technique to answer conjunctive queries in an rule- or
ontology-enhanced database is query rewriting, that is, to find “sub-
stitute queries” that can be evaluated against the databases alone,
ignoring the inference layer, and yet deliver the same answer. In
fact, for certain kinds of rule sets and ontologies, it is possible to
establish the property of first-order rewritability [1]: in this case
one can – given the inference rules and an arbitrary conjunctive
query – compute a first-order formula which has this property irre-
spective of the underlying database.



Example 3. Given the rule set from Example 1 and the con-
junctive query ∃v,w.(hasAuthor(v,w)), an appropriate first-order
rewriting would be

∃v,w.(hasAuthor(v,w)) ∨ ∃v,w.(cites(v,w)) ∨ ∃v.(publication(v))

As evaluating first-order formulae against pure databases can be
performed via standard SQL querying and hence make use of all
optimization techniques developed for it, first-order rewritability is
a very desirable property. Unfortunately it turns out that many prac-
tically useful modeling features destroy first-order rewritability.

Example 4. As a straightforward consequence of the fact that
first-order logic cannot express the transitive closure, there cannot
be a first-order rewriting for the conjunctive query ∃v,w.(s(v) ∧
r(v,w) ∧ s(w)) given the rule r(x, y) ∧ r(y, z)→ r(x, z).

This directly leads us to the central question of this paper:

How can the idea of query rewriting be extended to a
more expressive formalism that allows rewriting a sig-
nificantly larger amount of practically relevant TGDs,
and still provides essential computational properties?

One solution which immediately comes to mind is to add recur-
sion to the querying language and one prominent way to do so is
via Datalog queries. Of course, the Datalog query containing the
two rules r(x, y)∧r(y, z)→ r(x, z) and s(v)∧r(v,w)∧s(w)→ match
can serve as representation of the rewriting (note that here, the rules
are considered as part of the query and not of the inference layer).
However, Datalog turns out to be too expressive to allow for even
the most basic tasks of query management. Most notably, answer-
ing Datalog queries on DL-Lite ontologies is already undecidable
in general. Moreover, checking subsumption of Datalog queries is
undecidable as well [33].

Consequently, it seems that the rewriting target formalism should
allow for recursion, yet only in a restricted, regular way. In fact, the
above problem can be satisfactorily solved by using conjunctive
regular path queries [28, 19] which provide tamed recursiveness
by allowing for regular expressions on binary predicates.

Example 5. Without going into syntactic and semantic formali-
ties yet, we note that the conjunctive regular path query

∃v,w.(s(v) ∧ r∗(v,w) ∧ s(w)),

where r∗(v,w) matches any individual pair connected by a path of
r-relations, can serve as a suitable rewriting for Example 4.

To the best of our knowledge, rewriting of conjunctive queries
into conjunctive regular path queries has been addressed only very
implicitly by now [32]. Moreover, regular path queries are still
rather constrained: besides further structural restrictions, they only
allow for recursion over binary predicates.

Hence it seems that a suitable notion of expressive yet compu-
tationally manageable queries by means of which query rewriting
can be applied to a wider range of cases is yet to be identified. The
contribution of this paper can be summarized as follows:

• We introduce positive monadic second-order queries (POM-
SOQs) as a suitable target formalism for query rewriting that
subsumes unions of conjunctive queries as well as conjunc-
tive 2-way regular path queries. We discuss the expressivity
of this new notion of queries which we deem interesting and
practically relevant in their own right.

• We show that POMSOQs are equivalent to a certain well-
behaved fragment of Datalog queries and establish complex-
ity bounds for POMSOQ answering.

• Exploiting correspondences to monadic second-order logic,
we prove that the subsumption problem for POMSOQs is
decidable.

• We introduce the notion of POMSOQ-rewritability for which
we identify sufficient conditions and show how the rewriting
can be obtained if these are met. Additionally, we provide a
technique to transform suitable sets of inference rules into a
logically equivalent form that satisfies this condition.

• We show that POMSOQ entailment is satisfiable in the pres-
ence of rules that satisfy the bounded tree-width model prop-
erty (which is the case for a plethora of popular TGD frag-
ments like Datalog, acyclic TGDs, guarded TGDs and gen-
eralizations thereof). Additionally, we show that conjunctive
query answering is decidable for any rule set that can be de-
composed into one that is POMSOQ-rewritable and one with
the bounded-treewidth-model property.

Longer proofs are omitted from the main paper, especially if they
do not contribute interesting conceptual points. They can be found
in the Appendix.

2. DATABASES, RULES AND QUERIES
In this section, we introduce our notation for databases, conjunc-

tive queries, Datalog and tuple-generating dependencies (TGDs).
We consider a standard language of predicate logic, based on a

finite set of constant symbols C, a finite set of predicate symbols P,
and an infinite set of (object) variables V. Each predicate p ∈ P
is associated with a natural number ar(p) called the arity of p. We
often assume that some such signature has been fixed and do not
refer to it explicitly.

A term is a variable x ∈ V or a constant c ∈ C. We use symbols
s, t to denote terms, x, y, z to denote variables, a, b, c to denote con-
stants. Expressions like t, x, c denote finite lists of such entities.
An atom is a formula of the form r(t1, . . . , tn) where t1, . . . , tn are
terms and r ∈ P is a predicate symbol with ar(r) = n. We write
ϕ[x] to emphasize that a formula ϕ has free variables x; we write
ϕ[c/x] for the formula obtained from ϕ by replacing each variable
in x by the respective constant in c (both lists must have the same
length).

A conjunctive query (CQ) is a formula Q[x] = ∃y.ψ[x, y] where
ψ[x, y] is a conjunction of atoms. A tuple generating dependency
(TGD) is a formula of the form ∀x, y.ϕ[x, y]→ ∃z.ψ[x, z] where ϕ
and ψ are conjunctions of atoms, called the body and head of the
TGD, respectively. TGDs never have free variables, so we usually
omit the universal quantifier when writing them. A Datalog rule
is a TGD without existentially quantified variables. By convention,
we consider empty bodies to be true and empty heads to be false,
i.e., a TGD with empty body is a fact (something that is uncondi-
tionally true), and a TGD with empty head is a constraint (some-
thing that must never be true). A formula is ground if it contains
no variables, and it is a sentence if it contains no free variables. A
database is a finite set of ground facts.

We consider formulae under the standard semantics of first-order
logic. An interpretation I consists of a (possibly infinite) domain
∆I and a function ·I that maps constants c to domain elements cI ∈
∆I and predicate symbols p to relations pI ∈ (∆I)ar(p). A variable
assignment for I is a function Z : V → C. Conditions for I and
Z to satisfy a first-order formula ϕ (i.e., to be a model of ϕ, written



I,Z |= ϕ) are defined as usual. If ϕ has no free variables, thenZ is
irrelevant for satisfaction and can be omitted. Given interpretations
I, J , a homomorphism π from I to J is a function π : ∆I → ∆J

such that: (i) for all constants c, we have π(cI) = cJ , and (ii) for all
predicate symbols p and list of domain elements δ, we have δ ∈ pI

implies π(δ) ∈ pJ .
A list of constants c is an answer to a CQ Q[x] over a database

D and set Σ of TGDs if D,Σ |= Q[c/x].1 Query answering is fa-
cilitated in practice since one may focus on universal models. A
universal model of a set of sentences S is an interpretation I such
that (i) I |= S , (ii) cI = c, and (iii) for every interpretation J with
J |= S , there is a homomorphism from I toJ . The two main facts
for query answering are:

• For every database D and set Σ of tgds, if D∪ Σ is satisfiable
then D ∪ Σ has some universal model.

• Given a CQ Q[x] and constants c, the models of Q[c/x] are
closed under homomorphic images.

Therefore, we have that D ∪ Σ |= Q[c/x] if and only if I |= Q[c/x]
for some universal model I. Universal models can be defined by
a (possibly infinite) construction process called the chase. We let
I(D ∪ Σ) denote an arbitrarily chosen but fixed universal model of
D ∪ Σ.

3. POSITIVE MSO QUERIES
In this section, we introduce an expressive query language based

on monadic second-order logic (MSO). With this we mean the ex-
tension of first-order logic by set variables that are used like pred-
icates of arity 1. To distinguish them from object variables x, y, z,
we denote set variables with uppercase letters U, V, possibly with
subscripts. We adhere to the standard semantics of MSO that we
will not repeat here.

As discussed above, answering CQs is facilitated by the possibil-
ity to restrict attention to universal models, which is due to the fact
that the models of CQs are closed under homomorphisms. Accord-
ing to the Łos-Tarski-Lyndon Theorem, every first-order formula
that is preserved under homomorphisms is equivalent to a posi-
tive existential formula. The latter can be easily further normalized
into a shape widely known as union of conjunctive queries. We
are not aware of a version of the Łos-Tarski-Lyndon Theorem for
MSO which could provide a similar characterization, but in what
follows, we will identify a fragment of MSO that is preserved un-
der homomorphisms and sufficiently expressive for our subsequent
considerations.

Definition 1. The set of positive monadic second-order queries
(POMSOQs) is defined inductively. A POMSOQ of degree 0 is an
atomic formula. A POMSOQ of degree d + 1 is an MSO formula

∀U1, . . . , Um¬∀y.
∧
R∈R

R

where U1, . . . , Um are monadic second-order variables, y is a list of
first-order variables, and every R ∈ R is an implication of the form
B1 ∧ . . . ∧ B` → H such that

• Bi are POMSOQs of degree at most d or of the form U j(x),
and

• H is of the form U j(x) or empty.
1This semantics does not make the unique name assumption which
can be axiomatised in well-known ways if equality is used. If
equality is not used, the unique name assumption has no effect on
query answers.

We write Q[x] to emphasize that a POMSOQ Q has free variables
x. The arity of Q[x] is the number of variables in x. The subqueries
of Q are the POMSOQs that are subformulae of Q.

At a first glance, the shape of POMSOQs may appear to be
rather specific. But our choice of this formulation is well mo-
tivated by the aim to express a particular “computation scheme”
in monadic second-order logic. The intuition for degree 1 POM-
SOQs is that, given a database and a tuple δ = 〈δ1, . . . , δn〉 of
domain elements, we determine whether δ is an answer by an it-
erative deterministic coloring procedure. “Coloring rules” specify
how colors are assigned to domain elements – depending on (i)
the chosen δ, (ii) the instances of predicates from P and (iii) col-
ors that were already assigned. The monadic predicate variables
U1, . . . , Um in the above formula encode the colors, and rules of the
shape B1 ∧ . . . ∧ B` → Ui(x) can be directly read as declarative
descriptions on how to initialize and propagate colors. The actual
“success criterion” for δ being an answer set is, whether one of
possibly several certain configurations can be found in the color-
saturated database. These configurations can be expressed by con-
junctive queries accessing both database relation instances and col-
ors. In order to obtain a uniform representation as rule set without
introducing auxiliary predicates of arity > 1 (which would force
us to go beyond MSO logic), we encode these “success criteria”
as integrity constraints, that is, rules with an empty head having
the desired configuration as body. This way, we obtain a coloring
scheme which “results in” an inconsistency exactly if the test tuple
δ is an answer. This is the reason why we have to invert the whole
criterion by putting a negation in front of the whole rule set. The
universal quantification over the monadic predicates is necessary to
minimize their extension and to ensure that, roughly speaking, just
those database elements are colored which have to, i.e., no spurious
colors are introduced. Finally, we obtain an MSO formula that is
true for all bindings of its free variables to domain element tuples
for which the described coloring technique succeeds. Furthermore,
the specific form of the formula (containing free variables) allows
us to conceive it as a definition of a new predicate and to use it in-
side another POMSOQ. This leads to the general nested structure
of POMSOQs described in our above definition.

Example 6. To start with an easy example along the lines of
the introduction, assume we are interested in certification chains,
more precisely, we want to query for all pairs x, y where a chain of
certifiedBy relations from x to y exists. This information need can
be expressed by the POMSOQ Q1[x, y] = ∀U1¬∀v, v′

∧
R∈R R with

R consisting of the rules

certifiedBy(x, v) → U1(v)
U1(v) ∧ certifiedBy(v, v′) → U1(v′)

U1(y) →

Figure 1 (left) displays the class of structures recognized by this and
the following POMSOQs graphically. As a next example, assume
we have a routing problem where a message has to be securely
passed through a network from Alice to Bob. Assume we have enti-
ties certifying the security of the message handling in certain nodes.
We are interested in which entities x are able to (directly) certify
secure treatment of the message on all intermediate nodes on some
path from Alice to Bob, as illustrated in Fig. 1 (top). This can be ex-
pressed by the degree 1 POMSOQ Q2[y] = ∀U2, U3¬∀x, x′

∧
R∈R′ R,

where R′ consists of the following rules:

certifiedBy(x, y) → U3(x) (‡)
linkedTo(alice, x) → U2(x)

U2(x) ∧ U3(x) ∧ linkedTo(x, x′) → U2(x′)
U2(bob) →
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Figure 1: Sketches of the structures recognized by the POM-
SOQs in Example 6.

Finally, assume that we are not only interested in the case where the
nodes are certified directly by an entity, but that there may be a cer-
tification chain from the node to the searched guarantee-providing
entity, see Fig. 1 (bottom). This request can be expressed by the
degree 2 POMSOQ Q3 that coincides with Q2 except that Rule (‡)
is substituted by Q1[x, y]→ U3(x).

This new query notion is rather powerful. It is easy to see that it
subsumes conjunctive queries (CQs) as well as unions of CQs. In-
deed, given k CQs ∃yi.Bi[xi, yi] with i ∈ {1, . . . , k}, their union is ex-
pressed as the degree 1 POMSOQ ¬∀y1, . . . , yk.

∧k
i=1 .Bi[xi, yi]→ .

Before providing further examples, we note that POMSOQs share
a property with CQs which is typical for positive queries which are
supposed to detect “structural configurations”: their model classes
are closed under structure-preserving mappings.

Theorem 1. For a POMSOQ Q[x], the set of models of ∃x.Q is
closed under homomorphisms.

Note that the property established above also holds for formulas
of the shape Q[c/x] obtained by replacing the free variables x of a
POMSOQ by an answer c, since they themselves can be interpreted
as POMSOQs with no free variables. By virtue of the above theo-
rem we are able to reduce entailment checking to model checking,
if the premise contains only ground facts.

Corollary 2. Let Q[x] be a POMSOQ, let D be a database,
and let c be a list of constants. Then D |= Q[c/x] iff I(D) |= Q[c/x].

Proof. The “only if” direction is a straightforward consequence
from the fact that I(D) |= D. For the “if” direction, suppose toward
a contradiction that I(D) |= Q[c/x] but D 6|= Q[c/x], i.e., there
is an interpretation J with J |= D but I 6|= Q[c/x]. Exploiting
the universality of I(D) we find a homomorphism from I(D) to
J . Since models of Q[c/x] are closed under homomorphisms, we
conclude that I |= Q, a contradiction.

4. REGULAR PATH QUERIES
We now show that POMSOQs subsume not only standard con-

junctive queries, but also the more powerful notion of conjunctive
2-way regular path queries [28, 19]. This observation further deep-
ens our understanding of the expressive power of POMSOQs.

Intuitively, conjunctive 2-way regular path queries allow arbi-
trary regular expressions over binary predicates and inverted binary
predicates to be used in place of binary atoms.

Definition 2. A conjunctive 2-way regular path query (C2RPQ)
over a signature 〈C,P,V〉 is a first-order conjunctive query over
the signature 〈C,P ∪ Preg,V〉 with Preg containing all regular ex-
pressions over the alphabet Γ = {p | ar(p) = 2} ∪ {p− | ar(p) = 2}
and setting ar(ex) := 2 for all ex ∈ Preg. Given an interpretation
I and a C2RPQ Q over 〈C,P,V〉, we let I |= Q if Ir |= Q where
Ir is an interpretation over 〈C,P ∪ Preg,V〉 that coincides with I
for all elements from 〈C,P,V〉 and lets 〈δ, δ′〉 ∈ exI

reg
exactly if

there is a word γ1 . . . γn matching the regular expression ex and a
sequence δ = δ0 . . . δn = δ′ of domain elements such that for every
i ∈ {0, . . . , n − 1} one of the two is the case

• γi = r ∈ P and 〈δi, δi + 1〉 ∈ rI or
• γi = r− with r ∈ P and 〈δi + 1, δi〉 ∈ rI.

The following definition provides a way to translate C2RPQs
into POMSOQs.

Definition 3. Given a C2RPQ Q = ∃x.pr1(x1) ∧ . . . ∧ prk(xk),
we define the POMSOQ QQ as follows. Given an atom ex(x, y) of
Q with ex ∈ Pr, let Aex = (Γ, S , I, F,T ) be the finite automaton
corresponding to ex. Then, we let Qex(x,y) denote the POMSOQ

∀(Us)s∈S¬∀z, z′.
∧
R∈R

R

with R containing the rules

• → Us(x) for every initial state s ∈ I,
• Us(y)→ for every final state s ∈ F,
• (U)s(z) ∧ r(z, z′) → Us′ (z′) for every transition 〈s, r, s′〉 ∈ T,

and
• (U)s(z)∧ r(z′, z)→ Us′ (z′) for every transition 〈s, r−, s′〉 ∈ T.

Finally, we define QQ as the formula

¬∀x.
(
τ(pr1(x1)) ∧ . . . ∧ τ(prk(xk))

)
→

with τ(pri(xi)) :=
{

pri(xi) if pri ∈ P
Qex(x) if pri ∈ Preg.

The intuition behind the translation of C2RPQs to POMSOQs is
to find the possible bindings to x and y in ex(x, y) by simulating all
possible runs of the automaton corresponding to a regular expres-
sion predicate and see whether a run starting in x in the initial state
and reaching y in the final state can be found. Colors are associated
to states of the automaton and used to keep track of the information
which domain elements can be reached in which state if one starts
at x in an initial state. Consequently, the success criterion is satis-
fied if y is colored by the final state. This way, we can establish the
following proposition.

Proposition 3. For any C2RPQ Q, the answer sets for Q and
QQ coincide.

Example 7. Consider the regular path query

mountain(x) ∧ continent(y) ∧ (locatedIn|hasPart−)∗(x, y).

The corresponding POMSOQ looks as follows

¬
(
mountain(x)∧continent(y)∧
∀U.¬∀z, z′.(→ U(x), U(y)→,

U(z) ∧ locatedIn(z, z′)→ U(z′)
U(z) ∧ hasPart(z′, z)→ U(z′)))
→



which in this case can be simplified to

mountain(x)∧continent(y)∧
∀U.

(
U(x)
∧∀z, z′.(U(z) ∧ locatedIn(z, z′)→ U(z′))∧
∧∀z, z′.(U(z) ∧ hasPart(z′, z)→ U(z′)

)
→ U(y)

Arguably, the latter formula illustrates the underlying coloring idea
in the most graspable way. Here, we need just one color which is
initialized at x and then propagated over locatedIn and inversely
over hasPart relationships with the success criterion being that y is
finally colored.

However, the expressivity of POMSOQs goes well beyond that
of C2RPQs even if we restrict to at most binary predicates and to
POMSOQs of degree 1. Informally, this follows from the easy ob-
servation that for every C2RPQ Q there is an integer n, such that
whenever Q matches into a graph G, it also matches into a graph
G′ where all vertices have degree ≤ n and from which there is a
homomorphism into G. On the other hand, is easy to see that the
POMSOQ Q2[y] from Example 6 does not have this property.

5. FROM POMSOQS TO DATALOG
In the following, we will show that POMSOQs of arbitrary de-

gree can be expressed as Datalog queries. Thereby the monadic
predicate variables have to be “contextualized” which increases
their arity. Hence in general, the Datalog queries obtained by trans-
lating POMSOQs will not be monadic Datalog.

Definition 4. Given a POMSOQ Q[x], a set Σ(Q) of Datalog
rules over an extended signature is defined inductively as follows.
Let pQ be a fresh predicate symbol of arity n where n is the number
of query variables x. If Q is of degree 0, then Σ(Q) B {∀x.Q[x] →
pQ(x)}. If Q is of the form ∀U1, . . . , Um¬∀y.

∧
R∈R R with degree

d > 0, then Σ(Q) consists of the following rules:

• for every R ∈ R, a rule R̂ is obtained by replacing each oc-
currence of a second-order atom Ui(z) with the atom Ûi(z, x)
where Ûi is a fresh predicate of arity n + 1;

• for every POMSOQ Q′[x′] of degree smaller than d that oc-
curs in Q, the rules Σ(Q′) are added to Σ(Q) and all occur-
rences of Q′[x′] are replaced by pQ′ (x′).

Note that the rules obtained by this transformation might be un-
safe, i.e., may contain universally quantified variables in the head
that do not occur in the body. This is no problem with the logical
semantics that we consider.

Example 8. The Datalog translation for the POMSOQ Q3 from
Example 6 looks as follows:

Σ(Q1) certifiedBy(z1, v) → Û1(v, z1, z2)
Û1(v, z1, z2) ∧ certifiedBy(v, v′) → Û1(v′, z1, z2)

Û1(z2, z1, z2) → pQ1 (z1, z2)

Σ(Q3) \ Σ(Q1) pQ1 (x, z3) → Û3(x, z3)
linkedTo(alice, x) → Û2(x, z3)

Û2(x, z3) ∧ Û3(x, z3) ∧ linkedTo(x, x′) → Û2(x′, z3)
Û2(bob, z3) → pQ3 (z3)

Theorem 4. For every POMSOQ Q, the set Σ(Q) can be con-
structed in linear time and both expressions are equivalent in the
sense that |= ∀x.Q[x]↔ (Σ(Q)→ pQ(x)) is a tautology.

Using backwards-chaining, the goal pQ(x) can be expanded un-
der the rules Σ(Q) to obtain a (possibly infinite) set of CQs that do
not contain auxiliary predicates pQ′ . ThusQ can be considered as a
union of (possibly infinitely many) conjunctive queries, which will
be useful in Section 6 below. First, however, we note the following
complexity result.

Theorem 5. Given a database D, a POMSOQ Q[x], and a list
of constants c, checking D |= Q[c/x] is in PSpace w.r.t. the com-
bined size of D and Q[c/x]. Moreover, it is PTime-complete w.r.t.
the size of D.

Mark that the data complexity thus established contrasts with
that for CQs (AC0) and for C2RPQs (NLogSpace-complete, hard-
ness via graph reachability, membership via a translation into linear
Datalog [16]) and gives no improvement over full Datalog queries.
However, in terms of combined complexity, Datalog queries are
ExpTime-complete [24] and hence harder than POMSOQs. More-
over, in the next sections, we will show that POMSOQs are more
well-behaved when it comes to subsumption checking or interac-
tion with rule sets that give rise to infinite structures.

6. CHECKING QUERY SUBSUMPTION
Checking query subsumption is an essential task in database man-

agement, facilitating query optimization, information integration
and exchange and database integrity checking. The subsumption
or containment problem of two queries P and Q is the question
whether the answers of Q are contained in the answers of P for
any underlying database or rule set. Formally, this is the case if the
formula ∀x.Q[x]→ P[x] is valid. In this section, we show that this
problem is decidable for POMSOQs.

An important tool for obtaining this result is the following notion
of treewidth of an interpretation.

Definition 5. Given an interpretation I, a tree decomposition
of I is an undirected tree where each node n is associated with a
set λ(n) ⊆ ∆I of domain elements such that:

• for every tuple 〈δ1, . . . , δm〉 ∈ pI for some predicate p, there
is a node n with δ1, . . . , δm ∈ λ(n);

• for every δ ∈ ∆I, the set of nodes {n | δ ∈ λ(n)} is connected.

The width of a tree decomposition is the maximal cardinality of a
set λ(n). The treewidth of I is the smallest width of any of its tree
decompositions.

The next theorem is implicit in the works of Courcelle [21, 23].

Theorem 6 (Courcelle). Satisfiability of Monadic-Second Or-
der logic on countable interpretations of bounded treewidth is de-
cidable.

An early version of this result has been shown in [21] for a
slightly different notion of width. A modern account of the relevant
proof techniques that uses our above notion of treewidth is given in
[23] for the case of finite graphs. Formulating the proof of [21] in
these terms, one can show Theorem 6 [22]. We omit the details of
this extensive argumentation which is well beyond the scope of the
present work.

A set of Datalog rules can be viewed as a (possibly infinite) col-
lection of conjunctive queries that are obtained by expanding rules
by repeated backward-chaining. The following definition endows
expansions with a useful tree structure.



Definition 6. Let Σ be a set of Datalog rules with at most one
atom in the head. For convenience, we assume that rule with empty
head have the head ⊥ and we treat this like a nullary atom.

An expansion tree is a tree structure where each node is labeled
with an atom (possibly ⊥). Every rule ρ ∈ Σ is associated with an
expansion tree T (ρ): The root of T (ρ) is labeled with the head atom
of ρ. For each body atom A of ρ, the root of T (ρ) has a direct child
node with label A.

Let λ be an atom (possibly ⊥). The set T (Σ, λ) of expansion trees
for Σ and λ is defined inductively:

1. The tree that consists of a single node labeled with λ is in
T (Σ, λ).

2. Let T ∈ T (Σ, λ) with l a leaf node of T labeled p(t) and
let ρ = ∀x.ϕ → p(t′) be a variant of a rule in Σ where all
variables have been renamed to be distinct from variables
in T . If θ is the most general unifier of p(t) and p(t′), then
an expansion tree T ′ is obtained from T by replacing l with
T (ρ), and by applying the unifier θ to all node labels.

A partial expansion of Σ and λ is the conjunction of all leaf labels
of some expansion tree of Σ and λ. An expansion is a partial ex-
pansion that does not contain head predicates of Σ. An expansion
of a POMSOQ Q is an expansion of Σ(Q) of Definition 4 with atom
λ = ⊥.

It is well known that a set of Datalog rules is equivalent to the
infinite conjunctions of its partial expansions, i.e., that an atom p(c)
follows from a database D and rules Σ if and only if there is an
expansion ϕ[x, y] for Σ and p(c) such that the query ∃y.ϕ[c/x, y]
matches D.

Every expansion ϕ[x] with variables x can naturally be associ-
ated with an interpretation structure I(ϕ): its domain ∆I(ϕ) is x∪C,
for each constant c ∈ C we set cI(ϕ) B c, and we have t ∈ pI(ϕ)

exactly if p(t) occurs in ϕ. The treewidth of I(ϕ) is bounded by the
sum |C|+nv of the number |C| of constant symbols and the maximal
number nv of variables in individual rules of Σ.2 Indeed, the expan-
sion tree can be turned into a tree decomposition by associating
each node n with the set of all constant symbols and the variables
that occur in the labels of n or any of its direct children. It is easy to
verify that this is a tree decomposition. We use tw(Σ, λ) B |C| + nv

to denote the uniform treewidth bound that is thus obtained for ex-
pansions of Σ and λ.

Theorem 7. The query subsumption problem for POMSOQs is
decidable.

Proof. Consider two POMSOQs Q[x] and P[x]. P subsumes
Q if ∀x.Q[x] → P[x] is a tautology, i.e., if ∃x.Q[x] ∧ ¬P[x] is
unsatisfiable.

We show that, if ∃x.Q[x] ∧ ¬P[x] is satisfiable, then it has a
model of treewidth at most tw(Σ(Q)). Thus assume that there is an
interpretation I with I |= ∃x.Q[x] ∧ ¬P[x]. By Theorem 4, there
must be an expansion ϕ[x, y] of Q[x] such that I |= ∃x, y.ϕ[x, y] ∧
¬P[x]. Then there is a variable assignment Z such that I,Z |=
ϕ[x, y]∧¬P[x]. In particular, I,Z |= ϕ[x, y]. This holds exactly if
there is a homomorphism π from I(ϕ) to I (that agrees with Z on
variables).

By construction, I(ϕ),Zid |= ϕ[x, y] where Zid(z) = z for each
variable z in ϕ. By Theorem 4, I(ϕ),Zid |= Q[x].

We show that I(ϕ),Zid |= ¬P[x]. For a contradiction, suppose
that I(ϕ),Zid |= P[x]. Since there is a homomorphism π from I(ϕ)
to I, Theorem 1 implies I, π ◦ Zid |= P[x]. By construction of π,
2A similar observation has been made by Afrati et al. [2].

the assignment π◦Zid agrees withZ on all variables of x, and thus
I,Z |= P[x]; a contradiction.

We have thus shown that I(ϕ),Zid |= Q[x] ∧ ¬P[x] and thus
I(ϕ) |= ∃x.Q[x] ∧ ¬P[x]. I(ϕ) is finite, hence countable. More-
over, the treewidth of I(ϕ) is bounded by tw(Σ(Q)). Therefore, if
∃x.Q[x] ∧ ¬P[x] is satisfiable, then it is satisfied by a countable
model of treewidth at most tw(Σ(Q)). By Theorem 6, the latter can
be decided.

The complexity of POMSOQ subsumption remains to be deter-
mined. A natural lower bound is the known ExpSpace-Hardness of
subsumption for C2RPQs [18].

7. POMSOQ REWRITABILITY
The expressive power of POMSOQs can be used to capture the

semantics of certain TGDs. In this section, we first make this notion
of rewritability precise.

Definition 7. Given a set Σ of TGDs and a conjunctive query
Q[x], a POMSOQQQ,Σ is a rewriting of Σ and Q if, for all databases
D and potential query answers c, we have D ∪ Σ |= Q[c/x] iff
D |= QQ,Σ[c/x]. The rules Σ are POMSOQ-rewritable if every con-
junctive query Q admits a rewriting for Σ and Q.

It follows from Theorem 5 that query answering is decidable for
POMSOQ-rewritable sets of TGDs and can be done in polynomial
time w.r.t. the size of the database.

Rewritability of conjunctive queries entails rewritability of POM-
SOQ, i.e., the conditions of Definition 7 hold even when consider-
ing POMSOQs instead of CQs. Indeed, CQs that occur in rule
bodies in a POMSOQ can generally be replaced using a POMSOQ
for the respective CQ, provided that the extensionally quantified
variables in the CQ are not used anywhere else in the rule body:

Lemma 8 (Replacement Lemma). Consider a set Σ of TGDs, a
conjunctive query Q = ∃y.ψ[x, y], and a POMSOQ Q[x] that is a
rewriting for Σ and Q. Then Q and Q are equivalent in all models
of Σ, i.e., Σ |= ∀x.Q[x]↔ Q[x].

Let ψ[t/x, y′/y] be the conjunction of Q with variables x re-
placed by terms t and variables y replaced by variables y′. We
say that ψ[t/x, y′/y] is a match in a Datalog rule ρ if ρ is of the
form ψ[t/x, y′/y]∧ϕ→ χ where the y′ occur neither in ϕ nor in χ.

Given some POMSOQP[z] over Σ, letP′[z] denote a POMSOQ
obtained by replacing a match ψ[t/x, y′/y] of Q in some rule of P
by Q[t/x], where we assume w.l.o.g. that the bound variables in Q
do not occur in P. Then P and P′ are equivalent in all models of
Σ, i.e., Σ |= ∀z.P[z]↔ P′[z].

Proof. We first show that Σ |= ∀z.Q[z] ↔ Q[z]. For the one di-
rection, consider a model I |= Σ and a variable assignmentZ such
that I,Z |= Q[z]. According to Theorem 4, there is an expansion
ϕ[y] of Σ(()Q) such that I,Z |= Q[y] (where we assume w.l.o.g.
that Z assigns the appropriate domain elements to the fresh vari-
ables that ϕ may contain). Using notation as in Section 6, we find a
model I(ϕ) to which ϕ matches under the variable assignmentZid

withZid(y) = y for each y in ϕ. Then I(ϕ),Zid |= Q[z].
Let D(I(ϕ)) be the model I(ϕ) considered as a database contain-

ing a fact for each of the finitely many relations in I(ϕ). Introduc-
ing finitely many new constants for this purpose is not a problem.
Let cz denote the constants in D(I(ϕ)) that correspond to Zid(z).
Then D(I(ϕ)) |= Q[cz/z].

Since Q is a rewriting of Q under Σ, we have D(I(ϕ)),Σ |=
Q[cz/z]. Consider a universal model J of D(I(ϕ)),Σ. Then J |=
Q[cz/z]. Moreover, there is a homomorphism fromJ to I. Indeed,



the mapping Z induces a homomorphism π from I(ϕ) to I. This
mapping can be extended to a homomorphism π′ fromJ toI, since
I is a model of Σ. Due to Theorem 1, the query matchJ |= Q[cz/z]
implies J |= Q[π′(cz)/z]. Since π′(cz) = π(cz) = Z(z), this shows
the claim I,Z |= Q[z].

The other direction can be shown in a similar way, somewhat
simplified due to the fact that one does not need to construct an
intermediate model J of Σ to obtain the match for Q.

Now the rest of the claim follows from Theorem 4. It remains to
show the claimed equivalence for Σ(P) and Σ(P′). This is a direct
consequence of the Replacement Theorem of first-order logic that
allows us to replace the sub-formula ∃y′.ψ[t/x, y′/y] by pQ(t), both
of which have just shown to be equivalent.

How relevant is this new notion of POMSOQ-rewritability in
practice? The fact that every first-order conjunctive query can be
expressed as POMSOQ implies that every first-order rewritable rule
set is also POMSOQ-rewritable. It is undecidable whether a given
TGD set is FO-rewritable (in which case it is also referred to as
finite unification set), an iterative backward chaining algorithm can
be defined that terminates on FO-rewritable rule sets and provides
the rewritten FO formula [7]. Moreover, a significant body of
research has unveiled a variety of sufficient syntactically check-
able criteria for FO-rewritability. Among the known FO-rewritable
TGD fragments are atomic-hypothesis rules and domain restricted
rules [7] as well as linear Datalog+/– [13] and sticky sets of TGDs
and sticky-join sets of TGDs [14, 15]. The new notion of POMSOQ-
rewritability naturally captures all of these but goes significantly
beyond. Further, genuinely POMSOQ-rewritable classes of rule
sets will be introduced in the subsequent sections.

8. FROM DATALOG TO POMSOQS
In this section, we present a method for finding a POMSOQ

rewriting for certain sets of Datalog rules and arbitrary conjunc-
tive queries. In the base case, this leads to POMSOQs of degree
1. We then leverage this idea for constructing POMSOQs of higher
degree recursively by transforming a set of Datalog rules “layer by
layer”. Without loss of generality, we assume that the heads of Dat-
alog rules contain at most one atom (rules of the form ψ→ ϕ1 ∧ ϕ2

can be simplified to ψ → ϕ1, ψ → ϕ2 which is not possible for
arbitrary TGDs).

Definition 8. A set of Datalog rules Σ is j-oriented for the in-
teger j if all head predicates have the same arity n, and 1 ≤ j ≤ n,
and we have: if a rule’s body contains an atom p(t) for some head
predicate p and the rule’s head contains an atom q(t′), then t and
t′ agree on all positions other than possibly j.

Intuitively speaking, recursive derivations in j-oriented rule sets
can only modify the content of a single position j while keeping all
other arguments fixed in all derived facts.

Example 9. The following rule set Σfamily is 3-oriented. We use
atoms parentsSon(x, y, z) and parentsDghtr(x, y, z) to denote that z
is the son and daughter of x and y, respectively.

parentsSon(x, y, z) ∧ hasBrother(z, z′)→ parentsSon(x, y, z′)
parentsSon(x, y, z) ∧ hasSister(z, z′)→ parentsDghtr(x, y, z′)

parentsDghtr(x, y, z) ∧ hasBrother(z, z′)→ parentsSon(x, y, z′)
parentsDghtr(x, y, z) ∧ hasSister(z, z′)→ parentsDghtr(x, y, z′)

This can be used to construct POMSOQs for atomic CQs as fol-
lows.

Definition 9. Given a j-oriented set Σ of Datalog rules and a
head predicate p of Σ, a POMSOQ Qp(Σ) is defined as follows.
Let Uq be a set variable for each head predicate q in Σ, let Vi

be a set variable for each i ∈ {1, . . . , ar(p)} with i , j, and let
z = z1, . . . , zar(p) be object variables that do not occur in Σ (the
free variables of the query). Let z̃ j be an additional variable not
occurring in Σ. The rules of Qp(Σ)[z] are:

• a rule Up(z j)→ with empty head;
• for each set variable Vi, a rule→ Vi(zi) with empty body;
• for each ∀x.ψ → q(t1, . . . , tn) ∈ Σ, a rule ψ′ → Uq(t j) where
ψ′ is obtained from ψ by replacing each atom of the form
q′(t1, . . . , t′j, . . . , tn) for a head predicate q′ by Uq′ (t′j), and by
adding, for each term ti with i , j, a new body atom Vi(ti);

• for each head predicate q′, a rule q′(z1, . . . , z̃ j, . . . , zn) →
Uq′ (z̃ j).

This operation allows us to express the extension of a predicate
p by means of a POMSOQ.

Theorem 9. If Σ is j-oriented and p is a head predicate, then
Qp(Σ)[z] is a rewriting for Σ and p(z).

Proof. We show that, for any database D, list of constants c =

c1, . . . , cn, and predicate Ûq, we have D∪Σ |= q(c) iff D∪Σ(Qp(Σ)) |=
Ûq(c j, c1, . . . , cn). From this the claim follows using Theorem 4.
The proof is by an easy induction over the derivation of q(c).

Clearly, Σ(Qp(Σ)) |= V̂i(d) iff d is of the form di, d1, . . . , di, . . . , dn.
If there is a rule ψ → q(t1, . . . , tn) ∈ Σ that has an instance ψc →

q(c1, . . . , cn), then Σ(Qp(Σ)) contains a rule ψ′ → Ûq(t j, t1, . . . , tn)
with an instance ψ′c → Ûq(c j, c1, . . . , cn). It is easy to verify the
claim.

Example 10. Considering the 3-oriented rule set from Exam-
ple 9, we obtain QparentsSon(Σ)[z1, z2, z3] with the rules

UparentsSon(z3)→
→ V1(z1)
→ V2(z2)

V1(x) ∧ V2(y) ∧ UparentsSon(z) ∧ hasBrother(z, z′)→ UparentsSon(z′)
V1(x) ∧ V2(y) ∧ UparentsSon(z) ∧ hasSister(z, z′)→ UparentsDghtr(z′)

V1(x) ∧ V2(y) ∧ UparentsDghtr(z) ∧ hasBrother(z, z′)→ UparentsSon(z′)
V1(x) ∧ V2(y) ∧ UparentsDghtr(z) ∧ hasSister(z, z′)→ UparentsDghtr(z′)

parentsSon(z1, z2, z̃3)→ UparentsSon(z̃3)
parentsDghtr(z1, z2, z̃3)→ UparentsDghtr(z̃3)

Note that the V predicates are not really needed here, since rule
bodies do not impose any conditions on the respective variables.
In general, one could always replace V by using the respective free
variables if no constants are involved.

Using the Replacement Lemma 8, we can extend this to arbitrary
conjunctive queries:

Theorem 10. Every j-oriented rule set is POMSOQ-rewritable.

Proof. A rewriting for a j-oriented rule set Σ and a CQ Q[x] =

∃y.p1(t1)∧. . .∧pm(tm) is obtained from the POMSOQ ¬∀y.p1(t1)∧
. . . ∧ pm(tm) → by replacing all head atoms p1(t1) with the POM-
SOQ Qpi (Σ)[ti/x] as in Lemma 8. We assume a fixed sequence of
replacement steps in the construction of the rewriting. Let Q0 de-
note the initial rewriting of the CQ, let Qi with 1 ≤ i denote the
result after each subsequent replacement step, and letQ be the final
result.

One can show Σ |= ∀x.Q[x] ↔ Qi[x] by induction over i. The
base case follows sinceQ0 is clearly equivalent to Q. The induction
steps follow from Lemma 8 and Theorem 9.



Hence Σ |= ∀x.Q[x] ↔ Q[x], i.e., for every interpretation I |= Σ

and every variable assignment Z for I, we have I,Z |= Q[x] iff
I,Z |= Q[x] (∗).

We show the condition of Definition 7. Thus consider an arbi-
trary database D and a potential query answer c. Without loss of
generality, we assume that D contains no fact of the form q′(d) for
some head predicate q′ of Σ. Indeed, if it does, we can replace q′

by a fresh predicate q′D and add a rule ∀xq′D(x) → q′(x) to Σ. This
modification clearly preserves j-orientedness.

If D |= Q[c/x] then clearly D ∪ Σ |= Q[c/x] and thus D ∪ Σ |=

Q[c/x] by (∗). Conversely, assume that D ∪ Σ |= Q[c/x]. Then
D∪Σ is satisfiable since Σ contains no constraints (rules with empty
head). More precisely, for every interpretation I |= D, there is an
interpretation I′ |= Σ,D that coincides with I on all constants and
all predicates that are not head predicates in Σ, where we use that D
contains no head predicates of Σ. By the assumption I′ |= Q[c/x].
By (∗) I′ |= Q[c/x]. Since Q contains only predicates for which I
and I′ agree, this implies ) I |= Q[c/x]. Since I was arbitrary, this
establishes the claim.

One can rarely expect that a given rule set is j-oriented, but a
similar result can be obtained in cases where only part of a set of
rules can be transformed into a query.

Theorem 11. Let Σ1 ∪ Σ2 be a set of TGDs where Σ2 is a set of
j-oriented Datalog rules such that no head predicate of Σ2 occurs
in a body of a rule in Σ1. Then, for every POMSOQ Q there is a
POMSOQ PQ,Σ2 with the following property: for all databases D
for which D∪Σ1 ∪Σ2 is satisfiable, and for all query answers c, we
have D ∪ Σ1 ∪ Σ2 |= Q[c/x] iff D ∪ Σ1 |= PQ,Σ2 [c/x].

Proof. The proof proceeds as in the case of Theorem 10, using
Lemma 8 and Theorem 9, and arguing that any model of D ∪ Σ1

can be extended to a model of D ∪ Σ1 ∪ Σ2.

This result can be applied to rewrite oriented sets of Datalog
rules iteratively, since Σ1 may again contain a j-oriented set of rules
that can be rewritten (where j does not have to be as before). The
following definition elaborates this idea.

Definition 10. For a set of TGDs Σ, let ≺ be the smallest tran-
sitive relation on Σ such that ρ ≺ ρ′ holds whenever a predicate
in the head of ρ occurs in the body of ρ′. Two rules ρ, ρ′ are ≺-
equivalent, written ρ ≈ ρ′, if ρ ≺ ρ′ and ρ′ ≺ ρ. The set Σ is fully
oriented if every equivalence class [ρ]≺ = {ρ′ | ρ ≈ ρ′} is j-oriented
(not necessarily for the same j and predicate arity).

The next theorem establishes that the property of being fully ori-
ented can be easily checked and is a sufficient criterion for POM-
SOQ rewritability.

Theorem 12. Given a rule set Σ, it can be detected in poly-
nomial time if Σ is fully oriented. Every fully oriented set Σ is
POMSOQ-rewritable.

Proof. Clearly, the relation ≺ can be constructed in polynomial
time by checking ρ ≺ ρ′ for each pair of rules and constructing the
transitive closure. The equivalence classes [ρ]≺ are obtained from
this in linear time. It is clear that j-orientedness can be checked for
each set of rules in polynomial time.

It remains to show the second part of the claim. We say that [ρ]≺
is maximal if, for all ρ′ ∈ Σ, we have that ρ ≺ ρ′ implies ρ′ ∈ [ρ]≺.
If Σ is fully oriented and [ρ]≺ is maximal, then Σ1 B Σ \ [ρ]≺ and
Σ2 B [ρ]≺ satisfy the preconditions of Theorem 11. Moreover, Σ1

again is fully oriented. Thus, one can apply Theorem 10 (initially)
and Theorem 11 (iteratively) to obtain the required rewriting.

This result can be used to show that positive monadic second-
order queries have the same expressivity as fully oriented Datalog.
Importantly, this also shows that every POMSOQ-rewritable set of
TGDs can equivalently be expressed as a set of rules that can be
transformed into a POMSOQ using Theorem 12.

Theorem 13. For every POMSOQ Q, the rule set Σ(Q) of Defi-
nition 4 is fully oriented. Moreover, for every POMSOQ-rewritable
set Σ of TGDs, there is a fully oriented set of Datalog rules Σ′ such
that:

• every predicate p in Σ has a corresponding head predicate
qp in Σ′ that does not occur in Σ,

• for every database D and conjunctive query Q[x] that do not
contain predicates of the form qp, and for every list of con-
stants c, we have D∪Σ |= Q[c/x] iff D∪Σ′ |= Q′[c/x] where
Q′ is obtained from Q by replacing all predicates p with qp.

9. STRATIFYING RULE SETS
Though we have just shown that fully directed Datalog has the

same expressivity as POMSOQ, rule sets in practice rarely have
this specific form. Indeed, even a simple transitivity rule p(x, y) ∧
p(y, z)→ p(x, z) cannot be rewritten to a POMSOQ along the lines
of Theorem 12, although it is POMSOQ-rewritable. In this section,
we extend our rewriting approach to cover such cases.

Our strategy is to transform sets Datalog of rules into a stratified
form that enforces a certain order of rule applications. Every “stra-
tum” of rule applications is j-oriented for a particular argument
position j.

Stratification still requires certain syntactic regularities. We say
that a rule is complex if it has more than one body atom. A set of
Datalog rules Σ is basic if all head predicates have the same arity
n, and every non-complex rule p(t) → q(s) is such that t = s. In
this section, we restrict to such basic rule sets Σ, and use n for the
respective arity throughout.

Definition 11. The 0-stratum of Σ, denoted Σ〈0〉, consists of the
rules:

• pdb(x)→ p0(x) for each head predicate p of Σ;
• for every rule ϕ → p(t) ∈ Σ, the rule ϕ′ → p0(t) where ϕ′ is

obtained from ϕ by replacing every head atom q(s) byq0(s) if
s = t, and qdb(s) otherwise.

For k ∈ {1, . . . , n}, the k-stratum of Σ, denoted Σ〈k〉, consists of the
rules:

• p0(x)→ pk(x) for each head predicate p of Σ;
• for every rule ϕ → p(t) ∈ Σ, the rule ϕ′ → pk(t) where ϕ′ is

obtained from ϕ by replacing every head atom q(s) by:

(i) qk(s) if s agrees with t on all positions other than pos-
sibly i, and

(ii) q0(s) otherwise.

Given two distinct numbers i, j ∈ {0, . . . , n}, the set Σ〈i → j〉 con-
sists of the rules {pi(x)→ p j(x) | p head predicate in Σ}.

Let π = 〈π(1), . . . , π(n)〉 be a permutation of the numbers 1, . . . ,
n, and let π(0) denote 0. The π-stratification of Σ, denoted Σ ↑ π, is
the set

n⋃
k=0

Σ〈π(k)〉 ∪
n−1⋃
k=1

Σ〈π(k)→ π(k + 1)〉.



Example 11. The following is the 〈1, 2〉-stratification of the rule
p(x, y) ∧ p(y, z)→ p(x, z):

pdb(x, y)→ p0(x, y) pdb(x, y) ∧ pdb(y, z)→ p0(x, z)
p0(x, y)→ p1(x, y) p0(x, y) ∧ p1(y, z)→ p1(x, z)
p0(x, y)→ p2(x, y) p2(x, y) ∧ p0(y, z)→ p2(x, z)
p1(x, y)→ p2(x, y).

where each line corresponds to a stratum. This set of rules is fully
directed and it is easy to see that this is always the case for π-
stratifications. In particular, each k-stratum is k-oriented and the
dependency order ≺ is such that ρ ≺ ρ′ holds only if ρ is in a lower
stratum than ρ′.

Example 11 is also correct in the following sense:

Definition 12. A π-stratification Σ ↑ π is correct if, for every
database D, conjunctive query Q[x], and potential query answer c,
we have D,Σ |= Q[c/x] iff D′,Σ ↑ π |= Q′[c/x] where D′ is ob-
tained by replacing all occurrences of head predicates p with pdb,
and Q′ is obtained by replacing all occurrences of head predicates
p with pπ(n).

A set of rules is stratifiable if it has a correct stratification. A
(not necessarily basic) set of rules Σ is fully stratifiable if every
equivalence class [ρ]≺ = {ρ′ | ρ ≈ ρ′} is stratifiable.

Using an iterative rewriting as in Theorem 12, we obtain the fol-
lowing.

Theorem 14. Every fully stratifiable set of TGDs is POMSOQ-
rewritable.

Unfortunately, not all stratifications are correct. For example, the
rule l(x, y) ∧ p(y, z) ∧ r(z, u) → p(x, u) clearly has no correct strat-
ification since the body atom p(y, z) will always belong to a lower
stratum than the head, so that no arbitrary recursion is possible.

Our goal is to find a way to detect if a set of rules can be correctly
stratified. In other words, we want to find out if every (partial)
expansion of Σ has a corresponding (partial) expansion of Σ ↑ π.
Since there are infinitely many expansions in general, this is not a
criterion that we can check effectively. However, we can obtain a
sufficient condition by restricting attention to a particular finite set
of essential expansions, defined next.

Definition 13. Consider an expansion tree T for Σ and λ as in
Definition 6. Every edge n1 → n2 in T is constructed using a rule
rule(n1) ∈ Σ. The edge n1 → n2 is internal if n2 is not a leaf. The
edge n1 → n2 is invariant if the head atom of rule(n1) has the form
p(t) and the body atom of rule(n1) for which n2 was created has the
form q(t), with the same t.

An expansion tree T is essential if

(1) each node has at most one child that is not a leaf, so that inter-
nal edges form a chain n0 → . . .→ n`;

(2) rule(n0) and rule(n`) are complex;

(3) for each k ∈ {1, . . . , `− 1}, nk → nk+1 is invariant and all nodes
n1, . . . , n` have different labels.

The child nodes of n` are called bottom leafs. All other leafs are
side leafs.

Figure shows three essential expansion trees. The rules that were
applied resemble that of Example 11, but only tree (A) is actually
an expansion tree for that particular stratification.

p1(x,z)

p1(y,z)
p0(x,y) p2(y,z)

p0(y',z)p2(y,y')

p2(x,z)

p2(x,y')
p0(y',z)p1(x,y')

p1(y,y')p0(x,y)

p1(x,z)

p0(x,y')
p1(y',z)p1(x,y')

p1(y,y')p0(x,y)

A B C

Figure 2: Examples of essential expansion trees

It is easy to see that there are at most exponentially many essen-
tial expansion trees for Σ and an atom p(x). Indeed, each such es-
sential expansion tree is uniquely determined by two (initial and fi-
nal) complex rules and a chain of invariant rule applications. Since
the chain of invariant rule application is required to have no re-
peated node labels, every rule in Σ can occur at most once in this
chain.

We use essential expansion trees in two distinct conditions that
allow us to find correct stratifications. The first property ensures
that every expansion tree of Σ has a corresponding expansion tree
w.r.t. the union of all possible stratifications. The latter is called a
pre-stratification – an expansion tree where stratified rules may be
applied in any order. The second property ensures that applications
of stratified rules that are not in the right order can be swapped,
which allows us to eventually obtain an expansion tree for a partic-
ular stratification Σ ↑ π.

Definition 14. Let Σps B
⋃n

i=1 Σ〈i〉 ∪
⋃

i, j∈{1,...,n},i, j Σ〈i → j〉. A
0-tree of Σ is an essential expansion tree T for Σps ∪

⋃n
i=1 Σ〈i→ 0〉

and pk(t) for some k ∈ {1, . . . , n}.
Let L be the set of all leaf labels of T and all labels of the form

q0(s) where qi(s) is the label of a bottom leaf in T for some i ∈
{1, . . . , n}. A pre-stratification of a 0-tree T is an expansion tree Tps

of Σps and pk(t), where each leaf in Tps is labeled with an atom from
L. Σ is pre-stratifiable if all of its 0-trees have a pre-stratification.

Definition 15. Let Σ be a set of Datalog rules with head predi-
cates of the same arity n, let i, j ∈ {1, . . . , n} be indices with i , j.
An expansion tree T is an 〈i, j〉-tree for Σ if there is a head predicate
p of Σ such that T is an expansion tree for Σ〈i〉 ∪ Σ〈 j〉 ∪ Σ〈i → j〉
and p j(x1, . . . , xn), and T contains complex nodes ni and n j with
rule(ni) ∈ Σ〈i〉 and rule(n j) ∈ Σ〈 j〉.

Let leafs(T ) denote the multiset of leaf labels of T , i.e. the set
of labels together with the number of leafs where they occur. Let
leafsi 7→ j(T ) be obtained from leafs(T ) by replacing all atoms of the
form pi(t) with p j(t), i.e., by incrementing the multiplicity of p j(t)
by that of pi(t).

An 〈i, j〉-tree T for p j(x) is invertible if there is a 〈 j, i〉-tree T ′

for pi(x) such that leafs(T ′) is a sub-multiset of leafsi 7→ j(T ). Σ is
〈i, j〉-invertible if all essential 〈i, j〉-trees are invertible.

Example 12. Tree (B) in Fig. is a 〈2, 1〉-tree based on Exam-
ple 11. Its inverted expansion tree is tree (A), which is a correct
expansion tree in the stratification of Example 11. Tree (C) is a
0-tree for that example. A pre-stratification for that tree needs to
derive p1(x, z) from leafs p0(x, y), p0(y, y′), and p1(y′, z). Note that
p0(y, y′) is obtained frmo the bottom leaf label p1(y, y′) here. The
pre-stratification is not shown in the figure but is easy to find.

Combining the above two notions, we obtain a sufficient criterion
for checking whether a stratification is correct. The proof proceeds
by iteratively transforming arbitrary expansion trees of Σ into ex-
pansion trees of Σ ↑ π as outlined above. The full formalization of
this transformation is provided in the Appendix.



Theorem 15. The stratification Σ ↑ π is correct whenever the
following hold:

• Σ is pre-stratifiable,

• for all i > j, Σ is 〈π(i), π( j)〉-invertible.

Theorem 16. It is decidable whether the conditions of Theo-
rem 15 are satisfied for a set of Datalog rules Σ.

Proof. Both conditions in Theorem 15 refer to specific essential
expansion trees of Σ, and it suffices to consider trees constructed
from a root label p(x) where x consists of variables only. As argued
earlier, there are only a finite number of such essential expansion
trees.

Given an essential expansion tree T , the conditions of Defini-
tion 14 and 15 can be decided. Both criteria can easily be related
to checking the entailment of a certain fact from a set of Datalog
rules. Indeed, we merely need to replace variables in the labels of
leaf nodes by new constants and then check entailment. This ap-
proach suffices for checking Definition 14. For Definition 15, one
needs to additionally restrict attention to derivations that use every
leaf node (input fact) at most once. Yet, this is also clearly decid-
able by recording, for every fact that is derived, the set of leaf facts
that have been contributing to it. Derivations are only allowed if no
two premises use overlapping sets of facts, and the newly derived
atom is annotated with the union of the leaf sets of its premises.

How useful can the above criteria be in practice? The proof of
Theorem 16 indicates that checking the conditions of Theorem 15
may be exponential. In practice, however, we expect the essential
proof trees to be very small, so that the related checks are not a
performance issue. Indeed, it seems unlikely that any practical rule
set admits many different chains of invariant rule applications for
a given atom. Moreover, the checking procedure does not have to
be repeated for all possible permutations π. Rather, one can check
which pairs 〈i, j〉 lead to essential 〈i, j〉-trees that cannot be be in-
verted in order to derive all relevant restrictions on permutations,
from which a correct permutation can easily be retrieved if there is
one.

The other practically relevant question is whether our criteria
have a chance of covering a relevant amount of rule sets. The re-
striction to rules where all head predicates have the same arity may
seem rather severe. Note, however, that this requirement only ap-
plies to individual ≺ equivalence classes as in Theorem 14. More-
over, description logics (DLs) provide a relevant application area
where predicate arities can only be 1 or 2. In particular, DL role
inclusion axioms (RIAs) are a very specific kind of Datalog rules
that use binary predicates only. A common restriction on sets of
RIAs in DL is called regularity that can be viewed a special case of
our stratification. Kazakov has studied a generalization of regular-
ity that is based on a notion of stratifiability that is similar to ours
[29]. This work can apply simpler definitions by exploiting the
special structure of RIAs, while we need to consider a much more
general case. For example, we explicitly require the preservation of
leaf multiplicities in Definition 15, while this follows implicitly for
RIAs. DLs also give an example of a situation where our conditions
can be checked in polynomial time.

10. BOUNDED TREEWIDTH SETS
This section investigates how well our novel querying notion can

be combined with another very general condition that ensures de-
cidability of CQ entailment, namely the bounded treewidth model
property.

Definition 16. A rule set Σ is called bounded treewidth set (bts)
if for every database D, I(D ∪ Σ) has bounded treewidth.

Recognizing whether a rule set has this property is undecidable
[7], yet a plethora of criteria ensuring this property have been iden-
tified. To start with, the condition is trivially fulfilled if I(D∪Σ) is
even guaranteed to be finite (in other words: if the chase is known
to terminate). Pure Datalog (also referred to as full implicational
dependencies [20] or total TGDs [11]) is an immediate case, as no
new domain elements are created at all. Weakly acyclic TGDs [26,
27] constitute a more elaborate way by – roughly speaking – al-
lowing for bounded value generation sequences by taking record
of predicate positions. Another way of ensuring finiteness of the
chase is to require acyclicity of the graph of rule dependencies as
introduced in [8].

Cases where I(D∪Σ) may be infinite but treewidth-bounded are
also manifold: the definition of guarded TGDs – which enjoy this
property – has been inspired by the guarded fragment of first-order
logic [3]. It has been generalized to weakly guarded TGDs [12]
and to frontier-guarded rules [7], both being subsumed by weakly
frontier-guarded TGDs [7]. The most expressive currently known
bts fragments are that of greedy bts TGDs [10] and glut-guarded
TGDs [30].

As mentioned before, the question D,Σ |= Q is decidable if Σ is
bts and Q is a conjunctive query. We extend this result to POM-
SOQs.

Theorem 17. Let D be a database and let Σ be a set of rules
for which the treewidth of I(D ∪ Σ) is bounded. Let Q[x] be a
POMSOQ. Then

1. D ∪ Σ |= Q[c/x] if and only if D ∪ Σ ∪ {¬Q[c/x]} has no
countable model with bounded treewidth, and

2. the problem D ∪ Σ |= Q[c/x] is decidable.
Proof. We start by proving the first claim. For the “only if”

direction, it is obvious that D ∪ Σ |= Q[c/x] implies that D ∪
Σ ∪ {¬Q[c/x]} can have no model (and therefore no model with
bounded treewidth).

For proving the “if” direction, we assume that D∪Σ∪{¬Q[c/x]}
has no countable model with bounded treewidth. Then it must
be unsatisfiable for the following reason: toward a contradiction
assume it has a model I. Since I |= D ∪ Σ, there must be a
homomorphism from I(D ∪ Σ) to I. Thus, by contraposition of
the closedness of models of Q[c/x] under homomorphisms (Theo-
rem 1), I(D ∪ Σ) itself satisfies ¬Q[c/x] and is therefore a model
of D ∪ Σ ∪ {¬Q[c/x]}. Moreover, since Σ is bts, we obtain that
I(D ∪ Σ) has bounded treewidth. Obviously it is also countable,
which yields the desired contradiction and ensures unsatisfiability
of D ∪ Σ ∪ {¬Q[c/x]}.

For the second claim we start from the previous claim and note
that, since D and Σ are first-order theories and ¬Q[c/x] is an MSO
formula, D ∪ Σ ∪ {¬Q[c/x]} is an MSO theory. Thus, we we can
invoke Theorem 6 to obtain the desired result.

This result shows that POMSOQ can be used for querying in the
presence of bts TGDs. We now exploit this compatibility further.
In the preceding sections, we have identified a variety of criteria
that guarantee POMSOQ rewritability and hence decidability of the
query entailment problem. However, there are many cases where
only part of the given TGDs is rewritable. Query answering can
still be decided, if the TGDs that are not rewritable are layered “be-
low” the rewritable part. This idea is formalized by the following
notion of rule dependencies that was first described in [6] and in-
troduced independently in [25]. It can be viewed as a refinement of
the relation ≺ of Definition 10. Our presentation is similar to [9].



Definition 17 (Baget et al.). Let R1 = B1 → H1 and R2 =

B2 → H2 be two TGDs. We say that R2 depends on R1 if there is

• a database D,
• a substitution θ of all variables in B1 with terms in D such

that θ(B1) ⊆ D, and
• a substitution θ′ of all variables in B2 with terms in D∪θ(H1)

such that θ′(B2) ⊆ D ∪ θ(H1) but θ′(B2) * D.

A (directed) cut of a set of rules Σ is a partition (Σ1,Σ2) of Σ such
that no rule in Σ1 depends on a rule in Σ2. It is denoted Σ1 B Σ2.

It is not hard to see that the notion of rule dependencies encodes
which rule can possibly trigger which other rule. Baget et al. es-
tablish a criterion to compute the set of all dependencies of a given
rule set and show that this is an NP-complete task. The next the-
orem intuitive establishes that for a directed cut, rule sets can be
exhaustively applied after each other.

Theorem 18 (Baget et al.). Let Σ be a set of rules admitting
a cut Σ1 B Σ2. Then, for a database D and a conjunctive query
Q[x] we have that D ∪ Σ |= Q[x/c] exactly if there is a Boolean
conjunctive query Q′ such that D ∪ Σ1 |= Q′ and Q′,Σ2 |= Q[x/c]
hold.

We now are ready to establish the main result of this section:
decidability of conjunctive query entailment for Σ1 B Σ2 rule sets
where Σ2 is POMSOQ rewritable and Σ1 is bts.

Theorem 19. Let D be a database and let Σ be a set of rules for
which the treewidth of I(D ∪ Σ) is bounded. Let Σ′ be a rule set
with Σ B Σ′ and let Q[x] be a Boolean conjunctive query for which
a rewriting QQ,Σ′ [x] exists. Then

1. D ∪ Σ ∪ Σ′ |= Q[c/x] if and only if D ∪ Σ |= QQ,Σ′ [c/x], and

2. the problem D ∪ Σ ∪ Σ′ |= Q[c/x] is decidable.

Proof. We start by proving the first claim. For the “only if”
direction, assume D ∪ Σ ∪ Σ′ |= Q[c/x]. We apply Theorem 18 to
obtain a Q′ with D∪Σ |= Q′ and Q′∪Σ′ |= Q[c/x]. By the definition
of rewritability, we obtain Q′ |= QQ,Σ′ [c/x]. Due to D∪Σ |= Q′, we
obtain D ∪ Σ |= QQ,Σ′ [c/x].

For proving the “if” direction we assume D ∪ Σ |= QQ,Σ′ [c/x]
and conclude I(D ∪ Σ) |= QQ,Σ′ [c/x], which in turn means that
there must be an expansion ϕ[y] of QQ,Σ′ [c/x] such that I(D ∪
Σ) |= ∃y.ϕ[y], and therefore – due to universality of I(D ∪ Σ) and
homomorphism-closedness of models of ∃y.ϕ[y] – also D ∪ Σ |=

∃y.ϕ[y]. Since trivially ∃y.ϕ[y] |= QQ,Σ′ [c/x], we can conclude
∃y.ϕ[y] ∪ Σ′ |= Q[c/x] by Skolemization and the definition of
rewriting. This leads to the final conclusion D ∪ Σ ∪ Σ′ |= Q[c/x].

The second claim is a direct consequence from the claim just
proven and the second claim of Theorem 17.

Corollary 20. For any rule set Σ ∪ Σ′ where Σ is a bounded
treewidth set, Σ′ is POMSOQ-rewritable and ΣBΣ′, CQ answering
is decidable.

Roughly speaking, the introduced framework allows us to deal
with a specific sort of “mildly recursive” (also non-guarded) Dat-
alog that is layered on top of TGD sets featuring value invention.
Note that in general, query entailment for Σ1 B Σ2 with bts Σ1 and
Datalog Σ2 is undecidable, which can be shown along the lines of
the proof of undecidability of conjunctive query entailment in EL++

[31]. In order to guarantee decidability, the Datalog part has to ex-
hibit a sort of regularity property which can also be observed in the
RBox definition of highly expressive DLs.

11. CONCLUSION
Positive monadic second-order queries represent a well-balanced

middle ground between expressivity and computability. They sig-
nificantly extend the querying capabilities of (unions of) conjunc-
tive queries and conjunctive 2-way regular path queries (at the cost
of higher complexities), yet – as opposed to full-fledged Datalog
queries – maintain beneficial computational properties such as de-
cidability of query subsumption and of query entailment in the
presence of TGDs that have the bounded treewidth model property.

Thereby, the notion of POMSOQ-rewritability significantly ex-
tends first-order rewritability – which has been proven useful for
theoretical considerations and practical realization of query answer-
ing alike – to much larger classes of TGD sets covering features
like transitivity which are considered difficult to handle within the
known decision frameworks.

Furthermore, POMSOQ-rewritable TGD sets can be smoothly
integrated with bounded treewidth TGD sets as long as certain de-
pendency constraints are obeyed. This provides a valuable perspec-
tive on rule-based data access as a task that can be solved by com-
bining bottom-up techniques like the chase with top-down tech-
niques such as query rewriting.

While these results are already very promising, this work marks
only the very first steps in the research on positive monadic second-
order queries. Our work immediately raises a number of interest-
ing open questions: How general are POMSOQs? Is there a larger,
more expressive fragment which jointly satisfies all the established
properties? Is every rewriting for a TGD set and a given CQ that is
expressible in MSO logic equivalent to a POMSOQ? What are the
precise combined complexities of query answering on databases
and for deciding query subsumption? Which more general syntac-
tic criteria ensure POMSOQ-rewritability? Can all fragments of
TGDs (including those considered in description logics) for which
conjunctive query answering is known to be decidable be captured
as a combination of bts and POMSOQ-rewriting? Answering these
questions will not only contribute insights to the specific form of
POMSOQs considered herein, but also provide a more unified view
on query answering under constraints in general.
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APPENDIX
This appendix provides additional proofs that have been omitted in
the main paper for reasons of space.

Theorem 1. For a POMSOQ Q[x], the set of models of ∃x.Q is
closed under homomorphisms.

Proof. The result is an immediate consequence of the following
claim: Consider a homomorphism µ : I → J between interpreta-
tions I,J . Then for all variable assignments Z : x → ∆I we find
that I,Z |= Q implies J , µ ◦ Z |= Q.

We prove the claim by induction on the degree d of Q. For
d = 0 the correspondence follows by the definition of homomor-
phisms. For d > 0, we first note that Q can be transformed into
an equivalent formula of shape ∀U1, . . . , Um.∃v1, . . . , vk.ϕ where ϕ
is a positive boolean formula having as arguments POMSOQs of
lower degree and monadic literals of the form Ui(x) and ¬Ui(x).
Now suppose for the indirect proof I,Z |= Q but J , µ ◦ Z 6|= Q
then there must be an assignment Z of U1, . . . , Um to subsets of
∆J such that for all assignments of v1, . . . , vk to elements from ∆J

the formula ϕ is not satisfied. We now define an assignment Z′ :
{U1, . . . , Um} → 2∆I by Z′(Ui) B {δ | µ(δ) ∈ Z(Ui)}. Since I,Z sat-
isfies ∀U1, . . . , Um∃v1, . . . , vkϕ there must be a variable assignment
Zv : {v1, . . . , vk} → ∆I such that I,Z,Z′,Zv |= ϕ. Yet, for any lit-
eral or POMSOQ λ from ϕ we obtain that I,Z,Z′,Zv |= λ implies
J , µ ◦ Z,Z, µ ◦ Zv |= λ. For POMSOQs, this follows from the in-
duction hypothesis, whereas for monadic literals of the form Ui(x)
and ¬Ui(x) it follows by construction of Z′. Then, since ϕ is a posi-
tive combination of these literals, we obtainJ , µ◦Z,Z′, µ◦Zv |= ϕ
which contradicts the above assumption that there is no such Zv.
Hence the original claim is proven.

Theorem 4. For every POMSOQ Q, the set Σ(Q) can be con-
structed in linear time and both expressions are equivalent in the
sense that |= ∀x.Q[x]↔ (Σ(Q)→ pQ(x)) is a tautology.

Proof. The claimed linear time bound is immediate from the
definition. The claimed equivalence is obvious for queries of de-
gree 0. For degrees ≥ 1, it is shown by induction on the de-
gree of Q. We first show the base case of degree 1. Let Q[x] =

∀U1, . . . , Um¬∀y.
∧

R∈R R.
First, consider an interpretation I and variable assignment Z

such that I,Z |= Q[x]. R is of the form R+∪R−, where the rules in
R+ have heads of the form Ui(t) and rules in R+ have empty heads.
Thus, I,Z |= ∀U1, . . . , Um(∀y.

∧
R∈R+

R→ ¬∀y.
∧

R∈R− R).
Consider a domain element δ ∈ ∆I and index i ∈ {1, . . . ,m} such

that I,Z{z 7→ δ} |= ∀U1, . . . , Um.∀y.
∧

R∈R+
R → Ui(z). We show

that I,Z{z 7→ δ} |= Σ(Q) → Ûi(z, x) (∗). Due to the rule struc-
ture of R+, this can be shown by induction over the “derivation” of
“Ui(δ)”.

The assumption implies that there is a rule R = ϕ → Ui(y) ∈ R+

(with y in y) and a variable assignmentZ′ that agrees withZ{z 7→
δ} on all variables other than possibly y such that Z′(y) = δ and
I,Z′ |= ϕ. There is a rule ∀x, y.ϕ′ → Ûi(y, x)′ ∈ Σ(Q) that is
obtained from R. It is easy to see that I,Z′ |= ϕ′[x, y]. This is
immediate for atoms that occur in both ϕ and ϕ′. For atoms of the
form Û j(y′, x), it follows by induction. No other atoms can occur
in queries of depth 1. Thus, since I |= ∀x, y.ϕ′ → Ûi(y, x), we
conclude I,Z′ |= Ûi(y, x) and (sinceZ′(y) = δ = Z(z)), we obtain
I,Z |= Ûi(z, x). This shows (∗).

Consider a rule R = ϕ→ ∈ R− and Z′ that agrees with Z
on all variables other than possibly y such that I,Z′ |= ϕ. Let
ϕ′ → pQ(x) ∈ Σ(Q) be the rule obtained from R. Using (∗) on
all atoms of form U j(y) in ϕ, we find that I,Z′ |= ϕ′ and thus
I,Z′ |= pQ(x) as required.

This shows one direction of the claim for queries of degree 1.
The other direction is similar and we omit the details.

The result for degrees d > 1 follows by an easy induction on d
where d = 1 is the base case. Indeed, the treatment of subqueries
can be viewed as the replacement of a subquery with an equivalent
formula, which leads to an equivalent formula by the Replacement
Theorem of first-order logic.

Theorem 5. Given a database D, a POMSOQ Q[x], and a list
of constants c, checking D |= Q[c/x] is in PSpace w.r.t. the com-
bined size of D and Q[c/x]. Moreover, it is PTime-complete w.r.t.
the size of D.

Proof. PSpace membership for combined complexity is a di-
rect consequence of PSpace completeness of model checking in
monadic second-order logic [34, 35], keeping in mind that due
to Corollary 2, entailment coincides with model checking if the
premise is a set of ground facts. For PTime membership, accord-
ing to Theorem 4, the question can be decided by using Σ(Q). The
result therefore follows from the known respective complexity re-
sult for Datalog [24]. For PTime hardness, we reduce entailment in
propositional Horn logic to POMSOQ answering. Given a set H
of propositional Horn clauses, we introduce for every propositional
atom a occurring therein a constant ca. We also introduce one ad-
ditional constant nil. Moreover, for every Horn clause C ∈ H with
C = a1 ∧ . . . ∧ an → a, we introduce constants bC,1, . . . , bC,n and
ground atoms entails(bC,1, ca), first(bC,i, cai ) for all i ∈ {1, . . . , n},
rest(bC,n, nil), and rest(bC,i, bC,i+1) for all i ∈ {1, . . . , n− 1}. Then the
a propositional atom is entailed by H exactly if it is an answer for
the POMSOQ Qtrue[x] = ∀U¬∀y, z, z′

∧
R∈R R with R consisting of

the rules

→ U(nil)
first(y, z) ∧ U(z) ∧ rest(y, z′) ∧ U(z′) → U(y)

U(y) ∧ entails(y, z) → U(z)
U(x) → .

Theorem 13. For every POMSOQ Q, the rule set Σ(Q) of Defi-
nition 4 is fully oriented. Moreover, for every POMSOQ-rewritable
set Σ of TGDs, there is a fully oriented set of Datalog rules Σ′ such
that:

• every predicate p in Σ has a corresponding head predicate qp

in Σ′ that does not occur in Σ,

• for every database D and conjunctive query Q[x] that do not
contain predicates of the form qp, and for every list of con-
stants c, we have D ∪ Σ |= Q[c/x] iff D ∪ Σ′ |= Q′[c/x] where
Q′ is obtained from Q by replacing all predicates p with qp.

Proof. The first part of the claim follows by induction over the
degree d of Q. The case of d = 0 is clear. The case of d = 1
follows by observing that the rules with head predicate pQ in Σ(Q)
cannot be ≺-smaller than any other rule, and thus form a maximal
j-oriented (for any position j in pQ) subset of Σ(Q). Likewise, the
set of rules with head of the form Ûi(y, z) is clearly 1-oriented. To
show the claim for d > 1, we observe that no rule in Σ(Q) is ≺-
smaller than any rule in Σ(Q′) for some subquery Q′ of Q. The
claim follows by induction.

For the second part of the claim, let Qp[y] be the CQ p(y) for
each predicate p that is not of the form qp′ . There is a rewriting
Qp[y] for Qp[y] and Σ. By Lemma 8, Σ |= ∀y.Qp[y] ↔ Qp[y].
By Theorem 4, |= ∀y.Qp[y] ↔ (Σ(Qp) → pΣ(Qp)(y)). Thus, Σ |=

∀y.Qp[y]↔ (Σ(Qp)→ pΣ(Qp)(y)).
Using arguments as in the proof of Theorem 10, we find that

D |= ∀y.(Σ → Qp[y]) ↔ (Σ(Qp) → pΣ(Qp)(y)) whenever D ∪ Σ is
consistent. To cover the case that D ∪ Σ is inconsistent, let Q⊥ be



a POMSOQ without free variables such that, for all databases D′,
D′ ∪ Σ is inconsistent iff D′ |= Q⊥. To find such a Q⊥, consider Qp

for a predicate p that does not occur in Σ and delete from Σ(Qp) all
rules that use the predicate p (these rules check for occurrences of
p in the input database). Q⊥ can easily be obtained from this.

By the first part of the claim, Σ(Qp) and Σ(Q⊥) are fully directed.
We set qp B pΣ(Qp). Let Σ⊥ be the fully directed rule set obtained
from Σ(Q⊥) by replacing each rule ∀y.ϕ→ that has an empty head
by new rules ∀x, y.ϕ → qp(x) for each of the predicates qp where
x is a list of fresh variables of the appropriate length. Thus, Σ⊥
entails all possible facts over predicates qp from D whenever D∪Σ

is inconsistent.
Now we can set Σ′ B Σ⊥ ∪

⋃
p Σ(Qp) where we assume w.l.o.g.

that any two Σ(Qp) and Σ(Qp′ ) use mutually disjoint sets of head
predicates. It is easy to verify that the claim is satisfied for this
choice.

Theorem 15. The stratification Σ ↑ π is correct whenever the
following hold:

• Σ is pre-stratifiable,

• for all i > j, Σ is 〈π(i), π( j)〉-invertible.

Proof. The result is shown by transforming expansion trees of
Σ into according expansion trees for Σ ↑ π with root and leaf labels
replaced as in Definition 12. Clearly, this suffices to establish the
result for arbitrary conjunctive queries. Thus consider an arbitrary
expansion tree T for Σ and p(x).

First, we construct an expansion tree T1 for Σ〈π(n)〉 ∪ Σ〈π(n) →
0〉 and pπ(n)(x). This can be done inductively following the con-
struction of T . We begin with a root node labeled pπ(n)(x). For each
application of a rule ρ ∈ Σ in the construction of T , we apply the
corresponding rule in Σ〈π(n)〉, followed by applications of rules of
the form qπ(n)(y) → q0(y) to each new leaf node with label q0(s),
yielding new leaf nodes qπ(n)(s). The latter can be further expanded
following the construction of T .

Second, we construct from T1 an expansion tree T2 for the set
Σps as in Definition 14. The set of leaf node labels of is the same
as that of T1, but possibly with atoms of the form qi(s) replaced by
some other atom q j(s) with i, j ∈ {0, . . . , n}, i , j. We say that a
critical node is a node c with rule(c) of the form qk(y)→ q0(y). We
iteratively eliminate critical nodes from T1.

In a first stage, we remove all critical nodes that have no complex
rule applications above them in the tree. Let c be such a node of
minimal distance to the root. Let q0(t) be the label of c. Then the
child č of c is labeled qπ(n)(t). Since the root is of form pπ(n)(t)
with π(n) , 0, there must be a node d above c. We transform T1

recursively.
Base case: If the label of d is of form rπ(n)(t), then r = q and

rule(d) has the form q0(y) → qπ(n)(y). Then T1 is transformed by
removing node c and identifying node d and č.

Recursion: If the label of d is of form r0(t), then rule(d) ∈ Σ〈0〉
has a single body atom q0(s) and head r0(s). This is so since a non-
complex rule in a basic Datalog rule set can only produce invariant
expansion edges. Thus, there is a rule ρπ(n) = qπ(n)(s) → rπ(n)(s) ∈
Σ〈π(n)〉. Replace c with a new node c′ with label rπ(n)(t), and re-
place d with a new node d′ with label r0(t). A correct expansion tree
is obtained with rule(c′) = ρπ(n) and rule(d′) = rπ(n)(y)→ r0(y). Af-
ter the recursion, d′ is critical and has a smaller distance to the root
than c. Hence, the transformation eventually terminates.

We thus obtain a expansion tree where every critical node occurs
below a rule application that is complex. In a second stage, we
remove the remaining critical nodes iteratively. The construction

temporarily introduces rule applications of the form qi(y) → q0(y)
for arbitrary i ∈ {1, . . . , n} which are also taken into account in the
elimination steps.

In each step, select a critical node c of minimal distance to the
root. Let č be the child of c, and let q0(t) be the label of c. Then the
child č of c is labeled qk(t). At first c is “pushed downwards” by
exhaustively applying the following transformation rules. Do the
following as long as č has a child node and rule(č) is not complex:

(A) If rule(č) ∈ Σ〈0 → k〉, delete č and identify c with the
(unique) child node of č – it already has the same label.

(B) If rule(č) ∈ Σ〈i → k〉 for i ≥ 1, delete č. The (unique) child
of č can be obtained from c using rule qi(y)→ q0(y).

(C) Otherwise, if rule(č) is not complex, replace c with a new
node c′ with label q0(t) and rule(c′) ∈ Σ〈0〉 being the stratum 0 rule
that corresponds to rule(č). The former child rk(y) of č becomes a
child of c′ where rule rk(y)→ r0(y) is applied.

It is clear that this procedure terminates since the number of crit-
ical nodes is either reduced or stays the same while critical nodes
move down in the tree.

After having pushed c down, we distinguish two cases:
Case 1: č is a leaf node. Then č is deleted from the tree. This

corresponds to a replacement of a leaf label qk(t) with q0(t), which
is allowed in the construction.

Case 2: č has a child d such that č → d is complex. By assump-
tion, there is a complex rule is applied above c. Let e be the lowest
node above c that was expanded with a complex rule. Then the
path from e to d induces a subtree S that satisfies Definition 13 (1),
(2). If S fails to satisfy (3), then two nodes in the derivation chain
have the same label. An essential expansion tree S ′ can be obtained
from S by identifying pairs of nodes that have the same label.

By Definition 14, S ′ has a pre-stratification S p. We replace S ′ by
S p where we attach sub expansion trees to leafs of S p as follows.
Consider a leaf l of S p that is labeled with λ. If λ is a leaf of S ′,
then connect the sub expansion tree rooted at λ to l. Otherwise,
λ = r0(s) and S ′ has a bottom leaf labeled ri(s), i ≤ 1. Apply the
rule ri(y) → r0(y) to l, and attach the new child with label ri(s) to
the sub expansion tree rooted in the original bottom leaf with label
ri(s).

The repeated application of these reductions terminates. Indeed,
Case 2 may introduce new sub expansion trees with critical root
nodes. Since they are constructed from bottom leafs, each such
tree is a subtree of the tree S that has been replaced, and is thus of
strictly smaller size. Termination is shown be considering the mul-
tiset of the sizes of all sub expansion trees with critical root node,
ordered under the standard multiset order [5]. Thus, we obtain the
claimed expansion tree T2.

Third, we transform T2 into an expansion tree T3 for Σ ↑ π. The
transformation proceeds in various iterative steps.

Suppose that T2 contains two nodes c and d that have complex
rules, c is above d and s(c) < s(d). We can choose c and d such that
all nodes e between c and d are expanded by non-complex rules.
Indeed, if some such edge e would be expanded with a complex
rule, then either s(e) > s(c) or s(e) < s(d), so that it could be used
instead of one of the chosen nodes. The pair of nodes c and d is
called a critical pair.

We proceed by finding and replacing certain 〈i, j〉-trees in T2

with their inverted form. Select a critical pair of nodes c and d.
The path between c and d induces an expansion tree S that satis-
fies Definition 13 (1), (2). Let S ′ be the expansion tree constructed
from S by pushing down (and merging) all applications of rules
qi(y) → ri(y), as done for critical nodes in the second step of this
transformation above. Then S ′ only uses rules of stratum s(c), fol-
lowed by an eventual use of a rule of form rs(d)(y) → rs(c)(y) and



the final application of rule(c). An essential expansion tree S ′′

is obtained from S ′ by identifying nodes with the same label un-
til condition (3) of Definition 15 is met. Then S ′′ is an essential
〈s(d), s(c)〉-tree.

We thus can invert S ′′ to find an 〈s(c), s(d)〉-tree S i as in Defini-
tion 15. We now replace the original expansion tree S using S i as
follows. The root of S has a label qs(c)(s) while the root of S i has a
label qs(d)(s). A new application of rule qs(d)(y)→ qs(c)(y) is used to
attach S i to T2. Likewise, for every leaf l of S i labeled by an atom
of the form qi(s), there is a leaf of S of the form q j(s). Hence, T2

contains an expansion tree for q j(s) that can be attached to l through
an application of q j(y) → qi(y). By the condition on multiplicities
of leafs in Definition 15, this is possible in such a way that no sub
expansion tree of T2 is attached to more than one leaf node of S i.

To show termination, we use a multiset order based on paths,
defined as follows. A node n of an expansion tree is complex if
rule(n) is. If n is complex, then rule(n) ∈ Σ〈π(k)〉 for a unique k;
we write s(n) to denote this k. Now every path η = n0 → . . .→ n` is
associated with the sequence s(η) = s(m0), . . . , s(mh) of strata of the
complex nodes in η (in order). Such sequences of natural numbers
are ordered lexicographically based on the inverse order of numbers
(i.e. smaller sequences have higher strata first). Now with every
expansion tree S considered herein, we associate a multiset s(S ) of
the sequences s(η) for all paths η of S . Such multisets are ordered
by the standard multiset extension of the order on sequences s(η)
[5].

Every replacement of a sub expansion tree S as above leads to
a decrease of s(T2). Indeed, using notation as above, only paths
that included node c are affected. According to Definition 13, the
root node m of S i is complex and by Definition 15, it must be of
stratum s(m) = s(d). Let ` be the number of complex nodes above c
(before the replacement) viz. above m (after the replacement). Then
the set of paths through node c is replaced by a set of new paths
through node m. The associated sequences of strata for these paths
agree up to position `. Thereafter, the paths before the replacement
have s(c) while the paths after the replacement have s(d). Since
s(c) < s(d), the paths in the replacement are all strictly smaller
than the original ones, i.e., we found a sub-multiset of elements
in the multiset s(T2) that was replaced by a (possibly larger) sub-
multiset of strictly smaller elements. Hence the value of s(T2) has
decreased.

To show termination, we need to show that there is no infinite
decreasing sequence of multisets s(T2). This is not true in gen-
eral: there are infinite decreasing sequences of sequences of strata
in their lexicographic order. However, in our case, the length of
these sequences is bounded and hence the set of possible sequences
is finite, which suffices for termination. To see that the length of se-
quences is bounded, observe that the multiset of leaf nodes of T2

cannot grow in a replacement step. This is an easy consequence of
the respective condition in Definition 15. Therefore, the total num-
ber of complex nodes that can be obtained in the transformation
is bounded since every new complex node has at least two children
where the total number of leafs is bounded. This shows the claimed
finite bound for sequences of strata.

To conclude, we have shown that the iterative replacement of
critical edge pairs in T2 terminates. Thereafter, T2 can still contain
applications of rules qi(y) → r j(y) < Σ ↑ π, but not between com-
plex nodes. Accordingly, they can be eliminated by pushing them
upwards or downwards as illustrated for critical nodes above.

Thus we obtain an expansion tree T3 using rules as in Σ ↑ π. T3

can easily be turned into an expansion tree as required by Defini-
tion 12 by extension every leaf node of the form qi(s) by applying
rules qdb(x)→ q0(x) and q0(x)→ qi(x).


