Stage-oe-small.jpg

Achim Rettinger: Unterschied zwischen den Versionen

Aus Aifbportal
Wechseln zu:Navigation, Suche
Zeile 2: Zeile 2:
 
|Vorname=Achim
 
|Vorname=Achim
 
|Nachname=Rettinger
 
|Nachname=Rettinger
|Akademischer Titel=Dr.
+
|Akademischer Titel=Privatdozent Dr. rer. nat.
 
|Forschungsgruppe=Web Science und Wissensmanagement
 
|Forschungsgruppe=Web Science und Wissensmanagement
|Stellung=Akademischer Rat
+
|Stellung=Hochschuldozent
 
|Ehemaliger=False
 
|Ehemaliger=False
 
|Telefon=0721 608 46592
 
|Telefon=0721 608 46592
 
|Email=rettinger(at)kit.edu
 
|Email=rettinger(at)kit.edu
|Raum=5A-10
 
 
|Hinweis DE=Nach Vereinbarung.
 
|Hinweis DE=Nach Vereinbarung.
 
|Bild=are-passbild-2015-hoch-sw-lowres.jpg
 
|Bild=are-passbild-2015-hoch-sw-lowres.jpg

Version vom 17. Januar 2017, 09:29 Uhr


Are-passbild-2015-hoch-sw-lowres.jpg

Privatdozent Dr. rer. nat. Achim Rettinger

Ehemaliges Mitglied



Email: rettinger(at)kit.edu

Ehemals: Hochschuldozent
in Forschungsgruppe: Web Science und Wissensmanagement


Achim Rettinger ist als KIT-Nachwuchsgruppenleiter am AIFB tätig, wo er das Adaptive Data Analytics Team leitet.

Research Statement: Information retrieval and machine learning approaches are running in the background of most of the applications we use in our daily digital life. The assistance they are providing is manifold, but relies only on a set of core information processing tasks, the most prominent ones being retrieval, classification, clustering and prediction of information.
How content with heterogeneous representations, like text documents in different languages or text and images found online and on social media, can be processed jointly is the focus of this research group.
While the human brain has the ability to integrate disparate multi-sensory information into a coherent percept that benefits from all senses (hearing, seeing,…) current information processing technologies lack this ability.
By combining machine learning with natural language processing and semantic technologies we fuse complementing information from all sources such as text, images and knowledge graphs. This enables cross-modal data analytics and provides a more holistic view than each modality separately.

Mission: Learning of knowledge representations and mapping functions that fuse information from multiple heterogenous data sources in order to investigating how heterogenous information interdepends.

Data sources:

  • Text, Social Media Language
  • Images, Videos, Speech
  • Knowledge Graphs, Structured information

Methods:

  • Latent-variable Models
  • Knowledge Graph grounding and embedding
  • Text linking and embedding

Applications:

  • Media retrieval, analysis and recommendation
  • Social Aspects
  • Healthcare Analytics
Publikationen
Publikationen


Aktivitäten
Mitglied im Organisationskomitee des xLiTe: Cross-Lingual Technologies NIPS 2012 Workshop.