Stage-oe-small.jpg

Article3133: Unterschied zwischen den Versionen

Aus Aifbportal
Wechseln zu:Navigation, Suche
 
Zeile 16: Zeile 16:
 
}}
 
}}
 
{{Article
 
{{Article
|Referiert=True
+
|Referiert=Ja
 
|Title=Linked Data Quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO
 
|Title=Linked Data Quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO
|Year=2017
+
|Year=2018
 
|Journal=Semantic Web Journal
 
|Journal=Semantic Web Journal
 +
|Volume=9
 +
|Number=2
 +
|Pages=77–129
 
|Publisher=IOS Press
 
|Publisher=IOS Press
 +
|Note=https://dblp.org/rec/bibtex/journals/semweb/FarberBMR18
 
}}
 
}}
 
{{Publikation Details
 
{{Publikation Details
 
|Abstract=In recent years, several noteworthy large, cross-domain and openly available knowledge graphs (KGs) have been created. These include DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Although extensively in use, these KGs have not been subject to an in-depth comparison so far. In this survey, we provide data quality criteria according to which KGs can be analyzed and analyze and compare the above mentioned KGs. Furthermore, we propose a framework for finding the most suitable KG for a given setting.
 
|Abstract=In recent years, several noteworthy large, cross-domain and openly available knowledge graphs (KGs) have been created. These include DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Although extensively in use, these KGs have not been subject to an in-depth comparison so far. In this survey, we provide data quality criteria according to which KGs can be analyzed and analyze and compare the above mentioned KGs. Furthermore, we propose a framework for finding the most suitable KG for a given setting.
|Download=KG-Comparison-SWJ-Article.pdf,
+
|Download=KG-Comparison-SWJ2017.pdf
 
|Link=http://km.aifb.kit.edu/sites/knowledge-graph-comparison/
 
|Link=http://km.aifb.kit.edu/sites/knowledge-graph-comparison/
 +
|DOI Name=10.3233/SW-170275
 
|Projekt=SUITE, XLiMe
 
|Projekt=SUITE, XLiMe
|Forschungsgruppe=Web Science und Wissensmanagement
+
|Forschungsgruppe=Web Science
 
}}
 
}}
 
{{Forschungsgebiet Auswahl
 
{{Forschungsgebiet Auswahl

Aktuelle Version vom 17. November 2019, 16:15 Uhr


Linked Data Quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO




Veröffentlicht: 2018

Journal: Semantic Web Journal
Nummer: 2
Seiten: 77–129
Verlag: IOS Press
Volume: 9
Bemerkung: https://dblp.org/rec/bibtex/journals/semweb/FarberBMR18

Referierte Veröffentlichung

BibTeX




Kurzfassung
In recent years, several noteworthy large, cross-domain and openly available knowledge graphs (KGs) have been created. These include DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Although extensively in use, these KGs have not been subject to an in-depth comparison so far. In this survey, we provide data quality criteria according to which KGs can be analyzed and analyze and compare the above mentioned KGs. Furthermore, we propose a framework for finding the most suitable KG for a given setting.

Download: Media:KG-Comparison-SWJ2017.pdf
Weitere Informationen unter: Link
DOI Link: 10.3233/SW-170275

Projekt

SUITEXLiMe



Forschungsgruppe

Web Science


Forschungsgebiet

Wissensrepräsentation, Semantic Web Infrastructure, Ontologiemodellierung, Semantic Web