Stage-oe-small.jpg

Inproceedings3047

Aus Aifbportal
Version vom 18. März 2010, 13:38 Uhr von Uri (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Publikation Erster Autor |ErsterAutorNachname=Lode |ErsterAutorVorname=Clemens }} {{Publikation Author |Rank=2 |Author=Urban Richter }} {{Publikation Author |Ra…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche


Adaption of XCS to Multi-Learner Predator/Prey Scenarios


Adaption of XCS to Multi-Learner Predator/Prey Scenarios



Published: 2010 Juli

Buchtitel: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2010)
Verlag: ACM SIGEVO

Referierte Veröffentlichung

BibTeX

Kurzfassung
Learning classifier systems (LCSs) are rule-based evolutionary reinforcement learning systems. Today, especially variants of Wilson’s extended classifier system (XCS) are widely applied for machine learning. Despite their widespread application, LCSs have drawbacks, e. g., in multi-learner scenarios, since the Markov property is not fulfilled.

In this paper, LCSs are investigated in an instance of the generic homogeneous and non-communicating predator/prey scenario. A group of predators collaboratively observe a (randomly) moving prey as long as possible, where each predator is equipped with a single, independent XCS. Results show that improvements in learning are achieved by cleverly adapting a multi-step approach to the characteristics of the investigated scenario. Firstly, the environmental reward function is expanded to include sensory information. Secondly, the learners are equipped with a memory to store and analyze the history of local actions and given payoffs.


Projekt

OCCSOCCS (Phase III)



Forschungsgruppe

Effiziente Algorithmen


Forschungsgebiet

Organic Computing, Maschinelles Lernen, Agentensysteme