Home |  ENGLISH |  Kontakt |  Impressum |  Anmelden |  KIT

Article989

Aus Aifbportal

Wechseln zu: Navigation, Suche

(This page contains COinS metadata)

Transforming Arbitrary Tables into F-Logic Frames with TARTAR


Aleksander PivkPhilipp CimianoYork Sure, Matjaz Gams, Vladislav Rajkovic, Rudi Studer



Veröffentlicht: 2007

Journal: Data & Knowledge Engineering (DKE)
Nummer: 3
Seiten: 567-595
Verlag: Elsevier
Volume: 60

Referierte Veröffentlichung
BibTex-ID: tartar-dke BibTeX




Kurzfassung
The tremendous success of the World Wide Web is countervailed by efforts needed to search and find relevant information. For tabular structures embedded in HTML documents typical keyword or link-analysis based search fails. The Semantic Web relies on annotating resources such as documents by means of ontologies and aims to overcome the bottleneck of finding relevant information. Turning the current Web into a Semantic Web requires automatic approaches for annotation since manual approaches will not scale in general. Most efforts have been devoted to automatic generation of ontologies from text, but with quite limited success. However, tabular structures require additional efforts, mainly because understanding of table contents requires a table structures comprehension task and a semantic interpretation task, which exceeds in complexity the linguistic task. The focus of this paper is on automatic transformation and generation of semantic (F-Logic) frames from table-like structures. The presented work consists of a methodology, an accompanying implementation (called TARTAR) and a thorough evaluation. It is based on a grounded cognitive table model which is stepwise instantiated by the methodology. A typical application scenario is the automatic population of ontologies to enable query answering over arbitrary tables (e.g. HTML tables).

ISSN: 0169-023X
VG Wort-Seiten: 44
Weitere Informationen unter: Link

Projekt

STI2SmartWebDot.KomSEKT



Forschungsgruppe

Web Science und Wissensmanagement


Forschungsgebiet
Semantic Web, Web Science, Ontology Learning, Semantische Annotation, Semantische Annotierung, Informationsextraktion


-->