Home |  DEUTSCH |  Contact |  Imprint |  Login |  KIT

Inproceedings3446

Aus Aifbportal

Wechseln zu: Navigation, Suche

(This page contains COinS metadata)

Run-Time Parameter Selection and Tuning for Energy Optimization Algorithms




Published: 2014

Buchtitel: Parallel Problem Solving from Nature–PPSN XIII
Seiten: 80-89
Verlag: Springer International Publishing
Referierte Veröffentlichung
BibTeX




Kurzfassung
Energy Management Systems (EMS) promise a great potential to enable the sustainable and efficient integration of distributed energy generation from renewable sources by optimization of energy flows. In this paper, we present a run-time selection and meta-evolutionary parameter tuning component for optimization algorithms in EMS and an approach for the distributed application of this component. These have been applied to an existing EMS, which uses an Evolutionary Algorithm. Evaluations of the component in realistic scenarios show reduced run-times with similar or even improved solution quality, while the distributed application reduces the risk of over-confidence and over-tuning.


Projekt

IZEUS


Verknüpfte Tools

Energy Smart Home Lab, Organic Smart Home


Forschungsgruppe

Effiziente Algorithmen


Forschungsgebiet
Evolutionäre Algorithmen, Energieinformatik, Organic Computing


-->