Stage-oe-small.jpg

Thema4160

Aus Aifbportal
Wechseln zu:Navigation, Suche



Automated/Autonomous Driving - Prediction and Planning in the Context of Cooperative Driving




Informationen zur Arbeit

Abschlussarbeitstyp: Bachelor, Master
Betreuer: Karl Kurzer
Forschungsgruppe: Angewandte Technisch-Kognitive Systeme
Partner: FZI Forschungszentrum Informatik
Archivierungsnummer: 4160
Abschlussarbeitsstatus: Offen
Beginn: 09. April 2019
Abgabe: unbekannt

Weitere Informationen

Automatisierte, kooperative Fahrzeuge müssen im Straßenverkehr in einer hochgradig dynamischen, interagierenden und nur unvollständig wahrnehmbaren Umwelt Entscheidungen treffen.Bisherige Ansätze beschränken sich meist darauf, Situationen allein aus einer egozentrischen Perspektive heraus, ohne Kooperationsaspekte mit, beziehungsweise zwischen anderen Verkehrsteilnehmern zu berücksichtigen.

AUFGABEN

Für die Prädiktion und Planung von kooperativen Fahrmanövern kommen Such- und Lernverfahren zum Einsatz welche die Interdependenzen der einzelnen Verkehrsteilnehmer berücksichtigten, sowie die Systemzustände probabilistisch modellieren.

WIR BIETEN

  • ein interdisziplinäres Forschungsumfeld mit Partnern aus Wissenschaft und Wirtschaft
  • eine konstruktive Zusammenarbeit mit hellen, motivierten Mitarbeitern
  • eine angenehme Arbeitsatmosphäre

WIR ERWARTEN

  • Wissen auf dem Gebiet der Künstlichen Intelligenz (insbesondere Such- und Lernverfahren), Spieltheorie oder verwandten Bereichen
  • Fähigkeit sowohl State of the Art, als auch experimentelle Algorithmen zu implementieren
  • Gute C++ (C++11, STL, etc.) oder Python Kenntnisse
  • Fundierte Englischkenntnisse
  • Hohe Kreativität und Produktivität
  • Erfahrungen mit Such- und Lernverfahren wie z.B. Monte Carlo Tree Search/Reinforcement Learning sind von Vorteil

ERFORDERLICHE UNTERLAGEN

  • aktueller Notenauszug
  • tabellarischer Lebenslauf

KONTAKT

Karl Kurzer