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Abstract. We present a new algorithm for reasoning in the description logic
SHIQ, which is the most prominent fragment of the Web Ontology Language
OWL. The algorithm is based on ordered binary decision diagrams (OBDDs) as
a datastructure for storing and operating on large model representations. We thus
draw on the success and the proven scalability of OBDD-based systems.To the
best of our knowledge, we present the very first algorithm for using OBDDs for
reasoning with general Tboxes.

1 Introduction

In order to leverage intelligent applications for the Semantic Web, scalable reasoning
systems for the standardised Web Ontology Language OWL1 are required. OWL is
essentially based on description logics (DLs), with the DL known asSHIQ currently
being its most prominent fragment.
State-of-the art OWL reasoners, such as Pellet,2 RacerPro3 or KAON24 already achieve
an efficiency which makes them suitable for practical use, howeverthey still fall short
of the scalability requirements needed for large-scale applications. The prominent rea-
soners are essentially based on two differing approaches to reasoning with DLs: While
systems such as Pellet and RacerPro are based on tableau algorithms, KAON2 uses a
resolution-based approach. The development of such fundamentally different reasoning
approaches has furthered the progress in scalable OWL reasoning substantially, both by
means of cross-fertilisation between the different systems, and by showing that differ-
ent algorithms perform differently depending on the knowledge bases and the reasoning
tasks [2].
In this paper, we present a new promising algorithm for reasoning withSHIQ, which
is based on ordered binary decision diagrams (OBDDs) as a datastructure for storing
and operating on large model representations [3–5]. The rationale behind the approach
is the fact that OBDD-based systems feature impressive efficiency on large amounts of
data, e.g. for model checking for hard- and software verification [6]. Our algorithm is

1 http://www.w3.org/2004/OWL/, see also [1].
2 http://pellet.owldl.com/
3 http://www.racer-systems.com/de/index.phtml?lang
4 http://kaon2.semanticweb.org/



indeed based on a reduction ofSHIQ reasoning to standard OBDD-algorithms, and
thus allows to draw on the available strong algorithms and implementations for OBDDs,
such as JavaBDD5.
The general idea of using OBDDs for reasoning with description logics is not entirely
new, and some related results have already been presented in[7]. Indeed, a closer look
reveals that certain temporal logics to which OBDDs have been applied (e.g. CTL [5])
are closely related to modal logics which in turn are known tohave strong structural
similarities to DLs [8]. Hence, it seems almost natural to apply OBDD-based techniques
for DL reasoning as well. The results from [7], however, are still rather restricted since
they encompass only terminological reasoning in the basic DL ALC without general
Tboxes.
In essence, OBDDs can be used to represent arbitrary Booleanfunctions. These Boolean
functions are then interpreted as a kind of compressed encoding of – usually very large
sets of – process states. Model checking and certain manipulations of the state space
can then be done directly on this compressed version withoutunfolding it. In our ap-
proach, we will employ OBDDs in a very similar way for encoding DL interpretations.
However, as DL reasoning is concerned with all possible models, we will show by
model-theoretic arguments that for our purposes it is sufficient to work only with cer-
tain representative models.
A birds eyes’ persepective on our results is as follows:SHIQ knowledge bases can be
reduced equisatisfiably toALCIb knowledge bases (Section 5). A sound and complete
decision procedure based on so-called domino interpretations provides the next step
(Section 3). This procedure can in turn be realised by manipulating Boolean functions
(Section 4), which establishes the link with OBDD-algorithms.
We have chosen to present the material in a somewhat different order as it should make
the paper more accessible: Preliminaries are given in Section 2. Then in Section 3 we
establish model theoretic results for the description logicALCIb, provide the decision
procedure and show that it is sound and complete. In Section 4, we establish the link
with operations on Boolean functions. Section 5 provides and justifies a way of trans-
forming a knowledge base in the DLSHIQ into an equisatisfiableALCIb knowledge
base. Finally, we conclude and give an outlook to future workin Sections 6 and 7.

2 Preliminaries

In this section we will introduce some auxiliary constructsand propositions as well as
all the basic DL notions needed in this paper.

2.1 The Description LogicSHIQb

We start by recalling some basic definitions of DLs (see [9] for a comprehensive treat-
ment of DLs) and introducing our notation. We define a rather expressive description
logic SHIQb that extendsSHIQ with restricted Boolean role expressions [10]. We
will not considerSHIQb knowledge bases, but the DL serves as a convenient umbrella

5 http://javabdd.sourceforge.net



logic for the DLs used in this paper. Also, we do not consider assertional knowledge,
and hence will only introduce terminological axioms here.

Definition 1. A terminologicalSHIQb knowledge base is based on two disjoint sets
of concept namesNC and role namesNR. A set ofatomic rolesR is defined asR ≔
NR ∪ {R− | R ∈ NR}. In addition, we setInv(R) ≔ R− and Inv(R−) ≔ R, and we will
extend this notation also to sets of atomic roles. In the sequel, we will use the symbols
R,S to denote atomic roles, if not specified otherwise.
The set ofBoolean role expressionsB is defined as follows:

BF R | ¬B | B ⊓ B | B ⊔ B.

We use⊢ to denote standard Boolean entailment between sets of atomic roles and role
expressions. Given a setR of atomic roles, we inductively define:

– For atomic roles R,R ⊢ R if R∈ R, andR 0 R otherwise,
– R ⊢ ¬U if R 0 U, andR 0 ¬U otherwise,
– R ⊢ U ⊓ V if R ⊢ U andR ⊢ V, andR 0 U ⊓ V otherwise,
– R ⊢ U ⊔ V if R ⊢ U or R ⊢ V, andR 0 U ⊔ V otherwise.

A Boolean role expression U isrestrictedif ∅ 0 U. The set of all restricted role ex-
pressions is denotedT, and the symbols U and V will be used throughout this paper
to denote restricted role expressions. ASHIQb Rbox is a set of axioms of the form
U ⊑ V (role inclusion axiom) orTra(R) (transitivity axiom). The set of non-simple roles
(for a given Rbox) is inductively defined as follows:

– If there is an axiomTra(R), then R is non-simple.
– If there is an axiom R⊑ S with R non-simple, then S is non-simple.
– If R is non-simple, thenInv(R) is non-simple.

A role issimpleif it is atomic and not non-simple.6

Based on aSHIQb Rbox, the set ofconcept expressionsC is defined as follows:

– NC ⊆ C, ⊤ ∈ C, ⊥ ∈ C,
– if C,D ∈ C, U ∈ T, R ∈ R a simple role, and n a non-negative integer, then¬C,

C ⊓ D, C⊔ D, ∀U.C,∃U.C,≤n R.C, and≥n R.C are also concept expressions.

Throughout this paper, the symbols C, D will be used to denoteconcept expressions. A
SHIQb Tbox is a set ofgeneral concept inclusion axioms(GCIs) of the form C⊑ D.
A SHIQb knowledge base KBis the union of aSHIQb Rbox and an according
SHIQb Tbox.

As mentioned above, we will consider only fragments ofSHIQb. In particular, a
SHIQ knowledge base is aSHIQb knowledge base without Boolean role expres-
sions, and anALCIb knowledge base is aSHIQb knowledge base that contains no
Rbox axioms and no number restrictions (i.e. axioms of the form ≤n R.C or ≥n R.C).
The DLALCIb has first been described by Tobies [10].

6 We will not consider DLs with transitivity and Boolean role expressions, soquestioning the
simplicity of such expressions is not relevant here.



Table 1.Semantics of concept constructors inSHIQb for an interpretationI with domain∆I.

Name SyntaxSemantics
inverse role R− {〈x, y〉 ∈ ∆I × ∆I | 〈y, x〉 ∈ RI}
role negation ¬U {〈x, y〉 ∈ ∆I × ∆I | 〈x, y〉 < UI}
role conjunction U ⊓ V UI ∩ VI

role disjunction U ⊔ V UI ∪ VI

top ⊤ ∆I

bottom ⊥ ∅

negation ¬C ∆I \CI

conjunction C ⊓ D CI ∩ DI

disjunction C ⊔ D CI ∪ DI

univ. restriction ∀U.C {x ∈ ∆I | 〈x, y〉 ∈ UI impliesy ∈ CI}
exist. restriction ∃U.C {x ∈ ∆I | for somey ∈ ∆I , 〈x, y〉 ∈ UI andy ∈ CI}
qualified number≤n R.C {x ∈ ∆I | #{y ∈ ∆I | 〈x, y〉 ∈ RI andy ∈ CI} ≤ n}
restriction ≥n R.C {x ∈ ∆I | #{y ∈ ∆I | 〈x, y〉 ∈ RI andy ∈ CI} ≥ n}

Definition 2. An interpretationI consists of a set∆I calleddomain(the elements of it
being calledindividuals) together with a function·I mapping

– individual names to elements of∆I,
– concept names to subsets of∆I, and
– role names to subsets of∆I × ∆I.

The function·I is inductively extended to role and concept expressions as shown in
Table 1. An interpretationI satisfiesan axiomϕ if we find thatI |= ϕ:

– I |= U ⊑ V if UI ⊆ VI,
– I |= Tra(R) if RI is a transitive relation,
– I |= C ⊑ D if CI ⊆ DI.

An interpretationI satisfiesa knowledge baseKB (we then also say thatI is a model
of KB and writeI |= KB) if it satisfies all axioms ofKB. A knowledge baseKB is
satisfiableif it has a model. Two knowledge bases areequivalentif they have exactly
the same models, and they areequisatisfiableif either both are unsatisfiable or both are
satisfiable.

For convenience of notation, we abbreviate Tbox axioms of the form⊤ ⊑ C by writing
just C. Statements such asI |= C andC ∈ KB are interpreted accordingly. Note that
arbitrary GCIsC ⊑ D can thus be written as¬C ⊔ D.
Finally, we will often need to access a particular set of quantified and atomic subformu-
lae of a DL concept. These specific parts are provided by the functionP : C→ 2C:

P(C) ≔































P(D) if C = ¬D
P(D) ∪ P(E) if C = D ⊓ E or C = D ⊔ E
{C} ∪ P(D) if C = QU.D with Q∈ {∃,∀,≥n,≤n}
{C} otherwise

We generaliseP to DL knowledge bases KB by definingP(KB) to be the union of the
setsP(C) for all Tbox axiomsC of KB.



2.2 Knowledge Base Transformations

For our further considerations, we will usually express allTbox axioms as single con-
cept expressions as explained above. Given a knowledge baseKB we obtain its negation
normal formNNF(KB) by converting every Tbox concept into its negation normal form
as usual:

NNF(¬⊤) ≔ ⊥

NNF(¬⊥) ≔ ⊤

NNF(C) ≔ C if C ∈ {A,¬A,⊤,⊥}
NNF(¬¬C) ≔ NNF(C)
NNF(C ⊓ D) ≔ NNF(C) ⊓ NNF(D)
NNF(¬(C ⊓ D)) ≔ NNF(¬C) ⊔ NNF(¬D)
NNF(C ⊔ D) ≔ NNF(C) ⊔ NNF(D)
NNF(¬(C ⊔ D)) ≔ NNF(¬C) ⊓ NNF(¬D)
NNF(∀U.C) ≔ ∀U.NNF(C)
NNF(¬∀U.C) ≔ ∃U.NNF(¬C)
NNF(∃U.C) ≔ ∃U.NNF(C)
NNF(¬∃U.C) ≔ ∀U.NNF(¬C)
NNF(≤n R.C) ≔ ≤n R.NNF(C)
NNF(¬≤n R.C) ≔ ≥(n+ 1)R.NNF(C)
NNF(≥n R.C) ≔ ≥n R.NNF(C)
NNF(¬≥n R.C) ≔ ≤(n− 1)R.NNF(C)

It is well known that KB andNNF(KB) are equivalent. We will usually require another
normalisation step that simplifies the structure of KB byflatteningit to a knowledge
baseFLAT(KB). This is achieved by transforming KB into negation normal form and
exhaustively applying the following transformation rules:

– Select an outermost occurrence ofQU.D in KB, such that Q∈ {∃,∀,≥n,≤n} andD
is a non-atomic concept.

– Substitute this occurrence withQU.F whereF is a fresh concept name (i.e. one not
occurring in the knowledge base).

– If Q∈ {∃,∀,≥n}, add¬F ⊔ D to the knowledge base.
– If Q= ≤n addNNF(¬D) ⊔ F to the knowledge base.

Obviously, this procedure terminates yielding flat knowledge baseFLAT(KB) all Tbox
axioms of which are Boolean expressions over formulae of theform ⊤, ⊥, A, ¬A, or

QU.A with A an atomic concept name.

Proposition 1. AnySHIQb knowledge baseKB is equisatisfiable toFLAT(KB).

Proof. We first prove inductively that every model ofFLAT(KB) is a model of KB.
Let KB′ be an intermediate knowledge base and let KB′′ be the result of applying one
single substitution step to KB′ as described in the above procedure. We now show that
any modelI of KB′′ is a model of KB′. Let QU.D be the term substituted in KB′. Note
that after every substitution step, the knowledge base is still in negation normal form.
Thus, we see that QU.D occurs outside the scope of any negation or quantifier in an



KB′-axiomE′, the same is the case forQU.F in the respective KB′′-axiomE′′ obtained
after the substitution. Hence, if we show that (QU.F)I ⊆ ( QU.D)I, we can conclude
thatE′′I ⊆ E′I. FromI being a model of KB′′ and thereforeE′′I = ∆I, we would then
easily derive thatE′I = ∆I and hence find thatI |= KB′, as all other axioms from KB′

are trivially satisfied due to their presence in KB′′.
It remains to show (QU.F)I ⊆ ( QU.D)I. We distinguish four cases:

– Q= ∃
Consider aδ ∈ (∃U.F)I. Then exists an individualδ′ ∈ ∆I with 〈δ, δ′〉 ∈ UI and
δ′ ∈ FI. As a consequence of the KB′′ axiom¬F ⊔D (being equivalent to the GCI
F ⊑ D), we find thatδ′ ∈ DI as well, leading straightforwardly to the conclusion
δ ∈ (∃U.D)I. Hence we have (∃U.F)I ⊆ (∃U.D)I.

– Q= ∀
Consider aδ ∈ (∀U.F)I. This implies for every individualδ′ ∈ ∆I with 〈δ, δ′〉 ∈ UI

that δ′ ∈ FI. Again, the KB′′ axiom¬F ⊔ D entailsδ′ ∈ DI for every suchδ′,
leading toδ ∈ (∀U.D)I. Hence, we have (∀U.F)I ⊆ (∀U.D)I.

– Q= ≥n
Consider aδ ∈ (≥n U.F)I. This means there are distinct individualsδ1, . . . , δn ∈ ∆

I

with 〈δ, δi〉 ∈ UI andδi ∈ FI for 1 ≤ i ≤ n. As a consequence of the KB′′ axiom
¬F ⊔ D, we find thatδi ∈ DI for all then distinctδi , and concludeδ ∈ (≥n U.F)I.
Hence, we have (≥n U.F)I ⊆ (≥n U.D)I.

– Q= ≤n
Consider aδ ∈ (≤n U.F)I. This implies that the number of individualsδ′ ∈ ∆I with
〈δ, δ′〉 ∈ UI andδ′ ∈ FI is not greater thann. By the KB′′ axiom NNF(¬D) ⊔ F
(being equivalent to the GCID ⊑ F), we knowDI ⊆ FI. Thus, also the number of
individualsδ′ ∈ ∆I with 〈δ, δ′〉 ∈ UI andδ′ ∈ DI cannot be greater thann, leading
to the conclusionδ ∈ (≤n U.D)I. Hence, we have (≤n U.F)I ⊆ (≤n U.D)I.

Every modelI of KB can be transformed into a modelJ of FLAT(KB) by following the
flattening process described above: Let KB′′ result from KB′ by substituting QU.D by

QU.F and adding the respective axiom. Furthermore, letI′ be a model of KB′. Now we
construct the interpretationI′′ as follows:FI

′′

≔ ( QU.D)I
′

and for all other concept
and role namesN we setNI

′′

≔ NI
′

. ThenI′′ is a model of KB′′. �

3 Building Models from Domino Sets

In this section, we introduce the notion of a set ofdominoesfor a given terminological
ALCIb knowledge base. Intuitively, each domino abstractly represents two individ-
uals in anALCIb interpretation, based on their concept properties and mutual role
relationships. We will see that suitable sets of such two-element pieces suffice to recon-
struct models ofALCIb, which also reveals certain model theoretic properties of this
not so common DL. In particular, every satisfiableALCIb Tbox admits tree-shaped
models. This result is rather a by-product of our main goal ofdecomposing models into
unstructured sets of local domino components, but it explains why our below construc-
tions have some similarity with common approaches of showing tree-model properties
by “unravelling” models.



After introducing the basics of domino representation, we present an algorithm for de-
ciding satisfiability of anALCIb terminology based on sets of dominoes.

3.1 From Interpretations to Dominoes

We now introduce the basic notion of a domino set, and its relationship to interpreta-
tions. Given a DL language with conceptsC and rolesR, adominois an arbitrary triple
〈A,R,B〉, whereA,B ⊆ C andR ⊆ R. In the following, we will always assume a fixed
language and refer to dominoes over that language only.
We now formalise the idea of deconstructing an interpretation into a set of dominoes.

Definition 3. Given an interpretationI = 〈∆I, ·I〉, and a setC ⊆ C of concept expres-
sions, thedomino projectionof I w.r.t.C, denoted byπC(I) is the set that contains for
all δ, δ′ ∈ ∆I the triple〈A,R,B〉 with

– A = {C ∈ C | δ ∈ CI},
– R = {R ∈ R | 〈δ, δ′〉 ∈ RI}
– B = {C ∈ C | δ′ ∈ CI}.

It is easy to see that domino projections do not faithfully represent the structure of
the interpretation that they were constructed from. But as we will see below, domino
projections capture enough information to reconstruct models of a knowledge base KB,
as long asC is chosen to contain at leastP(KB). For this purpose, we now introduce the
inverse construction of interpretations from arbitrary domino sets.

Definition 4. Given a setD of dominoes, the induceddomino interpretationI(D) =
〈∆I, ·I〉 is defined as follows:

1. ∆I consists of all nonempty finite words overD where, for each pair of subsequent
letters〈A,R,B〉 and〈A′,R′,B′〉 in a word, we haveB = A′.

2. For a wordδ = 〈A1,R1,A2〉〈A2,R2,A3〉 . . . 〈Ai−1,Ri−1,Ai〉 and a concept name
A ∈ NC, we definetail(δ) ≔ Ai , and setδ ∈ AI iff A ∈ tail(δ),

3. For a role name R∈ NR, we set〈δ1, δ2〉 ∈ RI if either

δ2 = δ1〈A,R,B〉 with R∈ R or δ1 = δ2〈A,R,B〉 with Inv(R) ∈ R.

We are now ready to show that certain domino projections contain enough information
to reconstruct models of a knowledge base.

Proposition 2. Consider a setC ⊆ C of concept expressions, and an interpretationJ ,
and letK ≔ I(πC(J)) denote the interpretation of the domino projection ofJ w.r.t.C.
Then, for anyALCIb concept expression C∈ C with P(C) ⊆ C, we have thatJ |= C
iff K |= C.
Especially, for anyALCIb knowledge baseKB,J |= KB iff I(πP(KB)(J)) |= KB.

Proof. We first show the following: Given anyJ-individualδ andK-individual ǫ such
that tail(ǫ) = {D ∈ C | δ ∈ DJ }, we find thatǫ ∈ CK iff δ ∈ CJ . Clearly, the overall
claim follows from that statement using the observation that a suitableδ ∈ ∆K must



exist for all ǫ ∈ ∆K and vice versa. We proceed by induction over the structure ofC,
noting thatP(C) ⊆ C impliesP(D) ⊆ C for any subconceptD of C.
The base caseC ∈ NC is immediately satisfied by our assumption on the relationship of
δ andǫ. For the induction step, we first note that the caseC ∈ {⊤,⊥} is also trivial. For
C = ¬D andC = D ⊓ D′ as well asC = D ⊔ D′, the claim follows immediately from
the induction hypothesis forD andD′.
Next consider the caseC = ∃U.D, and assume thatδ ∈ CJ . Hence there is someδ′ ∈ ∆J

such that〈δ, δ′〉 ∈ UJ andδ′ ∈ DJ . Then the pair〈δ, δ′〉 generates a domino〈A,R,B〉
and∆K constainsǫ′ = ǫ〈A,R,B〉. 〈δ, δ′〉 ∈ UJ impliesR ⊢ U, and hence〈ǫ, ǫ′〉 ∈ UK .
Applying the induction hypothesis toD, we concludeǫ′ ∈ DK . Now ǫ ∈ CK follows
from the construction ofK .
For the converse, assume thatǫ ∈ CK . Hence there is someǫ′ ∈ ∆K such that〈ǫ, ǫ′〉 ∈
UK andǫ′ ∈ DK . By the definition ofK , there are two possible cases:

– ǫ′ = ǫ〈tail(ǫ),R, tail(ǫ′)〉 andR ⊢ U: Consider the twoJ-individuals〈δ′, δ′′〉 gen-
erating the domino〈tail(ǫ),R, tail(ǫ′)〉. Fromǫ′ ∈ DK and the induction hypothesis,
we obtainδ′′ ∈ DJ . Together with〈δ′, δ′′〉 ∈ UJ this impliesδ′ ∈ CJ . Since
C = ∃U.D ∈ C, we also haveC ∈ tail(ǫ) and thusδ ∈ CJ as claimed.

– ǫ = ǫ′〈tail(ǫ′),R, tail(ǫ)〉 and Inv(R) ⊢ U: This case is similar to the first case,
merely exchanging the order of〈δ′, δ′′〉 and using Inv(R) instead ofR.

Finally, the caseC = ∀U.D is dual to the caseC = ∃U.D, and we will omit the repeated
argument. Note, however, that this case does not follow fromthe semantic equivalence
of ∀U.D and¬∃U.¬D, since the proof hinges upon the inclusion of¬D in C which is
not given directly. �

3.2 Constructing Domino Sets

As shown in the previous section, the domino projection of a model of anALCIb
knowledge base can contain enough information to allow for the reconstruction of a
model. This observation can be the basis for designing an algorithm that decides knowl-
edge base satisfiability. Usually (especially in tableau-based algorithms), checking sat-
isfiability amounts to the attempt to construct a (representation of a) model. As we have
seen, in our case it suffices to try to construct just a model’s domino projection. If this
can be done, we know that there is a model, if not, there is none.
In what follows, we first describe the iterative construction of such a domino set from a
given knowledge base, and then show that it is indeed a decision procedure for knowl-
edge base satisfiability.

Definition 5. Consider anALCIb knowledge baseKB, and defineC = P(FLAT(KB)).
SetsDi of dominoes based on concepts fromC are constructed as follows:
D0 consists of all dominoes〈A,R,B〉 satisfying the following conditions:

kb: for every concept C∈ FLAT(KB), we have that
�

D∈A D ⊑ C is a tautology7,

7 Please note that the formulae inFLAT(KB) and inA ⊆ C are such that this can easily be
checked by evaluating the Boolean operators inC as if A was a set of true propositional
variables.



ex: for all ∃U.A ∈ C with A ∈ B andR ⊢ U, we have∃U.A ∈ A,
uni: for all ∀U.A ∈ C with ∀U.A ∈ A andR ⊢ U we have A∈ B.

Given a domino setDi , the setDi+1 consists of all dominoes〈A,R,B〉 ∈ Di satisfying
the following conditions:

delex: for every∃U.A ∈ C with ∃U.A ∈ A, there is some〈A,R′,B′〉 ∈ Di such that
R′ ⊢ U and A∈ B′,

deluni: for every∀U.A ∈ C with ∀U.A < A, there is some〈A,R′,B′〉 ∈ Di such that
R′ ⊢ U but A< B′,

sym: 〈B, Inv(R),A〉 ∈ Di .

The construction of domino setsDi+1 is continued untilDi+1 = Di . The final result
DKB ≔ Di+1 defines thecanonical domino setof KB.
The algorithm returns “unsatisfiable” ifDKB = ∅, and “satisfiable” otherwise.

Note thatD0 is exponential in the size of the knowledge base, such that the iterative
deletion of dominoes must terminate after at most exponentially many steps. Below we
will show that this procedure is indeed sound and complete for checking satisfiability.
Note that, in contrast to tableau procedures, the presentedalgorithm starts with a large
set of dominoes and successively deletes undesired dominoes. Indeed, we will soon
show that the constructed domino set is the largest such set from which a domino model
can be obtained. The algorithm thus may seem to be of little practical use. In Section 4,
we therefore refine the above algorithm to employ Boolean functions as efficient im-
plicit representations of domino sets, such that the efficient computational methods of
OBDDs can be exploited. In the meantime, however, domino sets will serve us well for
showing the required correctness properties.
An important property of domino interpretations constructed from canonical domino
sets is that the (semantic) concept membership of an individual can typically be (syn-
tactically) read from the domino it has been constructed of.

Lemma 1. Consider anALCIb knowledge baseKB with non-empty canonical domino
setDKB , and defineC ≔ P(FLAT(KB)) andI = 〈∆I, ·I〉 ≔ I(DKB). Then for all C∈ C
andδ ∈ ∆I, we have thatδ ∈ CI iff C ∈ tail(δ). Moreover,I |= FLAT(KB).

Proof. First note that the domain ofI is obviously non-empty wheneverDKB is. Now
if C ∈ NC is an atomic concept, the first claim follows directly from the definition ofI.
The remaining cases that may occur inP(FLAT(KB)) areC = ∃U.A andC = ∀U.A.
First consider the caseC = ∃U.A, and assume thatδ ∈ CI. Thus there isδ′ ∈ ∆I with
〈δ, δ′〉 ∈ UI andδ′ ∈ AI. The construction of the domino model admits two possible
cases:

– δ′ = δ〈tail(δ),R, tail(δ′)〉 with R ⊢ U andA ∈ tail(δ′). SinceDKB ⊆ D0, we find that
〈tail(δ),R, tail(δ′)〉 satisfies conditionex, and thusC ∈ tail(δ) as required.

– δ = δ′〈tail(δ′),R, tail(δ)〉 with Inv(R) ⊢ U andA ∈ tailδ′. By conditionsym, DKB

also contains the domino〈tail(δ), Inv(R), tail(δ′)〉, and we can again invokeex to
concludeC ∈ tail(δ).



For the other direction, assume that∃U.A ∈ tail(δ). ThusDKB contains some domino
〈A,R, tail(δ)〉, and bysymalso the domino〈tail(δ),R,A〉. By conditiondelex, the latter
implies thatDKB contains a domino〈tail(δ),R′,A′〉. According todelex, we find that
δ′ = δ〈tail(δ),R′,A′〉 is anI-individual such that〈δ, δ′〉 ∈ UI and δ′ ∈ AI. Thus
δ ∈ (∃U.A)I as claimed.
For the second case, considerC = ∀U.A and assume thatδ ∈ CI, and thusDKB con-
tains some domino〈A,R, tail(δ)〉, and bysym also the domino〈tail(δ),R,A〉. For a
contradiction, suppose that∀U.A < tail(δ). By condition deluni, the latter implies
thatDKB contains a domino〈tail(δ),R′,A′〉. According todeluni, we find thatδ′ =
δ〈tail(δ),R′,A′〉 is an I-individual such that〈δ, δ′〉 ∈ UI and δ′ < DI. But then
δ < (∀U.A)I, which is the required contradiction.
For the other direction, assume that∀U.A ∈ tail(δ). According to the construction of the
domino model, there are two possible cases for elementsδ′ with 〈δ, δ′〉 ∈ UI:

– δ′ = δ〈tail(δ),R, tail(δ′)〉 with R ⊢ U. SinceDKB ⊆ D0, 〈tail(δ),R, tail(δ′)〉 must
satisfy conditionuni, and thusA ∈ tail(δ′).

– δ = δ′〈tail(δ′),R, tail(δ)〉 with Inv(R) ⊢ U. By conditionsym, DKB also contains
the domino〈tail(δ), Inv(R), tail(δ′)〉, and we can again invokeuni to concludeA ∈
tail(δ′).

Thus,A ∈ tail(δ′) for all U-successorsδ′ of δ, and henceδ ∈ (∀U.A)I as claimed.

For the rest of the claim, note that any domino〈A,R,B〉 must satisfy conditionkb.
Using conditionsym, we conclude that for anyδ ∈ ∆I, the axiom

�
D∈tail(δ) D ⊑ C is

a tautology for allC ∈ FLAT(KB). As shown above,δ ∈ DI for all D ∈ tail(δ), and
thusδ ∈ C. Hence every individual ofI is an instance of each concept ofFLAT(KB) as
required. �

The previous lemma shows soundness of our decision algorithm. Conversely, complete-
ness is shown by the following lemma.

Lemma 2. Consider anALCIb knowledge baseKB. If KB is satisfiable, then its
canonical domino setDKB is non-empty.

Proof. Consider any modelI of KB. A simple induction shows that the domino pro-
jectionπP(FLAT(KB))(I) is contained inDKB . In the following, we use〈A,R,B〉 to denote
an arbitrary domino ofπP(FLAT(KB))(I).
For the base case, we must show thatπP(FLAT(KB))(I) ⊆ D0. Let 〈A,R,B〉 to denote
an arbitrary domino ofπP(FLAT(KB))(I) which was generated from elements〈δ, δ′〉. Then
〈A,R,B〉 satisfies conditionkb, sinceδ ∈ CI for anyC ∈ FLAT(KB). The conditions
exanduni are obviously satisfied.
For the induction step, assume thatπP(FLAT(KB))(I) ⊆ Di , and let〈A,R,B〉 again denote
an arbitrary domino ofπP(FLAT(KB))(I) which was generated from elements〈δ, δ′〉.

– For delex, note that∃U.A ∈ A implies δ ∈ (∃U.A)I. Thus there is an individual
δ′′ such that〈δ, δ′′〉 ∈ UI andδ′′ ∈ AI. Clearly, the domino generated by〈δ, δ′′〉
satisfies the conditions ofdelex.



– For deluni, note that∀U.A < A impliesδ < (∀U.A)I. Thus there is an individual
δ′′ such that〈δ, δ′′〉 ∈ UI andδ′′ < AI. Clearly, the domino generated by〈δ, δ′′〉
satisfies the conditions ofdeluni.

– The condition ofsym for 〈A,R,B〉 is clearly satisfied by the domino generated
from 〈δ′, δ〉.

�

Combining the results of Lemma 1, Proposition 1, and Lemma 2,we obtain the main
result of this section:

Theorem 1. A terminologicalALCIb knowledge baseKB is satisfiable iff its canon-
ical domino setDKB is non-empty. Definition 5 thus defines a decision procedure for
satisfiability of suchALCIb knowledge bases.

4 Sets as Boolean Functions

In this section, we explain how large sets (in our case the canonical domino, respec-
tively the intermediate sets during its construction) can be effectively represented im-
plicitly via Boolean functions. This kind of encoding is rather standard within the field
of OBDD-based model checking, and so we will only give a very brief overview on OB-
DDs and not further elaborate on the technical details of their manipulation in this paper.
The way of implementing our approach, however, can be directly derived from the algo-
rithm described in this section, as for every operation to becarried out on the Boolean
functions (namely combining them, permutation of variables, instantiating variables
etc.) there is an algorithmic counterpart for the OBDD-based representation.

4.1 Boolean Functions and Operations

We will start with a brief introduction of how sets can be represented by means of
Boolean functions. This will enable us, given a fixed finite base setS, to represent
every family of setsS ⊆ 2S by a single Boolean function.
A Boolean functionon a setVar of variables is a functionϕ : 2Var → {true, false}.
The underlying intuition is thatϕ(V) computes the truth value of a Boolean formula
based on the assumption that exactly the variables ofV are evaluated totrue. A simple
example are functions of the form~v� for somev ∈ Var, which are defined by setting
~v�(V) ≔ true iff v ∈ V.
Boolean functions over the same set of variables can be combined and modified in
several ways. Firstly, there are the obvious Boolean operators for negation, conjunc-
tion, disjunction, and implication. By slight abuse of notation, we will use the common
(syntactic) operator symbols¬, ∧, ∨, and→ to also represent such (semantic) opera-
tors on Boolean functions. For example, given Boolean functionsϕ andψ, we find that
(ϕ ∧ ψ)(V) = true iff ϕ(V) = true andψ(V) = true. Note that the result of the applica-
tion of∧ results in another Boolean function, and is not to be understood as a syntactic
formula.



Another operation on Boolean functions is existential quantification over a set of vari-
ablesV ⊆ Var, written as∃V.ϕ for some functionϕ. Given an input setW ⊆ Var
of variables, we define (∃V.ϕ)(W) = true iff there is someset V′ ⊆ V such that
ϕ(V′ ∪ (W \ V)) = true. In other words, there must be a way to set truth values of
variables inV such thatϕ evaluates totrue. Universal quantification is defined analo-
gously, and we thus have∀V.ϕ ≔ ¬∃V.¬ϕ as usual. Again, we remark that our use of
∃ and∀ overloads notation, and should not be confused with role restrictions in DL
expressions.

4.2 Ordered Binary Decision Diagrams

Ordered Binary Decision Diagrams are data structures that encode Boolean functions
in an efficient way. Structurally, abinary decision diagram(BDD) is a directed acyclic
graph with two distinguished nodes: thetrue-node and thefalse-node, also called ter-
minal nodes. Moreover, one node without incoming edges is marked as root. All nodes
except the terminal ones are labelled by a variable from the set Var and have ex-
actly two outgoing edges, one of them labelled bytrue and the other byfalse. Every
BDD based on a variable setVar = {v1, . . . , vn} represents ann-ary boolean function
ϕ : 2Var → {true, false} in the following way: for every variable subsetV ⊆ Var, the
valueϕ(V) is determined by a traversal of the BDD: starting from the root node, we
take the variablev by which the actual node is labelled and follow the outgoing edge
that is labelled bytrue if v ∈ V and byfalse if v < V. This is iterated until a terminal
node is reached, which then indicates the result ofϕ(V). A BDD is calledorderedBDD
(short OBDD) if there is a total order on the setVar such that any path in the BDD is
strictly ascending wrt. that order.

For any boolean functionϕ : 2Var → {true, false} and any ordering onVar there is (up
to isomorphy) exactly one minimal OBDD realizing it. Moreover, this minimal rep-
resentative (also calledreducedOBDD, short ROBDD) can be efficiently computed
from any non-minimal OBDD. This enables to efficiently decide whether two ROB-
DDs encode the same Boolean function. In particular, the ROBDD corresponding to
the Boolean function assigningfalseto every input consists of just two nodes: thefalse-
node, marked as root, and the (actually “unused”)true-node. This indicates that the data
compression realiyed by OBDDs enables quick satisfiabilitytests.

While for a fixed order, the OBDD for a certain Boolean formula usually might get ex-
ponentially large, it is often possible to find an order wherethis is not the case. Finding
the optimal order is NP-complete, however, heuristics haveshown to yield good ap-
proximate solutions. Hence OBDDs can be conceived as a beneficial way to represent
Boolean functions in a compressed way.

Moreover, also operations on Boolean functions (such as theaforementioned “point-
wise” negation, conjunction, disjunction, implication aswell as quantification over
propositional variables) can be done directly on the corresponding OBDDs and there
exist fast algorithms for doing so.



4.3 Translating Dominos into Boolean Functions

Now, let KB = FLAT(KB) be a flattenedALCIb knowledge base. The variable setVar
is defined asVar ≔ R ∪

(

P(KB) × {1,2}
)

. We thus obtain an obvious bijection between
setsV ⊆ Var and dominoes over the setP(KB) given as〈A,R,B〉 7→ (A×{1})∪R∪(B×
{2}). Hence, any Boolean function overVar represents a domino set as the collection of
all variable sets for which it evaluates totrue. We can use this observation to rephrase
the construction ofDKB in Definition 5 into an equivalent construction of a function
~KB�.
We represent DL conceptsC and role expressionsU by characteristic Boolean functions
overVar as follows:

~C� ≔































¬~D� if C = ¬D
~D� ∧ ~E� if C = D ⊓ E
~D� ∨ ~E� if C = D ⊔ E
~〈C,1〉� if C ∈ P(KB)

~U� =































¬~V� if U = ¬V
~V� ∧ ~W� if U = V ⊓W
~V� ∨ ~W� if U = V ⊔W
~U� if U ∈ R

We can now define an inferencing algorithm based on Boolean functions.

Definition 6. Given a flattenedALCIb knowledge baseKB = FLAT(KB) and a vari-
able setVar as above, iteratively construct Boolean functions~KB�i as follows:

For i = 0, initialise ~KB�0 ≔ ϕkb ∧ ϕuni ∧ ϕex, where

ϕkb
≔

∧

C∈KB

~C�

ϕuni
≔

∧

∀U.C∈P(KB)

~〈∀U.C,1〉� ∧ ~U�→ ~〈C,2〉�

ϕex
≔

∧

∃U.C∈P(KB)

~〈C,2〉� ∧ ~U�→ ~〈∃U.C,1〉�

For i ≥ 1, iteratively define~KB�i+1 ≔ ~KB�i ∧ ϕdelex
i ∧ ϕdeluni

i ∧ ϕ
sym
i , where

ϕdelex
i ≔

∧

∃U.C∈P(KB)

~〈∃U.C,1〉�→ ∃
(

R ∪ C×{2}
)

.
(

~KB�i ∧ ~U� ∧ ~〈C,2〉�
)

ϕdeluni
i ≔

∧

∀U.C∈P(KB)

~〈∀U.C,1〉�→ ¬∃
(

R ∪ C×{2}
)

.
(

~KB�i ∧ ~U� ∧ ¬~〈C,2〉�
)

ϕ
sym
i (V) ≔ ~KB�i

(

{

〈D,1〉 | 〈D,2〉 ∈ V
}

∪
{

Inv(R) | R ∈ V
}

∪
{

〈D,2〉 | 〈D,1〉 ∈ V
}

)



After constructing a function~KB�i+1, check whether~KB�i+1 = ~KB�i . If this is the
case, the result of the construction is defined as~KB� ≔ ~KB�i . Otherwise, repeat the
second construction step to obtain~KB�i+2.
After the construction has terminated, check whether~KB� = ~false�, i.e. whether
~KB�(V) = false for all V ⊆ Var. If this is the case, return “unsatisfiable”, otherwise
return “satisfiable.”

The above algorithm is a correct procedure for checking consistency of terminological
ALCIb knowledge bases – note that all necessary computation stepscan indeed be
implemented algorithmically: Any Boolean function can be evaluated for a fixed vari-
able inputV, and equality of two functions can (naively) be checked by comparing the
results for all possible input sets (which are finitely many since Var is). Similarly, the
algorithm terminates since the sequence is decreasing w.r.t {V | ~KB�i(V) = true} and
there can be only finitely many Boolean functions overVar.
Concerning soundness and completeness, it is easy to see that the Boolean operations
used in constructing~KB� directly correspond to the set operations in Definition 5, such
that~KB�(V) = true iff V represents a domino inDKB . Thus soundness and complete-
ness is shown by Theorem 1.

5 Polynomial Transformation from SHIQ toALCI b

In this section, we present a stepwise satisfiability-preserving transformation from the
quite common description logicSHIQ to the rather “exotic”ALCIb. This will allow
to apply the presented reasoning algorithm to terminologicalSHIQ knowledge bases.

5.1 FromSHIQ toALCHIQ

As has been shown in [11], everySHIQ knowledge base KB can be converted into
an equisatisfiableALCHIQ knowledge baseΘS(KB), whereALCHIQ denotes the
description logicSHIQ without transitivity axioms. Lettingclos(KB) be the smallest
set containing

– NNF(¬C ⊔ D) for all C ⊑ D contained in the Tbox of KB,
– every subconcept of any concept contained inclos(KB),
– NNF(¬C) for every≤n R.C ∈ clos(KB), and
– ∀S.C for every subrole8 S of a roleR where the Rbox of KB containsTra(S) and

where∀R.C ∈ clos(KB),

this reduction is done as follows:

– remove all axiomsTra(R)
– for every concept∀R.C from clos(KB) and every roleS whereTra(S) is in KB and

S is a subrole ofR, add the axiom∀R.C ⊑ ∀S.(∀S.C).

Moreover,ΘS(KB) is polynomial in the size of KB.

8 It is well known that determining whether a role is a subrole of another canbe done by an easy
syntactic Rbox check.



5.2 FromALCHIQ toALCHI b≤

Now we will show how anyALCHIQ knowledge base KB can be transformed into
anALCHIb≤ knowledge baseΘ≥(KB). In comparison toALCHIQ, ALCHIb≤

disallows≥ role restrictions but features restricted role expressions.
Given anALCHIQ knowledge base KB, theALCHIb≤ knowledge baseΘ≥(KB) is
obtained by first flattening KB and then iteratively applyingthe following procedure to
FLAT(KB) (terminating, if no qualified atleast number restrictions≥ are left):

– Choose an occurrence of≥n R.A in the knowledge base.
– Substitute this occurrence by∃R1.A⊓ . . . ⊓ ∃Rn.A, whereR1, . . . ,Rn are fresh role

names.
– For everyi ∈ {1, . . . ,n}, addRi ⊑ R to the knowledge base’s Rbox.
– For every 1≤ i < k ≤ n, add∀(Ri ⊓ Rk).⊥ to the knowledge base.

Observe that this transformation can be done in polynomial time.9 It remains to show
that KB andΘ≥(KB) are indeed equisatisfiable.

Lemma 3. LetKB be anALCHIQ knowledge base. Then theALCHIb≤ knowledge
baseΘ≥(KB) andKB are equisatisfiable.

Proof. First we prove that every model ofΘ≥(KB) is a model of KB. We do so by an
inductive argument, showing that no additional models can be introduced by any substi-
tution step of the above conversion procedure. Hence, assume KB′′ is an intermediate
knowledge base having a modelI and KB′′ is obtained from KB′ by eliminating the
occurrence of≥n R.A as described above. Considering KB′′, we find due to the KB′′-
axioms∀(Ri ⊓ Rk).⊥ that no two individualsδ, δ′ ∈ ∆I can be connected by more than
one of the rolesR1, . . . ,Rn. In particular, this enforcesδ′ , δ′′, whenever〈δ, δ′〉 ∈ RIi
and〈δ, δ′′〉 ∈ RIj for distinctRi andRj . Now consider an arbitraryδ from the extension
of the concept∃R1.A⊓ . . . ⊓ ∃Rn.A. This assures the existence of individualsδ1, . . . , δn

with 〈δ, δi〉 ∈ RIi andδi ∈ AI for 1 ≤ i ≤ n. By the above observation, all thoseδi are
pairwise distinct. Moreover, the axiomsRi ⊑ R ensure〈δ, δi〉 ∈ RI for all i, hence we
find thatδ ∈ (≥n R.A)I. So we know (∃R1.A⊓ . . .⊓∃Rn.A)I ⊆ (≥n R.C)I. From the fact
that both those concept expressions occur outside any negation or quantifier scope (as
the transformation starts with a flattened knowledge base and does not itself introduce
such nestings) in axiomsD′′ ∈ KB′′ andD′ ∈ KB′ which are equal up to the substituted
occurrence, we can derive thatD′′I ⊆ D′I. Then, fromD′′I = ∆I follows D′I = ∆I

makingD′ valid in I. Apart fromD′, all other axioms from KB′ coincide with those
from KB′′ and hence are naturally satisfied inI. So we find thatI is a model of KB′.
At the end of our inductive chain, we finally arrive atFLAT(KB) which is equisatisfiable
to KB by Proposition 1.
Second, we show thatΘ≥(KB) has a model if KB has. Invoking Proposition 1 once
more, satisfiability of KB entails the existence of a model ofFLAT(KB). Moreover,
every model ofFLAT(KB) can be transformed to a model ofΘ≥KB, as we will show

9 Here we assume a unary encoding of the numbersn. Note that the same can be achieved for a
binary encoding by using fresh roles as binary digits for complex roles,however, we stick to
the easier presentation for the sake of understandability.



using the same inductive strategy as above by doing iteratedmodel transformations
following the syntactic knowledge base conversions. Again, assume KB′′ is an inter-
mediate knowledge base obtained from KB′ by eliminating the occurrence of≥n R.A as
described above and supposeI is a model of KB′. Based onI, we now (nondetermin-
istically) construct an interpretationJ as follows:

– ∆J ≔ ∆I,
– for all C ∈ NC, let CJ ≔ CI,
– for all S ∈ NR \ {Ri | 1 ≤ i ≤ n}, let SJ ≔ SI,
– for everyδ ∈ (≥n R.A)I, choose pairwise distinctǫδ1, . . . , ǫ

δ
n with 〈δ, ǫδi 〉 ∈ RI and

ǫδi ∈ AI (their existence being ensured byδ’s abovementioned concept member-
ship) and letRJi ≔ {〈δ, ǫ

δ
i 〉 | δ ∈ (≥n R.A)I}.

Now, it is easy to see thatJ satisfies all newly introduced axioms of the shape∀(Ri ⊓

Rk).⊥, as theǫδi have been chosen to be distinct for everyδ. Moreover the axiomsRi ⊑ R
are obviously satisfied by construction. Finally, for allδ ∈ (≥n R.A)I the construc-
tion ensuresδ ∈ (∃R1.A ⊓ . . . ⊓ ∃Rn.A)J witnessed by the respectiveǫδi . So we have
(≥n R.A)I ⊆ (∃R1.A ⊓ . . . ⊓ ∃Rn.A)J . Now, again exploiting the fact that both those
concept expressions occur in negation normalized universal concept axiomsD′ ∈ KB′

andD′′ ∈ KB′′ which are equal up to the substituted occurrence, we can derive that
D′I ⊆ D′′J . Then, fromD′I = ∆I follows D′′J = ∆J makingD′′ valid in J . Apart
from D′ (and the newly introduced ones considered above), all otheraxioms from KB′′

coincide with those from KB′ and hence are satisfied inJ , as they do not depend on
theRi whose interpretations are the only ones changed inJ compared toI. So we find
thatJ is a model of KB′′ �

5.3 FromALCHI b≤ toALCI b≤

In the presence of restricted role expressions, role subsumption axioms can be easily
transformed into Tbox axioms, as the subsequent lemma shows. This allows to dispense
with role hierarchies inALCHIb≤ thereby restricting it toALCIb≤.

Lemma 4. For any role names R,S , the Rbox axiom R⊑ S and the Tbox axiom∀(R⊓
¬S).⊥ are equivalent.

Proof. By the semantics’ definition,R ⊑ S holds in an interpretationI exactly if for
every two individualsδ, δ′ with 〈δ, δ′〉 ∈ RI also holds〈δ, δ′〉 ∈ SI. In turn, this is
the case, if and only if there are noδ, δ′ with 〈δ, δ′〉 ∈ RI but 〈δ, δ′〉 < SI (the last
being expressible as〈δ, δ′〉 ∈ (¬S)I). Furthermore, this condition can be formulated by
(R⊓ ¬S)I = ∅. Finally this is equivalent to∀(R⊓ ¬S).⊥. �

Hence, for anyALCHIb≤ knowledge base KB, letΘH (KB) denote theALCIb≤

knowledge base obtained by substituting every Rbox axiomR ⊑ S by the Tbox axiom
∀(R⊓ ¬S).⊥. The above lemma assures equivalence of KB andΘH (KB) (and hence
also their equisatisfiability). Obviously, this reductioncan be done in linear time.



5.4 FromALCI b≤ toALCIF b

The elimination of the at-most concept descriptions≤ from anALCIb≤ knowledge
base is more intricate than the previously described transformations. Therefore, we
subdivide it into two steps: first we eliminate concept expressions of the shape≤n R.C
merely leaving axioms of the form≤1R.⊤ (also known as role functionality statements)
as the only occurrences of number restrictions, hence obtaining aALCIF b knowledge
base. Then, in a second step discussed in the next section, weeliminate all occurrences
of axioms of the shape≤1R.⊤.
So let KB anALCIb≤ knowledge base. We obtain theALCIF b knowledge base
ΘF (KB) by first flattening KB and then successively applying of the following steps
(stopping when no more such occurrence is left):

– Choose an occurrence of the shape≤n R.A which is not a functionality axiom
≤1R.⊤,

– substitute this occurrence by∀(R⊓¬R1⊓ . . .⊓¬Rn).¬A whereR1, . . . ,Rn are fresh
role names,

– for everyi ∈ {1, . . . ,n}, add∀Ri .A as well as≤1Ri .⊤ to the knowledge base.

Obviously, this transformation can be done in polynomial time, again assuming a unary
encoding of then. We now show that this conversion yields an equisatisfiable knowl-
edge base. Structurally, the proof is very similar to that ofLemma 3.

Lemma 5. Given anALCIb≤ knowledge baseKB, theALCIF b knowledge base
Θ≤(KB) andKB are equisatisfiable.

Proof. KB and FLAT(KB) are equisatisfiable by Proposition 1, so it remains to show
equisatisfiability ofFLAT(KB) andΘ≤(KB).
First, we prove that every model ofΘ≤(KB) is a model ofFLAT(KB). We do so in an
inductive way by showing that no additional models can be introduced by any sub-
stitution step of the above conversion procedure. Hence, assume KB′′ is an interme-
diate knowledge base having a modelI and KB′′ is obtained from KB′ by eliminat-
ing the occurrence of≤n R.A as described above. Now consider an arbitraryδ from
the extension of the concept∀(R ⊓ ¬R1 ⊓ . . . ⊓ ¬Rn).¬A. This ensures that when-
ever an individualδ′ ∈ ∆I satisfies〈δ, δ′〉 ∈ RI and δ′ ∈ A, it must additionally
satisfy 〈δ, δ′〉 ∈ RI for one i ∈ {1, . . . ,n}. However, it follows from the KB′′-axioms
≤1Ri .⊤ that there is at most one suchδ′ for eachRi . Thus, there can be at mostn in-
dividuals δ′ with 〈δ, δ′〉 ∈ RI and δ′ ∈ A. This impliesδ ∈ (≤n R.A)I. So we have
(∀(R⊓ ¬R1 ⊓ . . .⊓ ¬Rn).¬A)I ⊆ (≤n R.A)I. Due to the flattened knowledge base struc-
ture, both those concept expressions occur outside the scope of any negation or quan-
tifier within axiomsD′′ ∈ KB′′ andD′ ∈ KB′ which are equal up to the substituted
occurrence. Hence, we can derive thatD′′I ⊆ D′I. Then, fromD′′I = ∆I follows
D′I = ∆I makingD′ valid in I. Apart from D′, all other axioms from KB′ are con-
tained in KB′′ and hence are naturally satisfied inI. So we find thatI is a model of
KB′ as well.



Second, we show that every model ofFLAT(KB) can be transformed to a model of
Θ≤(KB). We use the same induction strategy as above by doing iterated model trans-
formations following the syntactic knowledge base conversions. Again, assume KB′′ is
an intermediate knowledge base obtained from KB′ by eliminating the occurrence of
a ≤n R.C as described above and supposeI is a model of KB′. Based onI, we now
(nondeterministically) construct an interpretationJ as follows:

– ∆J ≔ ∆I,
– for all C ∈ NC, let CJ ≔ CI,
– for all S ∈ NR \ {Ri | 1 ≤ i ≤ n}, let SJ ≔ SI,
– for everyδ ∈ (≤n R.A)I, let ǫδ1, . . . , ǫ

δ
k be an exhaustive enumeration (with arbitrary

but fixed order) of all thoseǫ ∈ ∆I with 〈δ, ǫ〉 ∈ RI and ǫ ∈ AI. Therebyδ’s
aforementioned concept membership ensuresk ≤ n. Now, letRJi ≔ {〈δ, ǫ

δ
i 〉 | δ ∈

(≤n R.A)I}.

Now, it is easy to see thatJ satisfies all newly introduced axioms of the shape≤1Ri .⊤

as everyδ has at most oneRi-successor (namelyǫδi , if δ ∈ (≤n R.A)I, and none other-
wise). Moreover, the axioms∀Ri .A are satisfied, as theǫδi have been chosen accordingly.
Finally for all δ ∈ (≤n R.A)I the construction ensuresδ ∈ (∀(R⊓¬R1⊓ . . .⊓¬Rn).¬A)J

as by construction, eachR-successor ofδ that lies within the extension ofA is contained
in ǫδ1, . . . , ǫ

δ
k and therefore alsoRi-successor ofδ for somei. Now, again exploiting the

fact that both those concept expressions occur in negation normalized universal concept
axiomsD′ ∈ KB′ andD′′ ∈ KB′′ which are equal up to the substituted occurrence, we
can derive thatD′I ⊆ D′′J . Then, fromD′I = ∆I follows D′′J = ∆J making D′′

valid inJ . Apart fromD′′ (and the newly introduced ones considered above), all other
axioms from KB′′ coincide with those from KB′ and hence are satisfied inJ , as they
do not depend on theRi whose interpretations are the only ones changed inJ compared
toI. So we find thatJ is a model of KB′′ �

5.5 FromALCIF b toALCI b

In the sequel, we show how the role functionality axioms of the shape≤1R.⊤ can be
eliminated from anALCIF b knowledge base while still preserving equisatisfiability.
Essentially, we do so by adding axioms that enforce that for every functional roleR, any
two R-successors coincide with respect to their properties expressible in “relevant” DL
terms. While it is rather obvious that those axioms follow from R’s functionality, the
other direction (a Leibniz-style “identitas indiscernibilium” argument) needs a closer
look.
Taking anALCIF b knowledge base KB, letΘF (KB) denote theALCIb knowledge
base obtained from KB by removing every role functionality axiom≤1R.⊤ and instead
adding

– ∀R.¬D ⊔ ∀R.D for everyD ∈ P(KB \ {≤1R.⊤ ∈ KB}) as well as
– ∀(R⊓ S).⊥ ⊔ ∀(R⊓ ¬S).⊥ for every atomic roleS from KB.

Clearly, also this transformation can be done in polynomialtime and space w.r.t. the
size of KB.



Our goal is now to prove equisatisfiability of KB andΘF (KB). The following lemma
establishes the easier direction of this correspondency.

Lemma 6. AnyALCIF b knowledge baseKB entails all axioms of theALCIb knowl-
edge baseΘF (KB), i.e.KB |= ΘF (KB).

Proof. LetJ be a model of KB. Obviously,J satisfies all axioms from KB∩ΘF (KB).
It remains to consider the two kinds of axioms additionally introduced.
Firstly let D be an arbitrary concept. Now note that∀R.¬D ⊔ ∀R.D is equivalent to the
GCI ∃R.D ⊑ ∀R.D. In words, this would mean that for anyδ ∈ ∆J , all R-successors
are in the extension ofD whenever one of them is. Yet this is trivially satisfied ifδ has
at most oneR-successor which is ensured by the corresponding functionality axiom in
KB. Since we have shown the validity for arbitrary conceptsD, this holds in particular
for those fromP(KB \ {≤1R.⊤ ∈ KB}).
Secondly, letS be an atomic role. Mark that∀(R⊓S).⊥⊔∀(R⊓¬S).⊥ is equivalent to
the GCI∃(R⊓ S).⊤ ⊑ ∀(R⊓ ¬S).⊥. This means that for anyδ ∈ ∆J , all R-successors
are alsoS-successors of it, whenever one of them is. Again, this is trivially satisfied as
δ has at most oneR-successor. �

The other direction for showing equisatisfiability, which amounts to finding a model of
KB, given one forΘF (KB), is somewhat more intricate and requires some intermediate
considerations.

Lemma 7. LetKB be anALCIF b knowledge base and letF be the set of roles R with
≤1R.⊤ ∈ KB.
Then in every modelJ ofΘF (KB), for everyδ, δ1, δ2 ∈ ∆

J with 〈δ, δ1〉 ∈ RJ and〈δ, δ2〉 ∈

RJ , we have

– for all C ∈ P(KB \ {≤1R.⊤ ∈ KB}), thatδ1 ∈ CJ iff δ2 ∈ CJ as well as
– for all S ∈ NR, that 〈δ, δ1〉 ∈ SJ iff 〈δ, δ2〉 ∈ SJ .

Proof. For the first proposition, assumeδ1 ∈ CJ . From 〈δ, δ1〉 ∈ RJ follows δ ∈

(∃R.C)J . Due to theΘF (KB) axiom ∀R.¬C ⊔ ∀R.C (being equivalent to the GCI
∃R.C ⊑ ∀R.C) follows δ ∈ (∀R.C)J . Since〈δ, δ2〉 ∈ RJ , this impliesδ2 ∈ CJ . The
other direction follows by symmetry.
To show the second proposition, assume〈δ, δ1〉 ∈ SJ . Since also〈δ, δ1〉 ∈ RJ , we have
〈δ, δ1〉 ∈ R⊓SJ and henceδ ∈ (∃(R⊓S).⊤)J . From theΘF (KB) axiom∀(R⊓S).⊥⊔
∀(R⊓¬S).⊥ (which is equivalent to the GCI∃(R⊓S).⊤ ⊑ ¬∃(R⊓¬S).⊤) we conclude
δ ∈ (¬∃(R⊓ ¬S).⊤)J , in words:δ has noR-successor that is not itsS-successor. Thus,
as〈δ, δ2〉 ∈ RJ , it must also hold that〈δ, δ2〉 ∈ SJ . Again, the other direction follows
by symmetry.

�

In order to covert a model ofΘF (KB) into one of KB, one has to enforce role function-
ality where needed by cautiously deleting individuals fromthe original model without
changing relevant concept memberships. The subsequent definition provides a method
for this.



Definition 7. Let J be an interpretation and letI be the domino interpretation of
πC(J) of some concept setC. For a concept setD ⊆ C, an interpretationK will be
calledD-pruningofI, ifK can be constructed fromI in the following way: set∆0 = ∆

I

and then iteratively determine∆i+1 from∆i as follows:

– Select a word-length minimalδ from ∆i where there are distinctδ1, δ2 ∈ ∆i with
∅ , {R ∈ NR | 〈δ, δ1〉 ∈ RI} = {R ∈ NR | 〈δ, δ2〉 ∈ RI} and {C ∈ P(D | δ1 ∈ CI} =
{C ∈ P(D | δ2 ∈ CI}.

– Because of the construction ofI, for one ofδ1, δ2 (w.l.o.g. say:δ2) we have that
δ2 = δ〈A,R,B〉.
Deleteδ2 from∆i as well as allδ′ havingδ2 as prefix.

Finally, letK be the limit of this process:∆K ≔
⋂

i∈N ∆i and ·K being the function·I

restricted to∆K .

Roughly speaking, anyD-pruningof I is (nondeterministically) constructed by delet-
ing successors not distinguishable w.r.t. the set of concept descriptionsD. Mark that the
tree-like structure of the domino interpretation is crucial in order to make the process
well-defined.

Lemma 8. LetKB be anALCIF b knowledge base, letJ be a model ofΘF (KB), and
let KB∗ ≔ KB \ {≤1R.⊤ ∈ KB}. Then, anyKB∗-pruning ofI

(

πP(ΘF (KB))(J)
)

is a model
of KB.

Proof. By Proposition 2,I ≔ I
(

πP(ΘF (KB))(J)
)

is a model ofΘF (KB), i.e., it fulfills
all axioms fromΘF (KB). Now letK be a KB∗-pruning ofI. For showingK |= KB, we
divide KB into two sets, namely the set of role functionalityaxioms KB∗ and{≤1R.⊤ ∈
KB} and showK |= KB∗ andK |= {≤1R.⊤ ∈ KB} separately.

So, we start by showingK |= KB∗.
We show this by proving that for eachC ∈ P(KB∗) and for every individualδ fromK ,
we haveδ ∈ CK exactly ifδ ∈ CI. The claim for all Boolean combinations of elements
from P(KB∗) (and hence also the global validity of the axioms from KB∗) then follows
by an easy structural induction.
We distinguish three cases (at places invoking the claim in an inductive way on formulae
with smaller role depth):

– C ∈ NC ∪ {⊤,⊥}.
Then the coincidence follows directly from the construction ofK .

– C = ∃U.D.
“⇒”
δ ∈ (∃U.D)K means that there is aK-individual δ′ with 〈δ, δ′〉 ∈ UK andδ′ ∈ DK .
Because of the construction ofK by pruningI, this means also〈δ, δ′〉 ∈ UI and by
induction hypothesis, we haveδ′ ∈ DI, ergoδ ∈ (∃U.D)I.

“⇐”
If δ ∈ (∃U.D)I, there is anI-individual δ′ with 〈δ, δ′〉 ∈ UI andδ′ ∈ DI. In case
δ′ is not deleted during the construction ofK , it proves (by using the induction
hypothesis onD) that δ ∈ (∃U.D)K . Otherwise, it must have been deleted due to



the existence of anotherI-individual δ′′ with {R ∈ R | 〈δ, δ′′〉 ∈ RI} = {R ∈ R |
〈δ, δ′〉 ∈ RI} and {E ∈ P(KB∗) | δ′′ ∈ EI} = {E ∈ P(KB∗) | δ′ ∈ EI}, which
(w.l.o.g.) does not get deleted in the whole construction procedure. Yet, then the
K-individualδ′′ obviously provesδ ∈ (∃U.D)K .

– C = ∀R.D.
“⇒”
Assume the contrary, i.e.,δ ∈ (∀U.D)K but δ < (∀U.D)I which means that there is
anI-individual δ′ with 〈δ, δ′〉 ∈ UI but δ′ < DI. In caseδ′ has not been deleted
during the construction ofK , it disprovesδ ∈ (∀U.D)K (by invoking the induction
hypothesis onD) leading to a contradiction. Otherwise,δ′ is deleted because of the
existence of anotherI-individualδ′′ with {R ∈ R | 〈δ, δ′′〉 ∈ RI} = {R ∈ R | 〈δ, δ′〉 ∈
RI} and{E ∈ P(KB∗) | δ′′ ∈ EI} = {E ∈ P(KB∗) | δ′ ∈ EI}, which (w.l.o.g.) does
not get deleted in the whole construction procedure. Yet, then theK-individual δ′′

obviously contradictsδ ∈ (∃U.D)K .
“⇐”
Assume the contrary, i.e.,δ ∈ (∀U.D)I butδ < (∀U.D)K . The latter means that there
is aK-individual δ′ with 〈δ, δ′〉 ∈ UK andδ′ < DK . Because of the construction
of K by pruningI, this means also〈δ, δ′〉 ∈ UI andδ′ < DI, ergoδ < (∀U.D)I,
contradicting the assumption.

We proceed by showing that every roleR with ≤1R.⊤ ∈ KB is functional inK . Let
δ ∈ ∆K . By Lemma 7 and the pointwise correspondence betweenI andK shown in the
previous part of the proof, for any twoR-successorsδ1, δ2 of δ, two statements hold:
Firstly, for all C ∈ P(KB∗), we have thatδ1 ∈ CK iff δ2 ∈ CK . Secondly, for allS ∈ NR

we have that〈δ, δ1〉 ∈ SK iff 〈δ, δ2〉 ∈ SK . However, in the pruning process generating
K , exactly such duplicate occurrences are erased, leaving atmost oneR-successor per
δ. Thus we concludeδ1 = δ2.

So we end up having shown that all axioms from KB are satisfied inK . �

Finally, we are ready to establish the equisatisfiability result also for this last transfor-
mation step.

Theorem 2. For anyALCIF b knowledge baseKB, theALCIb knowledge base
ΘF (KB) andKB are equisatisfiable.

Proof. Lemma 6 ensures that every model of KB is also a model ofΘF (KB). Moreover,
by Lemma 8, given a modelJ for of ΘF (KB), any KB∗-pruning ofI

(

πP(ΘF (KB))(J)
)

(obviously, the existence is assured by constructive definition) is a model of KB. This
finishes the proof. �

In summary, we have shown in this section how to transform aSHIQ knowledge base
KB into an equisatisfiableALCIbknowledge base by calculatingΘFΘ≤ΘHΘ≥ΘS(KB).
Moreover, as every of the single transformation steps is time polynomial, so is the over-
all procedure. Therefore, we are able to check the satisfiability of anySHIQ Tbox us-
ing the method presented in the preceding section, by first transforming it intoALCIb
and then checking.



6 Related Work

The approach of constructing a canonical model (resp. a sufficient representation of
it) in a downward manner (i.e. by pruning a larger structure)shows some similarity to
Pratt’s type elimination technique (see [12]), originallyused to decide satisfiability of
modal formulae.
Canonical models themselves have been a widely used notion in modal logic [13, 14],
however, due to the additional expressive power ofALCIb compared to standard
modal logics like K (being the modal logic counterpart of thedescription logicALC),
we had to substantially modify the notion of a canonical model used there.
Very related in spirit (namely to use BDD-based reasoning for DL reasoning tasks and
use a type elimination-like technique for doing so) is the work presented in [7]. How-
ever, the established results as well as the approaches differ greatly from ours: put into
DL words, the authors establish a procedure for deciding thesatisfiability ofALC con-
cepts in a setting not allowing for general TBoxes, while ourapproach is able to check
satisfiability ofSHIQ (resp.ALCIb) knowledge bases supporting general TBoxes,
thereby generalizing the results from [7].

7 Conclusion and Outlook

The main contribution of this paper is that it provides a new algorithm for termino-
logical reasoning in the description logicSHIQ, based on ordered binary decision
diagrams, which is a substantial improvement to [7]. Obviously, experiments will have
to be done to investigate whether the conceptual insights – which indicate a competi-
tive performance level – really work in practice. A prototype implementation is under
way, and will be reported on in the future. OBDDs have shown excellent practical per-
formance in structurally and computationally similar domains, so that some hope for
practical applicability of this approach seem to be justified.
The major technical contributions in this paper are in fact two-fold.
To prove the correctness of our algorithm we had to elaborateon the model theoretic
properties ofALCIb. The technique was given in terms of Boolean functions beingdi-
rectly transferable into an algorithm based on OBDDs. We thereby provide the theoret-
ical foundations for a novel paradigm for DL reasoning, which can be explored further
not only in terms of implementations and evaluations, but also in other directions.
We also showed how a terminologicalSHIQ knowledge base can be converted into an
equisatisfiableALCIb knowledge base, thereby providing a foundational insight that
reasoning inSHIQ can be done by developing reasoning solutions forALCIb. In
particular, we showed that (qualified) number restrictionscan be eliminated if allowing
restricted complex role expressions.
Obviously, we intend to evaluate our approach by comparing it to well-established off-
the-shelf reasoners, both tableau- and resolution-based approaches, and a prototype im-
plementation is already under way. In fact, we are rather confident with respect to per-
formance, as OBDDs have exhibited an excellent practical performance in structurally
and computationally similar domains.



Besides implementation and evaluation, in the future we will extend our work towards
Abox reasoning and to dealing with more expressive OWL DL constructs such as nom-
inals.
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