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Abstract. We present a new algorithm for reasoning in the description logic
SHIQ, which is the most prominent fragment of the Web Ontology Language
OWL. The algorithm is based on ordered binary decision diagrams (GBa®

a datastructure for storing and operating on large model represestatierthus
draw on the success and the proven scalability of OBDD-based syslertise
best of our knowledge, we present the very first algorithm for usiB®Ds for
reasoning with general Thoxes.

1 Introduction

In order to leverage intelligent applications for the Setitaweb, scalable reasoning
systems for the standardised Web Ontology Language O@e required. OWL is
essentially based on description logics (DLs), with the Dlown asSH 7 Q currently
being its most prominent fragment.

State-of-the art OWL reasoners, such as PélRacerPré or KAON2* already achieve
an dficiency which makes them suitable for practical use, howthay still fall short

of the scalability requirements needed for large-scaldiegions. The prominent rea-
soners are essentially based on twdedling approaches to reasoning with DLs: While
systems such as Pellet and RacerPro are based on tabledthalgpKAON2 uses a
resolution-based approach. The development of such fuexiadly diferent reasoning
approaches has furthered the progress in scalable OWL iegsubstantially, both by
means of cross-fertilisation between th&elient systems, and by showing thaffeti-
ent algorithms perform éierently depending on the knowledge bases and the reasoning
tasks [2].

In this paper, we present a new promising algorithm for reagpwith SH7Q, which

is based on ordered binary decision diagrams (OBDDs) asastdatture for storing
and operating on large model representations [3-5]. Tlenae behind the approach
is the fact that OBDD-based systems feature impressii@ency on large amounts of
data, e.g. for model checking for hard- and software vetibog[6]. Our algorithm is

Thttp://wuw.w3.org/2004/0WL/, see also [1].
2http://pellet.owldl.com/
Shttp://www.racer-systems.com/de/index.phtml?lang
4http://kaonZ.semanticweb.org/



indeed based on a reduction 8#{7Q reasoning to standard OBDD-algorithms, and
thus allows to draw on the available strong algorithms arplémentations for OBDDs,
such as JavaBDD

The general idea of using OBDDs for reasoning with desenipkbgics is not entirely
new, and some related results have already been presen@diindeed, a closer look
reveals that certain temporal logics to which OBDDs haventsgplied (e.g. CTL [5])
are closely related to modal logics which in turn are knowimawe strong structural
similarities to DLs [8]. Hence, it seems almost natural tplg®@BDD-based techniques
for DL reasoning as well. The results from [7], however, dilerather restricted since
they encompass only terminological reasoning in the bakicAYXC without general
Thoxes.

In essence, OBDDs can be used to represent arbitrary Bololeetions. These Boolean
functions are then interpreted as a kind of compressed argofl— usually very large
sets of — process states. Model checking and certain maiiqus of the state space
can then be done directly on this compressed version withofaiding it. In our ap-
proach, we will employ OBDDs in a very similar way for encaoglidL interpretations.
However, as DL reasoning is concerned with all possible nspdee will show by
model-theoretic arguments that for our purposes it ti@ant to work only with cer-
tain representative models.

A birds eyes’ persepective on our results is as follo$f 7 Q knowledge bases can be
reduced equisatisfiably td£C7b knowledge bases (Section 5). A sound and complete
decision procedure based on so-called domino interpoetaprovides the next step
(Section 3). This procedure can in turn be realised by mdatiijpg Boolean functions
(Section 4), which establishes the link with OBDD-algamiih

We have chosen to present the material in a somewffatelit order as it should make
the paper more accessible: Preliminaries are given in @egti Then in Section 3 we
establish model theoretic results for the descriptiondo@iCCZb, provide the decision
procedure and show that it is sound and complete. In Sectiare4stablish the link
with operations on Boolean functions. Section 5 providesjastifies a way of trans-
forming a knowledge base in the D84 7Q into an equisatisfiablé1.LC7b knowledge
base. Finally, we conclude and give an outlook to future wei&ections 6 and 7.

2 Preliminaries

In this section we will introduce some auxiliary construatsl propositions as well as
all the basic DL notions needed in this paper.

2.1 The Description LogicSHIQb

We start by recalling some basic definitions of DLs (see [ faomprehensive treat-
ment of DLs) and introducing our notation. We define a rathx@ressive description
logic SHI@QDb that extendsSH I Q with restricted Boolean role expressions [10]. We
will not considerSH 7 Qb knowledge bases, but the DL serves as a convenient umbrella

Shttp://javabdd.sourceforge.net



logic for the DLs used in this paper. Also, we do not considssestional knowledge,
and hence will only introduce terminological axioms here.

Definition 1. A terminologicalS?H 7Qb knowledge base is based on two disjoint sets
of concept nameslc and role named\g. A set ofatomic rolesR is defined aRR =

Nr U {R" | R € Ng}. In addition, we setnv(R) := R~ andInv(R") := R, and we will
extend this notation also to sets of atomic roles. In the skge will use the symbols
R, S to denote atomic roles, if not specified otherwise.

The set ofBoolean role expressiorsis defined as follows:

B:=R|-B|BrnB|BuUB.

We use- to denote standard Boolean entailment between sets of atofes and role
expressions. Given a sRtof atomic roles, we inductively define:

— For atomic roles RR + R if Re R, andR ¥ R otherwise,
- R+=UifR¥ U, andR ¥ =U otherwise,

- RrUMNVifRrUandR+ V,andR ¥ U nV otherwise,
—RrUUVifRrUorR+V,andR ¥ U LV otherwise.

A Boolean role expression U igstrictedif @ ¥ U. The set of all restricted role ex-
pressions is denoted, and the symbols U and V will be used throughout this paper
to denote restricted role expressionsS&{7Qb Rboxis a set of axioms of the form

U C V (role inclusion axiom) ofira(R) (transitivity axiom). The set of non-simple roles
(for a given Rbox) is inductively defined as follows:

— If there is an axionTra(R), then R is non-simple.
— If there is an axiom RE S with R non-simple, then S is non-simple.
— If Ris non-simple, themv(R) is non-simple.

A role issimpleif it is atomic and not non-simple.
Based on aSH 7Qb Rbox, the set ofoncept expressiors is defined as follows:

—NccC,TeC,LeC,
—ifC,D € C,U €T, Re R asimple role, and n a non-negative integer, theDd,
CnD,CuD,VvUC,3U.C,<nRC, and>nRC are also concept expressions.

Throughout this paper, the symbols C, D will be used to decoteept expressions. A
SHIQb Thoxis a set ofgeneral concept inclusion axiorGCIs) of the form G D.

A SHI@b knowledge base KBs the union of aSHIZ@Qb Rbox and an according
SHIQb Thox.

As mentioned above, we will consider only fragmentsS#7@Qb. In particular, a
SHIQ knowledge base is &H 7Qb knowledge base without Boolean role expres-
sions, and atALCIb knowledge base is 8H7Qb knowledge base that contains no
Rbox axioms and no number restrictions (i.e. axioms of thfgn RC or >n RC).
The DLALCIDb has first been described by Tobies [10].

6 We will not consider DLs with transitivity and Boolean role expressionsjsastioning the
simplicity of such expressions is not relevant here.



Table 1. Semantics of concept constructorsSfi{ 7Qb for an interpretatiod” with domaina?.

Name SyntaxSemantics

inverse role R (X y) € 4T x A7 | (y, xX) € RY}
role negation |-U  |{(x,y) € 47 x 47 | (x,y) ¢ U7}
role conjunctionU nV (U7 nVv?

role disjunction U L'V (U7 u V7

top T A7
bottom L 0
negation -C [4'\C!
conjunction CnD|C'nD?
disjunction CubD |cCfuDf

univ. restriction [YU.C |{x € 47 | (x,y) € U impliesy € C’}

exist. restriction|3U.C |{x € 47 | for somey € 47 , (x,y) € U7 andy € C’}
qualified numbexn RC|{x € 47 | #ly € 47 | (x,y) e R andy e C'} < n}
restriction €Ln RC|{xe 47 | #y e 47 | (x,y) € Rf andy € C’} > n}

Definition 2. An interpretation/ consists of a set’ calleddomain(the elements of it
being calledindividualg together with a function’ mapping

— individual names to elements 4#f,
— concept names to subsets4df, and
— role names to subsets of x 47.

The function- is inductively extended to role and concept expressionshas/s in
Table 1. An interpretatiod” satisfiesan axiomg if we find that? = ¢:

- ITEUCVIfULf cV,
— T E Tra(R) if R is a transitive relation,
- 7EccDifcf cDl.

An interpretations satisfiesa knowledge baskB (we then also say that is amodel
of KB and write 7 | KB) if it satisfies all axioms oKB. A knowledge baskB is
satisfiableif it has a model. Two knowledge bases aruivalentif they have exactly
the same models, and they aguisatisfiabléf either both are unsatisfiable or both are
satisfiable.

For convenience of notation, we abbreviate Thox axioms®fdnm T = C by writing
just C. Statements such & C andC € KB are interpreted accordingly. Note that
arbitrary GCIsC C D can thus be written asC U D.

Finally, we will often need to access a particular set of ¢ifiad and atomic subformu-
lae of a DL concept. These specific parts are provided by thetibn P : C — 2C:

P(D) if C=-D

P(D)UPE) fC=DnEorC=DUE
{CtuP(D) ifC=0UDwithQe({3,v,>n,<n}
{C} otherwise

We generalisé® to DL knowledge bases KB by definirfg(KB) to be the union of the
setsP(C) for all Tbox axiomsC of KB.

P(C) =



2.2 Knowledge Base Transformations

For our further considerations, we will usually expressTalbx axioms as single con-
cept expressions as explained above. Given a knowledgéiBase obtain its negation
normal formNNF(KB) by converting every Tbhox concept into its negation nafrfiorm
as usual:

NNF(=T) =1

NNF(—L) =T

NNF(C) = CifCe{A-AT,L}
NNF(-==C) = NNF(C)

NNF(C rn D) = NNF(C) M NNF(D)
NNF(=(C 11 D)) := NNF(=C) L NNF(-D)
NNF(C u D) = NNF(C) LI NNF(D)
NNF(=(C L D)) := NNF(=C) r NNF(=D)
NNF(YU.C) = YU.NNF(C)
NNF(=YU.C) := JU.NNF(=C)
NNF(3U.C) = JU.NNF(C)
NNF(-3U.C) := YU.NNF(-C)
NNF(<nRC) := <nRNNF(C)
NNF(=<nRC) := >(n+ 1)RNNF(C)
NNF(=nRC) := =nRNNF(C)

NNF(->nRC) := <(n— 1)RNNF(C)

It is well known that KB andNNF(KB) are equivalent. We will usually require another
normalisation step that simplifies the structure of KBflafteningit to a knowledge
baseFLAT(KB). This is achieved by transforming KB into negation natrform and
exhaustively applying the following transformation rules

— Select an outermost occurrencegdf.D in KB, such tha € {3,V, >n, <n} andD
is a hon-atomic concept.

— Substitute this occurrence withJ.F whereF is a fresh concept name (i.e. one not
occurring in the knowledge base).

- If @ € {3,V, =n}, add-F U D to the knowledge base.

— If ® = <naddNNF(=D) U F to the knowledge base.

Obviously, this procedure terminates yielding flat knowgedase=LAT(KB) all Thox
axioms of which are Boolean expressions over formulae ofdha T, L, A, -A, or
QU.A with A an atomic concept name.

Proposition 1. AnySHIQb knowledge baskB is equisatisfiable t¢LAT(KB).

Proof. We first prove inductively that every model 6LAT(KB) is a model of KB.

Let KB’ be an intermediate knowledge base and let’Ki the result of applying one
single substitution step to KBs described in the above procedure. We now show that
any modell of KB” is a model of KB. Let QU.D be the term substituted in KBNote

that after every substitution step, the knowledge baséllisnshegation normal form.
Thus, we see thapU.D occurs outside the scope of any negation or quantifier in an



KB’-axiomE’, the same is the case fotJ.F in the respective KB-axiomE"” obtained

after the substitution. Hence, if we show thet.F)? c (9U.D)?, we can conclude
thatE”/ ¢ E’Z. FromI being a model of KB and therefor&”? = 4%, we would then

easily derive thaE’Y = 47 and hence find thaf = KB’, as all other axioms from KB

are trivially satisfied due to their presence in'KB

It remains to show@®U.F)? c (0U.D)?. We distinguish four cases:

-0=1
Consider & € (AU.F)’. Then exists an individual’ € 47 with (5,¢’) € U and
&’ € FL. As a consequence of the KBixiom—F L D (being equivalent to the GCI
F C D), we find thats’ € D as well, leading straightforwardly to the conclusion
§ € (AU.D)’. Hence we havedU.F)? c (3uU.D)’.

—0=V
Consider & € (YU.F)’. This implies for every individuai” € 4% with (,") € U
thats’ € FZ. Again, the KB’ axiom —F u D entailss’ € D for every suchy’,
leading tos € (YU.D)?. Hence, we have/U.F) c (YU.D) .

- Q0=2n
Consider & € (>n U.F)?. This means there are distinct individuals. . ., 5, € 47
with (6, 6;) € U ands; € F? for 1 <i < n. As a consequence of the KBaxiom
—-F u D, we find thats; € DY for all then distincts;, and concludé € (>n U.F)”.
Hence, we havex(n U.F)? c (>nU.D)’.

- 0=<<n
Consider @ € (<n U.F). This implies that the number of individuais e 47 with
(6,6"y € UL andd’ € F7 is not greater than. By the KB’ axiom NNF(-D) U F
(being equivalent to the GM C F), we knowD? ¢ FZ. Thus, also the number of
individualss’ € 4% with (5,6") € UZ and¢’ € D’ cannot be greater tham leading
to the conclusion € (<n U.D)?. Hence, we havesn U.F)? c (<nU.D)’.

Every modelf of KB can be transformed into a modglof FLAT(KB) by following the
flattening process described above: Let’Ki@sult from KB by substitutingpU.D by
QU.F and adding the respective axiom. Furthermorefidie a model of KB. Now we
construct the interpretatiofi” as follows:F” = (9U.D)?" and for all other concept
and role namesl we setN?” := N". ThenZ” is a model of KB'. O

3 Building Models from Domino Sets

In this section, we introduce the notion of a setdofminoedor a given terminological
ALCIb knowledge base. Intuitively, each domino abstractly repnés two individ-
uals in anALCIb interpretation, based on their concept properties and ahutle
relationships. We will see that suitable sets of such tvesreint pieces stice to recon-
struct models ofALCIb, which also reveals certain model theoretic propertiesisf t
not so common DL. In particular, every satisfiabie.C7b Tbox admits tree-shaped
models. This result is rather a by-product of our main goaexfomposing models into
unstructured sets of local domino components, but it erplaihy our below construc-
tions have some similarity with common approaches of shgwige-model properties
by “unravelling” models.



After introducing the basics of domino representation, wesent an algorithm for de-
ciding satisfiability of anALCIb terminology based on sets of dominoes.

3.1 From Interpretations to Dominoes

We now introduce the basic notion of a domino set, and itioglship to interpreta-
tions. Given a DL language with concef@sand rolesR, adominois an arbitrary triple
(A, R, B), whereA, B c C andR C R. In the following, we will always assume a fixed
language and refer to dominoes over that language only.

We now formalise the idea of deconstructing an interprataitito a set of dominoes.

Definition 3. Given an interpretatiod = (47, /), and a seC c C of concept expres-
sions, thedomino projectiorof 7 w.r.t. C, denoted byrc(Z) is the set that contains for
all 6,6 € 47 the triple (A, R, B) with

—A={CeC|seC,
- R={ReR|{56) R}
- B={CeC|& eCl}).

It is easy to see that domino projections do not faithfullpresent the structure of
the interpretation that they were constructed from. But asmil see below, domino
projections capture enough information to reconstructetsdf a knowledge base KB,
as long a® is chosen to contain at lea®(KB). For this purpose, we now introduce the
inverse construction of interpretations from arbitraryriioo sets.

Definition 4. Given a setD of dominoes, the inducedomino interpretatiory (D) =
4t 1y is defined as follows:

1. 47 consists of all nonempty finite words ou@mwhere, for each pair of subsequent
letters(A, R, B) and(A’,R’, B’) in a word, we haveB = A'.

2. Forawordsé = (A1, Ry, A){(Ao, Ro, A3) ... (Ai_1, Ri_1, Ay and a concept name
A € N¢, we defingail(6) := A;, and set € AL iff A € tail(s),

3. For arole name R Ng, we seté1, 5,) € RL if either

62 = 01(A, R, BywithRe R or 61 = §2(A, R, B) with Inv(R) € R.

We are now ready to show that certain domino projectionsaiomnough information
to reconstruct models of a knowledge base.

Proposition 2. Consider a se€ ¢ C of concept expressions, and an interpretatipn
and letX = 7 (zc(9)) denote the interpretation of the domino projectioryofv.r.t. C.
Then, for anyALCIb concept expression € C with P(C) C C, we have thaf = C
if K EC.

Especially, for anyALCIb knowledge baskB, J = KB iff 7 (rpxke)(J)) = KB.

Proof. We first show the following: Given any-individual § and%-individual e such
that tail€) = {D € C | § € D7}, we find thate € CX iff § € C7. Clearly, the overall
claim follows from that statement using the observatiort thauitables € 4% must



exist for alle € 4% and vice versa. We proceed by induction over the structuf@, of
noting thatP(C) C C implies P(D) C C for any subconcefD of C.

The base cagg € N¢ is immediately satisfied by our assumption on the relatignsh
¢ ande. For the induction step, we first note that the c@se {T, L} is also trivial. For
C =-DandC = Dn D’ as well asC = D u D’, the claim follows immediately from
the induction hypothesis fdd andD’.

Next consider the case = 3U.D, and assume thate C7. Hence there is som# € 47
such thats,6’) € UY and¢’ € D7. Then the paiks, &’y generates a domin@A, R, B)
andA’ constaing’ = (A, R, B). (6,6’) € UJ impliesR + U, and hencée, ¢’) € UK.
Applying the induction hypothesis , we concludes’ € DX. Now e € C¥ follows
from the construction ok

For the converse, assume tleat C*. Hence there is som# e 4% such thate, ¢’) €
U ande’ € DX. By the definition ofK, there are two possible cases:

— € = g(tail(e), R, tail(¢’)) andR + U: Consider the twgy-individuals{s’, ") gen-
erating the domindtail(e), R, tail(¢')). Frome’ € DX and the induction hypothesis,
we obtaing” € DJ. Together with(s",6”)y € U7 this impliess’ € C7. Since
C =3U.D € C, we also have& e tail(e) and thuss € C7 as claimed.

— € = ¢é/(tail(¢’), R, tail(e)) and InvR) + U: This case is similar to the first case,
merely exchanging the order ¢f', ¢”) and using InvR) instead ofR.

Finally, the cas€ = YU.D is dual to the cas€ = 3U.D, and we will omit the repeated
argument. Note, however, that this case does not follow tlersemantic equivalence
of YU.D and-3U.-D, since the proof hinges upon the inclusion-d» in C which is
not given directly. ]

3.2 Constructing Domino Sets

As shown in the previous section, the domino projection of@eh of anALCIb
knowledge base can contain enough information to allow Herreconstruction of a
model. This observation can be the basis for designing amitiigh that decides knowl-
edge base satisfiability. Usually (especially in tableasdul algorithms), checking sat-
isfiability amounts to the attempt to construct a (represtént of a) model. As we have
seen, in our case it flices to try to construct just a model's domino projectionhiét
can be done, we know that there is a model, if not, there is.none

In what follows, we first describe the iterative constructad such a domino set from a
given knowledge base, and then show that it is indeed a deqgisbcedure for knowl-
edge base satisfiability.

Definition 5. Consider anALCIb knowledge bas€B, and define> = P(FLAT(KB)).
SetsD; of dominoes based on concepts frérare constructed as follows:
Dy consists of all dominoesA, R, B) satisfying the following conditions:

kb: for every concept & FLAT(KB), we have thaf|p.4 D C C is a tautology,

" Please note that the formulae FAT(KB) and in A < C are such that this can easily be
checked by evaluating the Boolean operator€imas if A was a set of true propositional
variables.



ex: forall JU.Ae Cwith Ae BandR + U, we havedU.A € A,
uni: for all YU.A € C withVU.A € AandR + U we have A B.

Given a domino sdb;, the sefDj,; consists of all dominoe§A, R, B) € Dj satisfying
the following conditions:

delex: for everydU.A € C with JU.A € A, there is soméA, R, B’) € Dj such that
R +U and Ae B,

deluni: for everyYU.A € C with YU.A ¢ A, there is somé&A, R, B') € D; such that
R +UbutA¢ B,

sym: (B, Inv(R), Ay € D;.

The construction of domino sef%.; is continued untilDi,; = Dj. The final result
Dkg = Dj,1 defines theanonical domino seif KB.
The algorithm returns “unsatisfiable” ibxg = 0, and “satisfiable” otherwise.

Note thatDy is exponential in the size of the knowledge base, such tleait¢native
deletion of dominoes must terminate after at most expoaliyntnany steps. Below we
will show that this procedure is indeed sound and completetfecking satisfiability.
Note that, in contrast to tableau procedures, the presatgedthm starts with a large
set of dominoes and successively deletes undesired dositrmeed, we will soon
show that the constructed domino set is the largest suchosetfhich a domino model
can be obtained. The algorithm thus may seem to be of litetjmal use. In Section 4,
we therefore refine the above algorithm to employ Booleawtfans as #icient im-
plicit representations of domino sets, such that ffiieient computational methods of
OBDDs can be exploited. In the meantime, however, domirowiitserve us well for
showing the required correctness properties.

An important property of domino interpretations consteacfrom canonical domino
sets is that the (semantic) concept membership of an ingiVican typically be (syn-
tactically) read from the domino it has been constructed of.

Lemma 1. Consider anALCZb knowledge badé€B with non-empty canonical domino
setDgg, and defineC := P(FLAT(KB)) and T = (4%, -7) := T(Dkg). Then for all Ce C
ands € 47, we have thad € C? iff C ¢ tail(s). Moreover,I = FLAT(KB).

Proof. First note that the domain df is obviously non-empty whenevég is. Now

if C € N¢ is an atomic concept, the first claim follows directly frone thefinition ofZ.
The remaining cases that may occuP{FLAT(KB)) areC = AU.A andC = YU.A.

First consider the cage = JU.A, and assume thate C’. Thus there ig’ € 47 with
(6,6"y € UL andé’ € AL. The construction of the domino model admits two possible
cases:

— & = §&(tail(6), R, tail(6")) with R + U andA € tail(¢’). SinceDgg C Dg, we find that
(tail(s), R, tail(¢”)) satisfies conditioex, and thusC € tail(6) as required.

— § = §'(tail(¢”), R, tail(s)) with Inv(R) + U andA e tails’. By conditionsym, Dgg
also contains the domingail(s), Inv(R), tail(¢’)), and we can again invokex to
concludeC e tail(6).



For the other direction, assume th#l. A € tail(6). ThusDgg contains some domino
(A, R, tail(6)), and bysymalso the domingtail(6), R, A). By conditiondelex the latter
implies thatDgg contains a domindtail(s), R’, A’). According todelex, we find that
& = &¢tail(s), R, A’) is an I-individual such thats,s’) € Uf and¢’ € AL. Thus
6 € (AU.A)! as claimed.

For the second case, consid2r= YU.A and assume thate C?, and thusDgg con-
tains some domindA, R, tail(s)), and bysym also the domindtail(s), R, A). For a
contradiction, suppose thatJ.A ¢ tail(s). By condition deluni, the latter implies
that Dgg contains a domindtail(s), R’, A’). According todeluni, we find thats’ =
&¢tail(s), R’, A’y is an I-individual such thats,6’) € U? and¢s ¢ D’. But then
§ ¢ (YU.A), which is the required contradiction.

For the other direction, assume tia1l.A € tail(6). According to the construction of the
domino model, there are two possible cases for elen#ntgh (5, 6’) € UL:

— & = &(tail(6), R, tail(6”)) with R + U. SinceDgg C Dy, (tail(s), R, tail(6”)) must
satisfy conditioruni, and thusA € tail(¢").

— § = ¢ (tail(¢), R, tail(6)) with Inv(R) + U. By conditionsym, Dxg also contains
the dominco(tail(s), Inv(R), tail(§”)), and we can again invokani to concludeA e
tail(s).

Thus, A € tail(§") for all U-successorg’ of ¢, and hence € (YU.A)! as claimed.

For the rest of the claim, note that any domi@d, R, 8) must satisfy conditiorkb.
Using conditionsym, we conclude that for any € 47, the axiom[ Jpeais D C C is
a tautology for allC € FLAT(KB). As shown above§ € D’ for all D ¢ tail(6), and
thusé € C. Hence every individual of is an instance of each conceptrafAT(KB) as
required. |

The previous lemma shows soundness of our decision algurlonversely, complete-
ness is shown by the following lemma.

Lemma 2. Consider anALCIb knowledge bas&B. If KB is satisfiable, then its
canonical domino sdbgg is hon-empty.

Proof. Consider any model” of KB. A simple induction shows that the domino pro-
jectionmpELarke)) (£) is contained irDgg . In the following, we us&A, R, B) to denote
an arbitrary domino okp arka)) (7).

For the base case, we must show that arke))({) € Do. Let (A, R, B) to denote
an arbitrary domino ofp arke)) (£) which was generated from elemexdss’). Then
(A, R, B) satisfies conditiokb, sinces € C’ for anyC e FLAT(KB). The conditions
exanduni are obviously satisfied.

For the induction step, assume thal= arke)) (£) € Dj, and let(A, R, B) again denote
an arbitrary domino ofp arke)) (£) which was generated from elemexgss’).

— For delex note thatdU.A € A impliess € (JU.A)L. Thus there is an individual
8" such that(s,5”) € UZ ands” € AL. Clearly, the domino generated k§,5)
satisfies the conditions afelex



— For deluni, note thatyU.A ¢ A impliess ¢ (YU.A). Thus there is an individual
§” such that(s,6”)y € UZ ands” ¢ A’. Clearly, the domino generated kg, o)
satisfies the conditions afeluni.

— The condition ofsym for (A, R, B) is clearly satisfied by the domino generated
from (&', 6).

O

Combining the results of Lemma 1, Proposition 1, and Lemma&e2pbtain the main
result of this section:

Theorem 1. A terminologicalALCIb knowledge baskB is satisfiable f its canon-
ical domino seDkg is non-empty. Definition 5 thus defines a decision procedure f
satisfiability of suchALCTb knowledge bases.

4 Sets as Boolean Functions

In this section, we explain how large sets (in our case theriaal domino, respec-
tively the intermediate sets during its construction) cargbectively represented im-
plicitly via Boolean functions. This kind of encoding ishat standard within the field
of OBDD-based model checking, and so we will only give a veigftoverview on OB-
DDs and not further elaborate on the technical details af thanipulation in this paper.
The way of implementing our approach, however, can be dyrdetived from the algo-
rithm described in this section, as for every operation tadreied out on the Boolean
functions (namely combining them, permutation of variablestantiating variables
etc.) there is an algorithmic counterpart for the OBDD-baspresentation.

4.1 Boolean Functions and Operations

We will start with a brief introduction of how sets can be regented by means of
Boolean functions. This will enable us, given a fixed finitesdaetS, to represent
every family of setsS ¢ 25 by a single Boolean function.

A Boolean functioron a setvar of variables is a functionp : 2 — {true, falsg.
The underlying intuition is thap(V) computes the truth value of a Boolean formula
based on the assumption that exactly the variablésarfe evaluated ttrue. A simple
example are functions of the forfiv] for somev € Var, which are defined by setting
[VI(V) :=trueiffve V.

Boolean functions over the same set of variables can be cmuland modified in
several ways. Firstly, there are the obvious Boolean opesdor negation, conjunc-
tion, disjunction, and implication. By slight abuse of rtada, we will use the common
(syntactic) operator symbols, A, v, and— to also represent such (semantic) opera-
tors on Boolean functions. For example, given Boolean fonsty andy, we find that

(¢ A Y)(V) = trueiff ¢(V) = trueandy (V) = true. Note that the result of the applica-
tion of A results in another Boolean function, and is not to be undedsas a syntactic
formula.



Another operation on Boolean functions is existential gifiaation over a set of vari-
ablesV < Vvar, written as3V.p for some functiony. Given an input seW < Var

of variables, we definedV.¢)(W) = true iff there is somesetV’ C V such that
o(V' U (W \ V)) = true. In other words, there must be a way to set truth values of
variables inV such thaty evaluates tdrue. Universal quantification is defined analo-
gously, and we thus hawéV.p := -3V.—¢ as usual. Again, we remark that our use of
1 andV overloads notation, and should not be confused with rol&icésns in DL
expressions.

4.2 Ordered Binary Decision Diagrams

Ordered Binary Decision Diagrams are data structures thaide Boolean functions
in an dficient way. Structurally, &inary decision diagraniBDD) is a directed acyclic
graph with two distinguished nodes: three-node and thdalsenode, also called ter-
minal nodes. Moreover, one node without incoming edges ikaaas root. All nodes
except the terminal ones are labelled by a variable from #ieva and have ex-
actly two outgoing edges, one of them labelledthye and the other byalse Every
BDD based on a variable setr = {vy,...,Vy} represents an-ary boolean function
¢ 2¥& — f{true, falsg in the following way: for every variable subset c Var, the
value ¢(V) is determined by a traversal of the BDD: starting from thetnoode, we
take the variabler by which the actual node is labelled and follow the outgoidgee
that is labelled bytrue if v € V and byfalseif v ¢ V. This is iterated until a terminal
node is reached, which then indicates the resul(¥f). A BDD is calledorderedBDD
(short OBDD) if there is a total order on the a&tr such that any path in the BDD is
strictly ascending wrt. that order.

For any boolean function : 2¥& — ({true, falsg and any ordering oNar there is (up
to isomorphy) exactly one minimal OBDD realizing it. Morewy this minimal rep-
resentative (also calleceducedOBDD, short ROBDD) can beficiently computed
from any non-minimal OBDD. This enables tffieiently decide whether two ROB-
DDs encode the same Boolean function. In particular, the BDBorresponding to
the Boolean function assigniriglseto every input consists of just two nodes: fatse
node, marked as root, and the (actually “unusédig-node. This indicates that the data
compression realiyed by OBDDs enables quick satisfialigitys.

While for a fixed order, the OBDD for a certain Boolean formusaially might get ex-

ponentially large, it is often possible to find an order whie is not the case. Finding
the optimal order is NP-complete, however, heuristics hehvavn to yield good ap-
proximate solutions. Hence OBDDs can be conceived as a bahefiay to represent
Boolean functions in a compressed way.

Moreover, also operations on Boolean functions (such asfimementioned “point-
wise” negation, conjunction, disjunction, implication a&ll as quantification over
propositional variables) can be done directly on the cpording OBDDs and there
exist fast algorithms for doing so.



4.3 Translating Dominos into Boolean Functions

Now, let KB = FLAT(KB) be a flattenedA LC7b knowledge base. The variable set

is defined ayar := R U (P(KB) x {1, 2}). We thus obtain an obvious bijection between
setsV C Var and dominoes over the 98tKB) given as{A, R, B) — (Ax{1})URU(Bx
{2}). Hence, any Boolean function ovear represents a domino set as the collection of
all variable sets for which it evaluatestirme. We can use this observation to rephrase
the construction oDyg in Definition 5 into an equivalent construction of a function
[KBT.

We represent DL concepBand role expressions by characteristic Boolean functions
overVar as follows:

=[D] if C=-=D =[V1] if U=-V
[C] = [DIA[E] fC=DnE [U] = [VIiAIW] ifU=VnW
" JID]VIE] fC=DUE [VIvIw] fU=VvVuw
[KC, D] if C € P(KB) [ul ifUeR

We can now define an inferencing algorithm based on Booleaatifins.

Definition 6. Given a flattenedA£CZb knowledge baskB = FLAT(KB) and a vari-
able setvar as above, iteratively construct Boolean functidk®B ] as follows:

Fori = 0, initialise [KB o := ¢® A "™ A ¢®, where

¢ = /\ IC]

CeKB

¢"i= N\ IVUCDIAIVL - [C.2]
YU.CeP(KB)

"= A\ KC2IAIUI- [EAUC D]
JU.CeP(KB)

AS)
I

Fori > 1, iteratively defind[KBTji.1 := [KBT; A I A gdeluni A o™ where
¢= /\ IAUC DI - AR UCX(2).(IKBI; A [UD A I(C, 1)
JU.CeP(KB)

ggetuni . /\ [(YU.C, )] — -=3A(R UCx{2}).(IKBT;i A [UT A =[{C, 21)
vU.CeP(KB)

¢™(V) := [KBJi({(D. 1) | (D.2) € V} U {Inv(R) | Re V} U (D, 2) | (D, 1) € V})



After constructing a functiofiKBJ;,1, check whethefKB]Ji,; = [KB];. If this is the
case, the result of the construction is defined B ] := [KB];. Otherwise, repeat the
second construction step to obtdiKB Ji,».

After the construction has terminated, check wheti#€B] = [fals€], i.e. whether
[KBI(V) = false for all V C Var. If this is the case, return “unsatisfiable”, otherwise
return “satisfiable.”

The above algorithm is a correct procedure for checkingisterscy of terminological
ALCIb knowledge bases — note that all necessary computation caepmdeed be
implemented algorithmically: Any Boolean function can healeated for a fixed vari-
able inputV, and equality of two functions can (naively) be checked bygaring the
results for all possible input sets (which are finitely mamce Var is). Similarly, the
algorithm terminates since the sequence is decreasingW/r[KBJ;i(V) = true} and
there can be only finitely many Boolean functions over.

Concerning soundness and completeness, it is easy to s@heaHhzoolean operations
used in constructinfjKB] directly correspond to the set operations in Definition Bhsu
that[KB](V) = trueiff V represents a domino ibkg. Thus soundness and complete-
ness is shown by Theorem 1.

5 Polynomial Transformation from SHIQ to ALCIb

In this section, we present a stepwise satisfiability-présg transformation from the
quite common description logi8H 7 Q to the rather “exotic!ALCTb. This will allow
to apply the presented reasoning algorithm to terminold@¥¢+ 7 Q knowledge bases.

51 FromSHIQto ALCHIQ

As has been shown in [11], eve§HIQ knowledge base KB can be converted into
an equisatisfiablALCH 7Q knowledge bas@s(KB), where ALCH IQ denotes the
description logicSH 7Q without transitivity axioms. Lettinglos(KB) be the smallest
set containing

NNF(=C u D) for all C C D contained in the Thox of KB,

every subconcept of any concept containedias(KB),

NNF(=C) for every<n RC € clos(KB), and

VS.C for every subrolg S of a roleR where the Rbox of KB containga(S) and
whereVR.C € clos(KB),

this reduction is done as follows:

— remove all axiomgra(R)
— for every concep¥R.C from clos(KB) and every roles whereTra(S) is in KB and
S is a subrole oR, add the axionYRC C V¥S.(VS.C).

Moreover,0s(KB) is polynomial in the size of KB.

8 It is well known that determining whether a role is a subrole of anothebeatone by an easy
syntactic Rbox check.



5.2 FromALCHIQt0o ALCHIbLS

Now we will show how anyALCHIQ knowledge base KB can be transformed into
an ALCHIb* knowledge bas®-(KB). In comparison taALCHIQ, ALCHIb*
disallows> role restrictions but features restricted role expression

Given anALCHIQ knowledge base KB, th&l LCH Ib< knowledge bas@. (KB) is
obtained by first flattening KB and then iteratively applythg following procedure to
FLAT(KB) (terminating, if no qualified atleast number restiicts> are left):

— Choose an occurrence gh RA in the knowledge base.

— Substitute this occurrence @R;. A1 ... M dR,.A, whereRy,.. ., R, are fresh role
names.

— Foreveryi € {1,...,n}, addR C Rto the knowledge base’s Rbox.

— Forevery 1< i <k < n, addY(R N Ry).L to the knowledge base.

Observe that this transformation can be done in polynoritia { It remains to show
that KB and®.(KB) are indeed equisatisfiable.

Lemma 3. LetKB be anALCHIQ knowledge base. Then theLCH Ib* knowledge
base®.(KB) andKB are equisatisfiable.

Proof. First we prove that every model éf.(KB) is a model of KB. We do so by an
inductive argument, showing that no additional models @imtsoduced by any substi-
tution step of the above conversion procedure. Hence, asgiBfi is an intermediate
knowledge base having a modeland KB is obtained from KB by eliminating the
occurrence o&n RA as described above. Considering 'KBve find due to the KB-
axiomsY(R; 1 Ry).L that no two individual®, &’ € 47 can be connected by more than
one of the roleRRy, ..., R,. In particular, this enforce§ + §”, wheneveks, s’y € Fﬁf
and(s, ") € R! for distinctR; andR;. Now consider an arbitrarg from the extension
of the concepR;. A ... M 3dR,.A. This assures the existence of individu@ls. . . , d,
with (5,6i) € Rl ands; € A’ for 1 <i < n. By the above observation, all thoseare
pairwise distinct. Moreover, the axion® C R ensure(s, 6;) € R’ for all i, hence we
find thats € (>nRA)?. So we know 8R.;.AM...M3R,.A)Y c (>nRC)?. From the fact
that both those concept expressions occur outside anyioegatquantifier scope (as
the transformation starts with a flattened knowledge badedaes not itself introduce
such nestings) in axioni3” € KB” andD’ € KB’ which are equal up to the substituted
occurrence, we can derive that? c D’Z. Then, fromD"? = 47 follows D'? = 47
making D’ valid in 7. Apart from D’, all other axioms from KBcoincide with those
from KB” and hence are naturally satisfied/inSo we find thatl” is a model of KB.

At the end of our inductive chain, we finally arriveRtAT(KB) which is equisatisfiable
to KB by Proposition 1.

Second, we show tha,(KB) has a model if KB has. Invoking Proposition 1 once
more, satisfiability of KB entails the existence of a modelFoAT(KB). Moreover,
every model ofFLAT(KB) can be transformed to a model 6£KB, as we will show

9 Here we assume a unary encoding of the numbeiote that the same can be achieved for a
binary encoding by using fresh roles as binary digits for complex rblesever, we stick to
the easier presentation for the sake of understandability.



using the same inductive strategy as above by doing iteratdkel transformations
following the syntactic knowledge base conversions. Agagsume KB is an inter-
mediate knowledge base obtained from’Kig eliminating the occurrence eh RA as
described above and suppasé a model of KB. Based on/, we now (nondetermin-
istically) construct an interpretatiQfi as follows:

— AT =L,

— forallC e N¢, letCJ :=CZ,

—forallSeNg\{R |1<i<n}letST =S,

— for everys € (>nRA)’, choose pairwise distinef, ..., €} with (5,¢’) € R’ and
e € Al (their existence being ensured b abovementioned concept member-
ship) and leR” = ((6,€’) | § € (=nRA)}.

Now, it is easy to see thdl satisfies all newly introduced axioms of the sh&|g n
Ri).L, as thee’ have been chosen to be distinct for evérioreover the axiomB C R
are obviously satisfied by construction. Finally, for élle (>nRA)? the construc-
tion ensure$ € (AR.AM ... 1N 3IR,.A)Y witnessed by the respectivé. So we have
(>nRA)Y ¢ (AR;.Am...M 3JR,.A)Y. Now, again exploiting the fact that both those
concept expressions occur in negation normalized univeoseept axiom®’ € KB’
andD” € KB” which are equal up to the substituted occurrence, we camedtrat
DY ¢ D"J. Then, fromD? = A7 follows D9 = 49 makingD” valid in 7. Apart
from D’ (and the newly introduced ones considered above), all akiems from KB’
coincide with those from KBand hence are satisfied ifi, as they do not depend on
theR whose interpretations are the only ones changegfl @ompared ta’. So we find
thatJ is a model of KB’ O

5.3 FromALCHIbL to ALCTLS

In the presence of restricted role expressions, role supomaxioms can be easily
transformed into Thox axioms, as the subsequent lemma shdigsallows to dispense
with role hierarchies itALCH Ib= thereby restricting it tcALCTb=.

Lemma 4. For any role names F5, the Rbox axiom B S and the Thox axioM(R
-S).1 are equivalent.

Proof. By the semantics’ definitiorR C S holds in an interpretatiod exactly if for
every two individualss, s’ with (s,6’) € R also holds(s,5’) € S’. In turn, this is
the case, if and only if there are @9’ with (5,6") € R but(5,¢’) ¢ S’ (the last
being expressible a8, 8’) € (=S)?). Furthermore, this condition can be formulated by
(R =S)! = 0. Finally this is equivalent t&(Rr —S). L. ]

Hence, for anyALCHIb* knowledge base KB, le®4(KB) denote theALCIb*
knowledge base obtained by substituting every Rbox ax®omS by the Thox axiom
Y(Rm =S).L. The above lemma assures equivalence of KB @aqKB) (and hence
also their equisatisfiability). Obviously, this reducticen be done in linear time.



54 FromALCIb*to ALCIFb

The elimination of the at-most concept descriptighfrom an ALCZb* knowledge
base is more intricate than the previously described toameftions. Therefore, we
subdivide it into two steps: first we eliminate concept expiens of the shapen RC
merely leaving axioms of the forml R. T (also known as role functionality statements)
as the only occurrences of number restrictions, hencerobtpa ALCI F b knowledge
base. Then, in a second step discussed in the next sectialimweate all occurrences
of axioms of the shapglR.T.

So let KB anALCIbs knowledge base. We obtain th8LCZFb knowledge base
O#(KB) by first flattening KB and then successively applying loé tfollowing steps
(stopping when no more such occurrence is left):

— Choose an occurrence of the shapeRA which is not a functionality axiom
<1RT,

— substitute this occurrence BYRM =R, M...M=R,).~AwhereRy, ..., R, are fresh
role names,

— for everyi € {1,...,n}, add¥R..A as well a<x1R,.T to the knowledge base.

Obviously, this transformation can be done in polynomiakj again assuming a unary
encoding of then. We now show that this conversion yields an equisatisfiabtek-
edge base. Structurally, the proof is very similar to thdterhma 3.

Lemma 5. Given anALCIb* knowledge bas&B, the ALCIFb knowledge base
O.(KB) andKB are equisatisfiable.

Proof. KB and FLAT(KB) are equisatisfiable by Proposition 1, so it remains towsh
equisatisfiability ofFLAT(KB) and ©(KB).

First, we prove that every model 6f.(KB) is a model ofFLAT(KB). We do so in an
inductive way by showing that no additional models can beothiced by any sub-
stitution step of the above conversion procedure. Henanas KB’ is an interme-
diate knowledge base having a modeand KB’ is obtained from KB by eliminat-
ing the occurrence okn RA as described above. Now consider an arbiti@fyom
the extension of the concep{Rm -R; M ... M =R,).-A. This ensures that when-
ever an individual’ € 47 satisfies(s,6’) € R’ and¢’ e A, it must additionally
satisfy (5,6’ € R for onei € {1,...,n}. However, it follows from the KB-axioms
<1R.T that there is at most one suéhfor eachR,. Thus, there can be at masin-
dividuals &’ with (5,¢6’) € Rf and¢’ € A. This impliess € (<nRA)!. So we have
(V(RM =Ry M...M=R,).-A)Y c (<nRA)!. Due to the flattened knowledge base struc-
ture, both those concept expressions occur outside the ssfagny negation or quan-
tifier within axiomsD” € KB” andD’ € KB’ which are equal up to the substituted
occurrence. Hence, we can derive tidt’ ¢ D’. Then, fromD”? = 4’ follows
DY = 47 making D’ valid in 7. Apart from D’, all other axioms from KBare con-
tained in KB’ and hence are naturally satisfiedinSo we find thatl is a model of
KB’ as well.



Second, we show that every model |fAT(KB) can be transformed to a model of
O.(KB). We use the same induction strategy as above by doingtée model trans-
formations following the syntactic knowledge base conesrs Again, assume KBis
an intermediate knowledge base obtained front K eliminating the occurrence of
a <nRC as described above and suppdsis a model of KB. Based on/, we now
(nondeterministically) construct an interpretatjgras follows:

— AT =L,

— forallC € Ng, letCJ = C?,

— forallSeNg\{R [1<i<n}letST :=S7,

— foreverys € (<nRA)’, letél, ..., & be an exhaustive enumeration (with arbitrary
but fixed order) of all those € 47 with (5,e) € R ande € A’. Therebys’s
aforementioned concept membership ensiaresn. Now, IetF§7 = {6, ef) | 6 €
(<nRA)}.

Now, it is easy to see thdf satisfies all newly introduced axioms of the shayddr,. T

as everys has at most on&-successor (namely, if § € (<n RA)?, and none other-
wise). Moreover, the axioméR;.A are satisfied, as thé have been chosen accordingly.
Finally for all§ € (<nRA)? the construction ensuréss (Y(RM-R; M. ..M-R,).~A)

as by construction, eadksuccessor af that lies within the extension &is contained

in ef, c eﬁ and therefore alsR-successor of for somei. Now, again exploiting the
fact that both those concept expressions occur in negationalized universal concept
axiomsD’ € KB’ andD” € KB” which are equal up to the substituted occurrence, we
can derive thaD’? ¢ D7, Then, fromD’? = 47 follows D’/ = 49 making D”
valid in 7. Apart fromD” (and the newly introduced ones considered above), all other
axioms from KB’ coincide with those from KBand hence are satisfied.if, as they

do not depend on thig whose interpretations are the only ones changefl@mpared

to 7. So we find thatJ is a model of KB’ |

55 FromALCIFbto ALCID

In the sequel, we show how the role functionality axioms &f $hape<1 R T can be
eliminated from anALCI ¥ b knowledge base while still preserving equisatisfiability.
Essentially, we do so by adding axioms that enforce thatfenefunctional roleR, any
two R-successors coincide with respect to their propertiesasgible in “relevant” DL
terms. While it is rather obvious that those axioms follownfr&'s functionality, the
other direction (a Leibniz-style “identitas indiscertipn” argument) needs a closer
look.

Taking anALCIFb knowledge base KB, le®+(KB) denote theALCIb knowledge
base obtained from KB by removing every role functionalitioan <1 R T and instead
adding

— YR-D U VRD for everyD € P(KB \ {<1RT € KB}) as well as
— Y(RMS).LuVY(RM=S)..L for every atomic roles from KB.

Clearly, also this transformation can be done in polynorimé and space w.r.t. the
size of KB.



Our goal is now to prove equisatisfiability of KB am-(KB). The following lemma
establishes the easier direction of this correspondency.

Lemma 6. AnyALCIF b knowledge badéB entails all axioms of theALCTb knowl-
edge bas®#(KB), i.e.KB £ 6#(KB).

Proof. Let J be a model of KB. Obviouslyy satisfies all axioms from KB &+ (KB).

It remains to consider the two kinds of axioms additionatiyoduced.

Firstly let D be an arbitrary concept. Now note thwR.—D LI YR.D is equivalent to the
GCI 3RD C YRD. In words, this would mean that for adye 47, all R-successors
are in the extension dd whenever one of them is. Yet this is trivially satisfied ifias
at most ondR-successor which is ensured by the corresponding fundtipm@aiom in
KB. Since we have shown the validity for arbitrary concdpighis holds in particular
for those fromP(KB \ {<1R.T € KB}).

Secondly, le§ be an atomic role. Mark tha((RM' S). L L V(RM =S). L is equivalent to
the GCI3(RM S).T C VY(RM =S).L. This means that for any € 47, all R-successors
are alsaS-successors of it, whenever one of them is. Again, thisvialty satisfied as
¢ has at most onB-successor. ]

The other direction for showing equisatisfiability, whiain@unts to finding a model of
KB, given one for@#(KB), is somewhat more intricate and requires some interated
considerations.

Lemma 7. LetKB be anALCI¥ b knowledge base and [Etbe the set of roles R with
<1RT e KB.

Then in every modeJl of O (KB), for everys, 61, 5, € 47 with (5,51) € RT and(s, 62) €
R7, we have

— forallC € P(KB \ {<1R T € KB}), thats; € C7 iff 5, € C7 as well as
— forall S € Ng, that(s,5:) € ST iff (6,8,) € S7.

Proof. For the first proposition, assuni& € C7. From(s,d;) € R7 follows § €
(ARC)7. Due to the®+#(KB) axiom YR-C LI YRC (being equivalent to the GCI
JRC C VRC) follows 6§ € (YR.C)7. Since(s, s,y € R7, this impliess, € CI. The
other direction follows by symmetry.
To show the second proposition, assuiié,) € S7. Since alsds, §1) € R7, we have
(6,61) € RN'ST and hence € (A(RM'S).T)Y . From the@#(KB) axiomY(RM S).L LI
Y(RM=S).L (which is equivalent to the GCI(RMS).T C -3(RM=S).T) we conclude
§ € (-A(RM=S).T)7, in words:s has noR-successor that is not i&successor. Thus,
as(d,d,) € RJ, it must also hold thats, 5,) € S7. Again, the other direction follows
by symmetry.

|

In order to covert a model @#(KB) into one of KB, one has to enforce role function-
ality where needed by cautiously deleting individuals fritva original model without
changing relevant concept memberships. The subsequenitidefprovides a method
for this.



Definition 7. Let J be an interpretation and lef’ be the domino interpretation of
nc(9) of some concept sét For a concept seD C C, an interpretation will be
called D-pruningof 7, if K can be constructed froifiin the following way: setly = 47
and then iteratively determing,; from 4; as follows:

— Select a word-length minimal from 4; where there are distinci;, 52 € 4; with
0+ {ReNgr|{50)eR}={ReNg|{5d) € R}and{C e P(D |6, € C} =
{CeP(D|s, eCl).

— Because of the construction #f for one ofé;, 5> (w.l.0.g. say:s,) we have that
02 = 0(A, R, B).

Deletes, from 4; as well as alls” havingé, as prefix.

Finally, let X be the limit of this process1™ := Ny 4i and-X being the function’
restricted toa”.

Roughly speaking, ang-pruningof 7 is (nondeterministically) constructed by delet-
ing successors not distinguishable w.r.t. the set of cdraegTriptionsD. Mark that the
tree-like structure of the domino interpretation is cru@ieorder to make the process
well-defined.

Lemma 8. LetKB be anALCI ¥ b knowledge base, Igf be a model o0& (KB), and
letKB* := KB\ {<1R T € KB}. Then, anyKB"-pruning ofZ (rp, «s) (J)) is @ model
of KB.

Proof. By Proposition 2,7 = I(npe, ks (J)) is @ model of@+(KB), i.e., it fulfills
all axioms from@#(KB). Now let K be a KB'-pruning of 7. For showingK E KB, we
divide KB into two sets, namely the set of role functionalitsioms KB and{<1R T €
KB} and showK £ KB* andK E {<1R T € KB} separately.

So, we start by showingl = KB™.

We show this by proving that for ea¢he P(KB*) and for every individuad from %,

we haves € C¥ exactly if6 € C’. The claim for all Boolean combinations of elements
from P(KB*) (and hence also the global validity of the axioms from*K&Bien follows
by an easy structural induction.

We distinguish three cases (at places invoking the claim in@uctive way on formulae
with smaller role depth):

— CeNcU{T, 1}
Then the coincidence follows directly from the constructid .
— C=4duU.D.
=
§ € (AU.D)X means that there is&-individual &’ with (5,5"y € UX and¢’ € DX.
Because of the constructionf by pruningZ, this means als@, 8’y € U and by
induction hypothesis, we haw € DY, ergos € (3U.D).

=
If § € (AU.D)?, there is an7-individual ¢’ with (5, ¢’y € UZ ands’ € D?. In case

&’ is not deleted during the construction &f, it proves (by using the induction
hypothesis orD) thats € (3U.D)X. Otherwise, it must have been deleted due to



the existence of anothdr-individual 8 with {R e R | (6,6”) e R’} = {Re R |
(6,6"y € R} and{E € P(KB*) | §” € Ef} = {(E € P(KB*) | & € E’}, which
(w.l.o.g.) does not get deleted in the whole constructiaacedure. Yet, then the
K-individual 5" obviously proves € (3U.D)X.

— C=VRD.
=
Assume the contrary, i.ef,e (YU.D) buté ¢ (vU.D)? which means that there is
an 7-individual &’ with (5,¢8’) € UZ buté’ ¢ D’. In cases’ has not been deleted
during the construction ok, it disprovess € (YU.D)X (by invoking the induction
hypothesis o) leading to a contradiction. Otherwis®,is deleted because of the
existence of anothef-individual 8 with {(Re R [ (5,6”) e R'} = {Re R | (5,8 €
R’} and{E € P(KB*) | 6 € E’} = (E € P(KB*) | &' € E’}, which (w.l.0.g.) does
not get deleted in the whole construction procedure. Yet theX-individual §”
obviously contradicts € (3U.D)X.
“en
Assume the contrary, i.ef,e (YU.D)? buts ¢ (YU.D)X. The latter means that there
is aK-individual 8’ with (5,¢’) € UK ands’ ¢ D*X. Because of the construction
of K by pruningZ, this means als¢s, 8’) € U? and¢’ ¢ D?, ergos ¢ (YU.D)?,
contradicting the assumption.

We proceed by showing that every rdkewith <1R. T € KB is functional in’K. Let

6 € 4%, By Lemma 7 and the pointwise correspondence betweamd % shown in the
previous part of the proof, for any twig-successorg,, 5, of ¢, two statements hold:
Firstly, for allC € P(KB*), we have thas; € CX iff 6, € CX. Secondly, for allS € Ng

we have thats, 6,) € S iff (6,6,) € SX. However, in the pruning process generating
%K, exactly such duplicate occurrences are erased, leavimpstt oneR-successor per
6. Thus we concludé; = 6,.

So we end up having shown that all axioms from KB are satisfiei.i ]

Finally, we are ready to establish the equisatisfiabiliguitalso for this last transfor-
mation step.

Theorem 2. For any ALCI¥b knowledge bas&B, the ALCIb knowledge base
0+(KB) andKB are equisatisfiable.

Proof. Lemma 6 ensures that every model of KB is also a modélaKB). Moreover,
by Lemma 8, given a modeJ for of O4(KB), any KB*-pruning of 7 (7pe, «g) (J))
(obviously, the existence is assured by constructive difin)iis a model of KB. This
finishes the proof. |

In summary, we have shown in this section how to transfo$#& Q knowledge base
KB into an equisatisfiablé1LC7b knowledge base by calculatittty O O 0,0 s(KB).
Moreover, as every of the single transformation steps is fiwlynomial, so is the over-
all procedure. Therefore, we are able to check the satibfiabf any SH7Q Thox us-
ing the method presented in the preceding section, by fasstorming it intaALCIb
and then checking.



6 Related Work

The approach of constructing a canonical model (resp.fiscent representation of
it) in a downward manner (i.e. by pruning a larger structstgws some similarity to
Pratt’'s type elimination technique (see [12]), originalised to decide satisfiability of
modal formulae.

Canonical models themselves have been a widely used natimodal logic [13, 14],
however, due to the additional expressive powerAfCIb compared to standard
modal logics like K (being the modal logic counterpart of tesscription logicALC),
we had to substantially modify the notion of a canonical nhoded there.

Very related in spirit (namely to use BDD-based reasonim@fo reasoning tasks and
use a type elimination-like technique for doing so) is thekyaresented in [7]. How-
ever, the established results as well as the approacfiesglieatly from ours: put into
DL words, the authors establish a procedure for decidingdtisfiability of ALC con-
cepts in a setting not allowing for general TBoxes, while @pproach is able to check
satisfiability of SHIQ (resp.ALCIb) knowledge bases supporting general TBoxes,
thereby generalizing the results from [7].

7 Conclusion and Outlook

The main contribution of this paper is that it provides a négoathm for termino-
logical reasoning in the description logRH7Q, based on ordered binary decision
diagrams, which is a substantial improvement to [7]. Obsiguexperiments will have
to be done to investigate whether the conceptual insightiiehnindicate a competi-
tive performance level — really work in practice. A protatyjnplementation is under
way, and will be reported on in the future. OBDDs have showseb&nt practical per-
formance in structurally and computationally similar dansa so that some hope for
practical applicability of this approach seem to be judifie

The major technical contributions in this paper are in fa-fold.

To prove the correctness of our algorithm we had to elabanatthe model theoretic
properties ofALCIb. The technique was given in terms of Boolean functions bding
rectly transferable into an algorithm based on OBDDs. Weethye provide the theoret-
ical foundations for a novel paradigm for DL reasoning, vialhtan be explored further
not only in terms of implementations and evaluations, bew & other directions.

We also showed how a terminologicstH 7 Q knowledge base can be converted into an
equisatisfiableALCIb knowledge base, thereby providing a foundational insight t
reasoning inSHIZQ can be done by developing reasoning solutions#AcfCrb. In
particular, we showed that (qualified) number restrictioas be eliminated if allowing
restricted complex role expressions.

Obviously, we intend to evaluate our approach by compatit@well-established f6-
the-shelf reasoners, both tableau- and resolution-bgg@daches, and a prototype im-
plementation is already under way. In fact, we are rathefident with respect to per-
formance, as OBDDs have exhibited an excellent practiodbpeance in structurally
and computationally similar domains.



Besides implementation and evaluation, in the future wéexiiend our work towards
Abox reasoning and to dealing with more expressive OWL DL troets such as nom-
inals.
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