
Multi-objective Linked Data Query
Optimization

Technical Report

Günter Ladwig Thanh Tran
Institute AIFB, Karlsruhe Institute of Technology, Germany

{guenter.ladwig,ducthanh.tran}@kit.edu

With the rapid proliferation of Linked Data on the Web, the topic of Linked
Data query processing has recently gained attention. Works in this direction
do not assume full availability of SPARQL endpoints. As an alternative
to federation over these endpoints, this new querying paradigm follows the
Linked Data principles to use only HTTP lookups for accessing and querying
Linked Data. Existing works focus on the ranking and pruning of sources
behind the query URIs, or on the efficient processing of data after they have
been retrieved from sources. However, there exists no systematic approach
for query plan optimization, especially the kind that considers both of these
problems in a holistic way. Further, observing that result completeness is no
longer a strict requirement and that there is an inherent trade-off between
completeness, execution cost and other criteria, we propose a multi-objective
optimization framework. In experiments on real world Linked Data, Pareto-
optimal plans computed by our approach show benefits over suboptimal plans
generated by existing solutions.

1 Introduction

In recent years, the amount of Linked Data on the Web has been increasing rapidly.
SPARQL endpoints providing structured querying capabilities are available for some
Linked Data sources such that federated query processing is possible. However, not all
Linked Data providers, such as Website owners, can and want to serve their data through
these endpoints. Instead, they follow the Linked Data principles [1], which dictate how
to publish and to access Linked Data on the Web. According to these, dereferencing a
Linked Data URI via HTTP should return a machine-readable description of the entity
identified by the URI. As a result, while all Linked Data sources are accessible through
HTTP lookups, only a few of them can be retrieved via SPARQL queries.

1

As an alternative to federation over remote SPARQL endpoints, researchers recently
started to study the problem of Linked Data query processing [5, 3, 8, 4, 9], which relies
only on HTTP lookups. One may argue that when remote SPARQL endpoints are not
reliable or do not exist, Linked Data can be crawled and managed locally. Also with
respect to this solution, Linked Data query processing can be seen as an alternative
that provides up-to-date data and can be used in an ad-hoc fashion in scenarios where
crawling and preprocessing are not affordable. In fact, it can also be seen as a focused
crawling mechanism that can be run in batch mode for retrieving data for specific queries.

Src. 1: http://example.org/beatles

ex : b e a t l e s
f o a f : name ”The Beat l e s ” ;
ex : album ex : he lp ;
ex : album ex : sg t pepper .

Src. 2: http://example.org/help

ex : he lp
f o a f : name ”Help ! ”

;
ex : song ex : n ight

;
ex : song ex : g i r l .

Src. 3: http://example.org/sgt pepper

ex : sg t pepper
f o a f : name ” Sgt . Pepper” ;
ex : song ex : lucy ;
ex : song ex : f r i e n d s .

Src. 4: http://example.org/girl

ex : g i r l
f o a f : name ”Another G i r l ” .

Src. 5: http://example.org/night

ex : n ight
f o a f : name ”The Night . . . ” .

Src. 6: http://example.org/lucy

ex : lucy
f o a f : name ”Lucy . . .

” .

Figure 1: Example Linked Data sources. The prefix ex: expands to
“http://example.org/”.

Example 1. Figs. 1 & 2 show examples of Linked Data sources with their data and a
SPARQL query, respectively. For processing such a query, a Linked Data query engine
dereferences the URIs ex:beatles, ex:sgt pepper and ex:lucy and retrieves the whole
content of the sources 1, 3 and 6, respectively, via HTTP URI lookups. Then, links
from these sources to other sources are explored for retrieving additional data that may
be relevant, e.g. to follow the URI ex:help in source 1 to obtain source 2 (again, via
HTTP lookup). While the data is being retrieved, the structured query is processed, i.e.
matching triples from the incoming data streams are obtained for every triple pattern,
which are then joined to produce “Lucy...” as a match for ?name.

Clearly, the problems with this querying paradigm are (1) expensive data access
through live lookups on the Web, (2) large amount of data to be processed because
Linked Data sources have to be retrieved as a whole and a (3) large number of sources
that have to be considered.

Existing works focus on the ranking and pruning of sources [8, 3], or on the effi-
cient processing of data while it is retrieved from sources [5, 9], i.e. joins and traversal
algorithms for retrieving and processing data from sources. However, there exists no sys-
tematic approach for query plan optimization, especially the kind that considers both the
problems of source selection and data processing in a holistic way. Further, we observe
that due to long execution times resulting from the large number of sources and their

2

1 SELECT ?name WHERE {
2 ex : b e a t l e s ex : album ?album .
3 ?album ex : song ? song .
4 ? song f o a f : name ?name .
5 }

Figure 2: Example query asking for names of songs in albums of the Beatles. The query
consists of three triple patterns t1 (line 2), t2 (line 3), and t3 (line 4).

high processing cost, result completeness is often no longer affordable. Instead of assum-
ing completeness and optimizing exclusively for cost, other criteria such as relevance,
quality and cardinality of results, and trustworthiness of sources may be considered.
This is problematic because these criteria are not always complementary. For instance,
there is an inherent trade-off between output cardinality and cost: to produce more re-
sults, we have to retrieve more sources, which in turn increases processing cost. Taking
this trade-off into account, we propose a multi-objective optimization framework. The
contributions of this work can be summarized as follows:

(1) Solutions related to Linked Data query processing include (a) query processing
strategies [5, 8] and (b) using Linked Data summaries [3] and heuristics for adaptive
ranking to select only the few best sources [8]. However, there exists no works that
systematically study the problem of query optimization, i.e. consider different query
processing strategies as query plans, establish optimality criteria for these plans, and
find the optimal ones. We propose the first solution towards a systematic optimization
of Linked Data query processing that holistically considers these two (a) and (b) parts
of the problem.

(2) In particular, we propose an optimization framework for Linked Data query pro-
cessing, which incorporates both standard query operators and source selection. That
is, we propose to extend the scope of query optimization from how to process data to
also include which data to process. This is to reflect the nature of Linked Data query
processing, where source selection and scanning become an essential part. Further, this
framework supports the joint optimization of several objectives, cost and output cardi-
nality in particular.

(3) We propose a dynamic programming (DP) solution for the multi-objective opti-
mization of this integrated process of source selection and query processing. It produces
a set of Pareto-optimal query plans, which represent different trade-offs between opti-
mization objectives. The challenge of using DP here is that after retrieval, sources can
be re-used in different parts of the query, i.e. the source scan operators can be shared.
Depending on the reusability of these operators, the cost of subplans may vary such that

3

the cost function is no longer monotonic with regard to the combination of subplans.
We provide a tight-bound solution, which takes this effect into account.

Outline. In Section 2 we introduce the problem of multi-objective Linked Data
query processing. In Section 3 we propose an optimization framework for Linked Data
query processing. Section 4 describes our adaptation of DP for multi-objective query
optimization. Section 5 gives and overview of related work. Finally, we evaluate our
approach in Section 6 before concluding in Section 7.

2 Problem Definition

We first define the data and query model and then introduce the problem of processing
queries over Linked Data.

2.1 Linked Data and Queries

Linked Data on the Web today is basically RDF data managed according to the Linked
Data principles. RDF is a graph-structured data model, where basic elements (called
RDF terms) are URI references U , blank nodes B and literals L that can be used to
form triples, 〈s, p, o〉 ∈ (U ∪ B)× U × (U ∪ B ∪ L), which together form an RDF graph.
The Linked Data principles [1] mandate that (1) HTTP URIs shall be used and that (2)
dereferencing such an URI returns a description of the resource identified by the URI,
i.e. a set of triples where the URI appears as subject or object. Therefore, an HTTP
URI reference is treated as a data source, called a Linked Data source, whose constituent
triples can be retrieved by performing a HTTP URI lookup, and they contain other URI
references leading to other sources (obtained via further URI lookups):

Definition 1 (Linked Data Source / Graph). A Linked Data source, identified by an
HTTP URI d, is a set of RDF triples 〈s, p, o〉. There is a link between two Linked Data
sources di, dj if dj appears as the subject or object in at least one triple of di, i.e. ∃t ∈
T di , t = 〈dj , p, o〉 ∨ t = 〈s, p, dj〉 or vice versa, ∃t ∈ T dj , t = 〈di, p, o〉 ∨ t = 〈s, p, di〉. The
union set of sources di ∈ D constitutes the Linked Data graph TD = {t|t ∈ T di , di ∈ D},
where D denotes the set of all Linked Data sources.

The standard for querying RDF data is SPARQL, of which basic graph patterns
(BGP) are an important part. As illustrated in Fig. 2, a BGP is a set of triple patterns
Q = {t1, . . . , ti, . . . , tn}, ti = 〈s, p, o〉, with s, p and o being either a RDF term (called
constant) or a variable. Typically, every triple pattern in Q shares one common variable
with at least one other pattern in Q such that Q forms a connected graph. Computing
answers to a BGP query over the Linked Data graph amounts to the standard task of
graph pattern matching, where a query result is a mapping, µTD : V → TERM , from
variables in the query graph Q to RDF terms in the Linked Data graph TD. For intuitive
presentation, we use the notation µTD both to refer to the result nodes in TD that match
the query variables and the triples (subgraphs) that match a triple pattern (a BGP).

4

2.2 Processing Linked Data Queries

A BGP query is evaluated by first obtaining bindings for each of its constituent triple
patterns q ∈ Q and then performing a series of joins between the bindings. This is
done for every two patterns that share a variable, forming a join pattern (that variable
is referred to as the join variable). In the Linked Data context, BGP queries are not
evaluated on a single source, but, in order to obtain all results, they have to be matched
against the combined Linked Data graph TD, where relevant sources in TD have to be
retrieved on the fly.

Previous work proposes exploration-based link traversal [5, 4] for obtaining relevant
sources. These approaches take advantage of links between sources and discover new
sources at run-time by traversing these links. For this, the query is assumed to contain
at least one constant that is a URI. This URI is used for retrieving the first source,
representing the “entry point” to the Linked Data graph. Triples in this entry point
represent links to other sources. By following these links, new sources are discovered
and retrieved. When retrieved sources contain data matching the query triple patterns,
they are selected and joined to produce query results.

Given the large number of Linked Data sources and their high retrieval costs, it is often
not practical to process all relevant sources. Thus, existing work does not guarantee
result completeness but instead, ranks and processes the few best sources [3, 8]. The
on-the-fly source exploration mentioned above has been combined with compile-time [3]
and adaptive ranking of sources [8]. The idea is that, whenever statistics about sources
are available, they can be exploited to find sources more effectively than zero-knowledge
on-the-fly exploration. The most common statistics used is a source index, which maps
a triple pattern t to URIs representing sources that contain results for t, i.e. source(t) =
{d|d ∈ D∧, µT d(t) 6= ∅}. Often, the source index used by existing work not only returns
the URIs but also selectivity information for triple and join patterns. These statistics
are collected from previously explored sources or catalogs such as CKAN1.

These existing works address the subproblems of (a) how to process SPARQL BGP
queries in the Linked Data setting [5, 4, 8], i.e. when only URI lookups are available, and
(b) how to obtain Linked Data summaries and statistics to select relevant sources [3, 8].
We focus on the compile-time optimization of Linked Data query processing, given the
statistics acquired and stored in the source index. Compared to existing works above,
the novelties are:
• We provide a framework for Linked Data query optimization: we show that Linked

Data query processing can be formulated as query plans. Based on optimality
criteria defined and metrics obtained for these plans, we systematically study the
finding of optimal ones as an optimization problem.
• We propose a holistic solution to optimization that considers both the subproblems

of (a) and (b), i.e. selecting and retrieving data from the sources as well as match-
ing the query against this data to produce results. Further, this optimization is
performed w.r.t. multiple objectives, which is solved through a novel DP solution.
The optimization performed is done at compile-time, which as future work, can be

1http://ckan.net

5

integrated with adaptive optimization [8] that may also considers the exploration
and retrieval of additional sources and computing their statistics on-the-fly.

3 Optimization Framework

The framework presented here provides the foundation for systematic solutions towards
Linked Data query optimization, which consider the effect of query operators to compute
and guarantee the (Pareto-)optimality of query plans.

3.1 Query Operators

The main difference to traditional federated query processing is that while (some) rele-
vant sources can be determined using statistics in the source index, their entire content
have to be retrieved via URI lookups as opposed to retrieving only the parts matching
the query pattern by leveraging the structured querying capabilities of SPARQL end-
points. This is similar to a table scan. The difference is that sources have to be retrieved
from remote sites. Moreover, several sources may contain answers for one single query
predicate (triple pattern), and vice versa, one single source may be used for several
predicates. We introduce the source scan operator to capture this:

Definition 2 (Source Scan). The input of a source scan operator scand is the source
URI d. Executing this operator outputs all triples in d, i.e. scand = T d.

Once source data is available, the query is processed using standard operators, i.e.
operators also used for federated query processing. A selection σT d(t) is performed on
the input T d to output triples in T d that match the triple pattern t. The outputs of
two patterns ti and tj that share a common variable are joined as ti 1 tj . The union
operator is used to combine results from different patterns, or from different sources for
one pattern:

Definition 3 (Source Union).
⋃

(I1, . . . , In) outputs the union of its inputs Ii, 1 ≤
i ≤ n, where every input Ii may stand for results for one triple pattern, Ii = µ(t), or
subexpression, e.g. Ii = µ(T). Because a triple pattern can match several sources, Ii may
also capture partial results for a pattern t such that the union

⋃
(σT d1 (t), . . . , σT dn (t))

combines results from several selection operators.

3.2 Query Plan

Query plans for relational databases generally consist of access plans for individual re-
lations whose outputs are then processed by join and other operators. Here, we create
an access plan for every triple pattern:

Definition 4 (Access Plan). Given a query Q, let t ∈ Q be a triple pattern in Q and
D = source(t) be the set of sources for t. An access plan p(t) for t is a tree-structured
query plan constructed in the following way: (1) at the lowest level, the leaf nodes of p(t)
are source scan operators, one scandi = T di for each di ∈ D; (2) the next level contains

6

selection operators, one for processing the output of every scan operator, i.e. we have
σT di (t) for every di ∈ D; (3) the root node is a union operator

⋃
t(σT d1 (t), . . . , σ

T
d|D| (t))

that combines the outputs of all selection operators for t.

At the next levels, the outputs of access plans’ root operators are successively joined
to process all triple patterns of the query, resulting in a tree of operators. However,
in Linked Data query processing, it is often the case that a single Linked Data source
contains data matching several triple patterns. It is therefore possible that a data source
is used for more than one query triple pattern. In this case it is detrimental to execute
the scan operator more than once as this will incur network costs that can be avoided.
We therefore perform operator sharing, where the output of a source scan operator is
used as input for more than one selection operator, i.e. the output is shared. This means
that access plans may overlap and the query plan is no longer a tree, but has the form
of a directed acyclic graph (DAG) [11].

To avoid reading the outputs of shared operators multiple times, temporary buffers (on
disk or in memory) can be used to store them, from which subsequent reads are served.
This strategy however incurs overhead for writing and storing the temporary buffer.
Thus, we propose the use of push-based execution, where (shared) operators simply push
their outputs to all subsequent operators in the DAG, resulting in a reversed control
flow compared to the classic iterator model. That is, instead of having several operators
pulling and consuming their shared input independently, the output of a shared operator
is pushed to and processed by all its consumers at the same time.

Figure 3: Query plan for the example query.

Example 2. Assuming the source index returns that the relevant sources for the given
query from Fig. 2 are (1) ex:beatles, (3) ex:sgt pepper and (6) ex:lucy, Fig. 3 shows a
corresponding query plan. To capture the sources, there are three corresponding source
scan operators. Together with selection and union operators, the source scans form 3
access plans for the 3 triple patterns t1, t2, and t3. The outputs of the access plans are
then combined using 2 join operators.

As the sources ex:beatles and ex:sgt pepper contain relevant data for more than one

7

triple pattern (t1, t3 and t2, t3, respectively), their source scans are shared, i.e. the outputs
of the these operators feed into 2 access plans.

3.3 Pareto Optimal Plans

In standard cost-based optimization, completeness is assumed such that all results have
to be computed. Optimality in this case is defined with respect to processing cost,
and the goal is to find plans that are cost-optimal, i.e. to produce all results at lowest
cost. Completeness is often not practical in Linked Data query processing and existing
approaches select only a few best sources [3, 8] to terminate early. Not only cost but also
the number of results and other aspects such as the trustworthiness of sources and the
quality of data may play an important role. This is especially the case when Linked Data
query processing is used in batch mode to crawl for data that meets certain criteria.

Multi-objective optimization can be used to support this. For a query Q, the goal
is to compute the Pareto-optimal set of query plans that represents different trade-offs
between multiple objectives. For clarity of presentation, we will focus on the two main
objectives of maximizing output cardinality, card(·), and processing cost, cost(·). The
Pareto-optimal set of solutions is defined using a dominance relation that incorporates
the multiple objectives. A query plan is considered to dominate another plan, if it is at
least as good in all objectives and better in at least one objective:

Definition 5 (Dominance). Given two query plans p1 and p2, p1 dominates p2 (p1 > p2)
if both the cost and cardinality of p1 are “better” or equal to the cost and cardinality of
p2, and either the cost or cardinality is strictly “better” than the cost or cardinality of
p2, i.e. cost(p1) ≤ cost(p2) ∧ card(p1) ≥ card(p2) ∧ ((cost(p1) < score(p2) ∨ card(p1) >
card(p2))⇒ p1 > p2.

Definition 6 (Pareto Optimal Plans). Given a query Q and a set of query plans P (Q)
for Q, the Pareto-optimal set P ∗(Q) ⊆ P (Q) comprises all plans that are not dominated
by any other plan in P (Q), i.e. P ∗(Q) = {pi ∈ P (Q)|¬∃pj ∈ P (Q), pj > pi}. We denote
the set of dominated plans as P−(Q) = P (Q) \ P ∗(Q).

4 DP Solution

In this section we propose a DP solution to the multi-objective Linked Data query opti-
mization problem based on the original DP algorithm [17]. The original DP algorithm
for query optimization works in a bottom-up fashion, constructing the query plan from
the leaves, which are table scan operators to access relations. DP is used to deal with
the exponentially large search space of possible query plans. It takes advantage of the
optimal substructure of the problem, i.e. the optimal plan can be constructed from op-
timal subplans such that non-optimal subplans can be discarded during the process to
reduce the search space.

For optimizing Linked Data query processing, we propose to construct access plans
P (t) for every triple pattern t ∈ Q. These atomic plans are then successively combined

8

using join operators to create composite plans for larger subexpressions T ⊆ Q. For
instance, to construct a query plan for the expression T = t1 1 t2, the optimizer may
consider all possible pairs {(p1, p2)|p1 ∈ P (t1), p2 ∈ P (t2)} as possible combinations of
plans. When combining two plans p1, p2 to form a new plan p, we write p = cmb(p1, p2).
At each stage, the optimizer reduces candidate subplans by discarding those that cannot
be part of an optimal solution. That is, before constructing plans for larger subexpres-
sions the optimizer creates P ∗(T) ⊆ P (T) for every subexpression T .

In the following, we firstly discuss how to use existing techniques to estimate the
optimality of subplans for any expressions T ⊆ Q. We note that the focus of this
work is not to obtain accurate cost and cardinality estimates but a DP solution that
produces optimal plans by combining subplans (given their estimates). We discuss the
main problems that arise when using DP for our problem. Firstly, we need to establish
the comparability of plans, given there are multiple objectives. Further, because query
plans are no longer required to produce all results, a relaxation of the comparability
constraint is needed. Also, there is the effect of operator sharing. We will establish
tight bounds on subplans’ costs to deal with this effect and prove that the resulting
multi-objective query optimization problem still has optimal substructure such that the
proposed solution yields the Pareto-optimal solution.

4.1 Estimating Cost and Cardinality of Plans

We focus on basic estimates needed in this work that are commonly used and refer the
readers to works on SPARQL selectivity estimation for more advanced techniques [12, 6].

Operators. The output cardinality of the source scan operator is the same as the
size of the source, i.e. card(scand) = |T d|. This source size statistics can be directly
obtained from the source index. For union, cardinality is the sum of the cardinalities
of its inputs: card(∪(I1, ..., In)) =

∑n
i=1 card(Ii). The cardinality for selection and join

depends on selectivity estimates sel(·), i.e. card(σT d(t)) = sel(t) × |T d| and card(ti 1
tj) = sel(ti 1 tj)× card(ti)× card(tj), respectively. Costs for scan, selection, union and
join are cost(scand) = hs × |T d|, cost(σT d(t)) = hσ × |T d|, cost(∪) = h∪ × card(∪), and
cost(1) = h1 × card(1), respectively. This is because cost is typically assumed to
be proportional to cardinality. The different weights hs, hσ, h∪, and h1 can be used
to reflect the ratio between the two. Typically, these parameters are tuned based on
performance results observed from previous workloads and the availability of indexes
and algorithms. For instance, h1 depends on the join algorithm employed. In case of
operator sharing, separate cost models for the first source scan (when the data is retrieved
over the network) and subsequent scans (when the data has already been retrieved) are
used. We use cost2(scand) = (1− b)× cost1(scand), where cost1 denotes first time cost,
cost2 stands for cost for each subsequent scan, and b is a parameter to control the benefit
achievable through operator sharing.

Atomic Plan. The cardinality of an access plan p(t) is captured by its root node,
i.e. card(p(t)) = card(∪t). Its cost is calculated as the sum of the cost of its nodes.
Source scan nodes are marked after first time usage so that the right cost model can be
determined for this calculation.

9

Composite Plan. Composite plans capture the joins between results obtained
for several triple patterns (outputs of access plans). For an expression T = ti 1 tj ,
card(p(T)) = card(ti 1 tj) and cost(p(T)) = cost(ti 1 tj).

4.2 Comparability

Comparability is defined as an equivalence relation ∼ over plans. It determines which
plans are comparable, based on which the optimizer decides which plans are suboptimal
and then prunes all but the optimal plans for each equivalence class induced by ∼.

In the traditional setting, atomic operators and plans are comparable when they pro-
duce the same results. This comparability relation is applicable there because input
relations are fixed given the query such that operators used to process them produce the
same output and vary only with regard to cost, i.e. plans are compared only w.r.t. cost
because they produced the same results. The optimizer only chooses how to process data
(e.g. table or index scan) based on cost estimates. In Linked Data query processing,
however, the selection of sources (represented by source scan operators) is part of query
optimization. Thus, the optimizer decides both what and how data shall be processed,
i.e. plans have to be compared w.r.t. cost and the results they produce. If we apply
the comparability concept as defined previously, each unique combination of source scan
operators may yield different results and thus, constitutes a separate equivalence class
of query plans. This limits the number of comparable plans and hence, those that can
be pruned.

However, we note that given the objectives here are cardinality and cost, we are
not interested in which results but how many results will be produced. Accordingly, a
relaxation of this comparability relation can be employed that enables the optimizer to
prune plans more aggressively.

Definition 7. Two query plans pi, pj are comparable if they produce results for the same
expression, i.e. pi(Ti) ∼ pj(Tj) if Ti = Tj.

This relaxation means that plans can be compared even when they do not produce
exactly the same results. The equivalence class of comparable plans is enlarged to include
all plans that produce the same type of results (bindings for the same pattern). As a
consequence, the query can be decomposed into subpatterns, and plans constructed for
subpatterns can compared w.r.t. the objectives.

4.3 Monotonicity and Dominance

Every objective can be reflected by a scoring function. When combining plans for sub-
patterns to successively cover a larger part of the query, the scores of these subplans
have to aggregated. For pruning suboptimal plans, a central requirement for the DP
solution is that the scoring function must be monotonic with respect to plan combina-
tion. Only then, it can be guaranteed that some subplans can be safely pruned because
they cannot be part of optimal plans. We now discuss monotonicity w.r.t. the scoring

10

functions for the objectives of cost and cardinality, and show under which conditions
pruning is possible.

Cardinality. Atomic plans are combined to capture joins between results. The mono-
tonicity of the cardinality scoring function can be established because the cardinality
function for join is monotonic:

Lemma 1. Given a query Q, let T, T ′ ⊂ Q be two subexpressions of Q, such that
T ∩ T ′ = ∅. Let p1, p2 ∈ P (T) and p′ ∈ P (T ′) be plans for T and T ′. Then we have
card(p1) ≤ card(p2)⇒ card(cmb(p1, p

′)) ≤ card(cmb(p2, p
′)).

Proof. The combination above captures the expression T 1 T ′. Based on the defini-
tion of card(T 1 T ′), we write the condition in the lemma as card(p1) ≤ card(p2) ⇒
card(p1)× card(p′)× sel(T 1 T ′) ≤ card(p2)× card(p′)× sel(T 1 T ′). This is true due
to monotonicity of multiplication.

Cost. For cost estimation, operator sharing is taken into account. Because the costs
of first and subsequent scans vary, the cost of the source scan operator changes when
a plan is combined with another plan that shares that operator. Suppose we have two
plans p, p′ for the subexpression T ⊂ Q and cost(p) > cost(p′), and a plan pt for a triple
pattern t such that Q = T ∪ t. The optimizer would consider p′ to be the optimal plan
for T and discard p to form P ∗(T) = {p′}. Now, due to operator sharing it is possible
that the cost of the combination of two plans is less than the sum of the cost of the
two combined plans, i.e. it is possible that cost(cmb(p, pt)) < cost(cmb(p′, pt)) if p and
pt share the same source such that the cost of pt when combined with p is much lower
than the cost of pt that is combined with p′. In this case, p′ is not part of P ∗(T).

Cost Bounds for Partial Plans. In order to take this effect of operator sharing
into account when calculating the cost of a partial plan p, we define upper and lower
bounds for p based on larger plans that use p as subplans:

Definition 8 (Lower and Upper Bound Cost). Given a query Q, the subexpres-
sions T ⊂ Q, T ′ = Q \ T , a plan p ∈ P (T), and let P p(Q) ⊆ P (Q) be the set
of all plans for Q that are constructed as combinations of p and plans in P (T ′):
P p(Q) = {cmb(p, p′)|p′ ∈ P (T ′)}. Then, we have lower bound cost for p as costQL (p) =

MIN{cost(cmb(p, p′))|cmb(p, p′) ∈ P p(Q)} and upper bound cost for p as costQU (p) =
MAX{cost(cmb(p, p′))|cmb(p, p′) ∈ P p(Q)}.

Intuitively, a plan pi for a subexpression T of Q is “worse” in terms of cost than another
plan pj for T , if all plans for Q that are based on pi have higher cost than all plans for

Q that are based on pj , i.e., if costQL (pi) > costQU (pj). Based on these bounds, we can
establish the monotonicity of plan cost with respect to plan combination as follows:

Lemma 2. Let T, T ′ ⊂ Q be two subexpressions of Q such that T ∩ T ′ = ∅, and p1, p2 ∈
P (T) and p′ ∈ P (T ′) be plans for T and T ′, respectively. We have

costQU (p1) ≤ costQL (p2)⇒ costQU (cmb(p1, p
′)) ≤ costQL (cmb(p2, p

′))

11

Proof. Any plan for Q that is constructed as the combination p′1 = cmb(p1, p
′), i.e.,

any plan in P p
′
1(Q), is also a p1-combination (because p′1 is constructed based on p1)

such that P p
′
1(Q) ⊆ P p1(Q) and thus, costQU (p′1) ≤ costQU (p1). Analogously, for p2 and

p′2 = cmb(p2, p
′), we have costQL (p′2) ≥ costQL (p2). Hence, costQU (p1) ≤ costQL (p2) ⇒

costQU (p′1) ≤ cost
Q
L (p′2).

Based on these results for cardinality and cost monotonicity, we now refine the domi-
nance relation to make it applicable to subplans, i.e., plans for strict subexpressions of
Q:

Theorem 1. Given a query Q, a subexpression T ⊂ Q and two comparable plans p1 ∼ p2
for T , p1 > p2 if card(p1) ≥ card(p2) ∧ costQU (p1) ≤ costQL (p2) ∧ (card(p1) > card(p2) ∨
costQU (p1) < costQL (p2)).

This is the main result needed for pruning. A subplan is suboptimal and thus can be
pruned if it is dominated in the sense specified above.

Cost Bound Estimation. A basic strategy to compute the lower and upper bounds
of a plan p is to construct all plans based on p. This is of course very cost intensive and
defeats the purpose of pruning. Observe that for pruning, we need only to compare the
upper and lower bounds between pairs of plans p1, p2 for the subexpression T ⊂ Q. Given
p1, p2 can be pruned if it has higher cost when used to process T , and further, when
its benefit that may arise when processing other parts of the query cannot outweigh this
difference in cost. If exists, this benefit can be completely attributed to operator sharing.
Hence, for the efficient estimation of bounds, we propose to focus on the maximal benefit
that is achievable through operator sharing. As the source scan is the only shareable
operator, we derive the maximal benefit of one plan p2 compared to another p1 through
a comparison of their source scan operators. In particular, only those source scans
captured by p2 not covered by p1 (i.e. the additional benefit achievable with p2) have to
be considered:

Definition 9 (Maximal Benefit). Given a query Q and two query plans p1, p2 ∈
P (T), T ⊂ Q, let Dp1 , Dp2 be the sets of sources (respectively the source scan oper-
ators) used by p1 and p2, respectively, D′p2 be the set of sources used by p2 not cov-
ered by p1, i.e. D′p2 = Dp2 \ Dp1 and Q′ be the set of triple patterns not covered
by p1 and p2, i.e. Q′ = Q \ T , the maximal benefit of p2 given p1 is mb(p2|p1) =∑

t∈Q′
∑

d∈source(t),d∈D′
p2
b · cost1(scand).

Lemma 3. Given a query Q, a subexpression T ⊂ Q and two plans p1, p2, if cost(p1) ≤
cost(p2)−mb(p2|p1) then costQU (p1) ≤ costQL (p2).

Proof. As plans p1, p2 are both in P (T) they both can be combined with the same set
of plans for P (Q \ T), meaning that the only difference in final plans built for p1 and p2
lies in the shared source scan operators. If we now know that p1 has lower cost than p2
even when the maximal benefit for p2 obtainable from operator sharing is considered,
then the upper bound cost costQU (p1) is also lower than costQL (p2).

12

Based on these bounds defined w.r.t. the maximal benefit, we finally obtain the
following dominance relation:

Theorem 2. Given a query Q, a subexpression T ⊂ Q and two plans p1 ∼ p2 ∈ P (T),
p1 > p2 if card(p1) ≥ card(p2)∧cost(p1) ≤ cost(p2)−mb(p2|p1)∧(card(p1) > card(p2)∨
cost(p1) < cost(p2)−mb(p2|p1)).

4.4 Pareto-optimality

The goal of the optimizer in Linked Data query processing is to find the Pareto-set
of query plans, while pruning as many plans as possible at each step. We now show
that pruning suboptimal plans based on the comparability and dominance relations
established previously yields the complete Pareto set P ∗(Q), i.e., the proposed multi-
objective optimization still has optimal substructure. Given the decomposition of Q into
the subproblems T ⊂ Q, we construct P ∗(Q) as a combination of optimal subsolutions
P ∗(T). This means a non-optimal solution for a subproblem T must not be part of an
optimal solution for Q:

Theorem 3. Given a query Q and two subexpressions T1, T2 ⊆ Q with T1 ∩ T2 = ∅, the
set of optimal plans for T1 ∪ T2 can be constructed from optimal plans for T1, T2, i.e.,
P ∗(T1 ∪ T2) ⊆ {cmb(p1, p2)|p1 ∈ P ∗(T1), p2 ∈ P ∗(T2)}.

Proof. We prove this by contradiction: Let p∗ ∈ P ∗(T1 ∪ T2) be a plan that is
a combination of a dominated plan for T1 and a non-dominated plan for T2, i.e.,
p∗ = cmb(p−1 , p

∗
2), p

−
1 ∈ P−(T1), p

∗
2 ∈ P ∗(T2). This means, there must be a non-

dominated plan p∗1 ∈ P ∗(T1) that dominates p−1 , but the combination of p∗1 with p∗2
is dominated by the combination of p−1 and p∗2:

∃p∗1 ∈ P ∗(T1) : cmb(p−1 , p
∗
2) dominates cmb(p∗1, p

∗
2)

Given p∗1 dominates p−1 and cmb(p−1 , p
∗
2) dominates cmb(p∗1, p

∗
2), it follows from the estab-

lished dominance relation that (without loss of generality, we use strictly lesser/greater
relations):

card(p−1) < card(p∗1) ∧ card(cmb(p−1 , p
∗
2)) > card(cmb(p∗1, p

∗
2))

costQL (p−1) > costQU (p∗1) ∧ cost
Q
U (cmb(p−1 , p

∗
2)) < costQL (cmb(p∗1, p

∗
2))

However, this contradicts with the monotonicity property established for cost, because
costQL (p−1) > costQU (p∗1), but costQU (cmb(p−1 , p

∗
2)) < costQL (cmb(p∗1, p

∗
2)). Analogously, a

contradiction also follows from the monotonicity of cardinality. With regard to our
original proposition, this means that there is no plan p∗ ∈ P ∗(T1 ∪T2), such that p∗ is a
combination of a dominated plan p−1 and a non-dominated plan p∗2. This obviously
also holds true when p∗ is a combination of two dominated plans. Thus, all p∗ ∈
P ∗(T1 ∪ T2) must be combinations of non-dominated plans in P ∗(T1) and P ∗(T2) and
therefore P ∗(T1 ∪ T2).

13

4.5 Optimizer Algorithm

In this section we present a DP algorithm that exploits the previously established theo-
retical results to perform multi-objective Linked Data query optimization. The proposed
solution shown in Alg. 1 takes the proposed structure of Linked Data plans into account
and uses Pareto-optimality to prune plans according to the optimization objectives.

Algorithm 1: PlanGen(Q)

Input: Query Q = {t1, . . . , tn}
Output: Pareto-optimal query plans P ∗(Q)

1 foreach t ∈ Q do
2 S ← {∪({σT d(t)|d ∈ D})|D ∈ P(source(t))}
3 P ∗(t)← {p ∈ S|@p′ ∈ S : p′ > p}
4 for i← 2 to |Q| do
5 foreach T ⊆ Q such that |T | = i do
6 foreach t ∈ T do
7 S ← S ∪ {cmb(p1, p2)|p1 ∈ P ∗(t), p2 ∈ P ∗(T \ t)}
8 P ∗(T)← {p ∈ S|@p′ ∈ S : p′ > p}

9 return P ∗(Q)

In the first step, access plans for single triple patterns are created (lines 1-3). For each
triple pattern t in Q, relevant sources are determined using the source index. As we need
to consider all possible combinations of sources, we create the power set P(source(t))
of all sources (line 2). For each member D of the power set, we create an access plan,
consisting of a scan and a selection operator σT d(t) for each source d ∈ D and a single
union operator ∪ that has the selection operators as input. S then contains a set of
access plans, one for each combination of relevant sources. From this set of comparable
plans (they cover the same pattern t), we then select only the non-dominated access
plans and store them in P ∗(t) (line 3).

During the next iterations (line 4-8), previously created plans are combined until all
query triple patterns are covered. For iteration i, we select all subsets T ⊆ Q with
|T | = i. For each t ∈ T the algorithm creates all possible combinations between the
Pareto-optimal plans for t and T \ t (line 7). All these plans are stored in S. They are
comparable since they cover the same triple patterns T . Finally, only the non-dominated
plans from S are selected and stored in P ∗(T) (line 8). After the last iteration, P ∗(Q)
contains all the Pareto-optimal plans for Q (line 9).

Complexity. The join order optimization problem has been shown to be NP-complete
[19] and the classic DP algorithm for query optimization has a time complexity of O(3n)
[7], where n is the number of relations (triple patterns in the case of Linked Data queries)
to be joined. Our approach for multi-objective query optimization adds the dimension
of source selection to the query optimization problem. Given a set of |D| sources, we can
think of the problem as, in worst case, creating a query plan for each unique combination
of sources, of which there are 2|D|, leading to a complexity of O(2|D| ·3n). This theoretical

14

worst case complexity does not change in the multi-objective case. However in practice,
the number of plans that can be pruned at every iteration can be expected to be much
larger in the single-objective case, compared to the multi-objective case. One strategy to
deal with that is to approximate the bounds that we have established. In the experiment,
we study one basic approximation, which instead of the cost bounds, use actual cost for
pruning. That is, it ignores the bounds and accepts the discussed cases where subplans,
which become non-optimal through operator sharing, may be part of the final result.

5 Related Work

We introduced the problem of Linked Data query processing and discussed existing solu-
tions for that in Section 2.2. We showed that the proposed solution is the first systematic
approach that solves the finding of plans as an optimization problem. In particular, it
considers the entire querying process, from source selection to processing data retrieved
from sources, as well as multiple objectives. Also, the differences to federated query
processing have been discussed: there are no endpoints that can answer parts of the
structured query such that the problem here is not the composition of views [15] or
joined partial results retrieved from endpoints but the selection of sources and the pro-
cessing of the entire sources’ content. We will now discuss other directions of related
work.

Source Selection. The problem of selecting relevant sources has been a topic in
data integration research [10]. In this setting, sources are described not only by their
content, but also their capabilities. Algorithms have been proposed to efficiently perform
source selection by using the source characteristics to prune the search space. However,
in these approaches, source selection here is a separate step that is decoupled from
query optimization. In [13] the authors recognize that the decoupling of source selection
and query optimization leads to overall sub-optimal plans and propose a solution that
optimizes not only for cost but also coverage. A (weighted) utility function is proposed to
combine them into a single measure. Finding the right utility function is generally known
to be difficult, especially when many objectives have to be considered. Instead, we follow
a different direction, employing multi-objective optimization to produce Pareto-optimal
plans that represent different trade-offs between the objectives.

Query Optimization and Processing. There is a large amount of database re-
search on query optimization. The DP solution was first proposed in [17]. Efficiently
generating optimal DAG-shaped query plans when performing operator sharing has been
addressed in [11]. In our work we also uses operator sharing for dealing with Linked Data
sources. However, the effect of this is different in our multi-objective optimization prob-
lem, where we introduce special bounds needed for pruning. The efficient execution
of DAG-shaped plans was discussed in [11], where several approaches were proposed,
including the push-based execution that is used in our implementation.

Multi-objective Query Optimization. To the best of our knowledge, [14] is the
only work addressing multi-objective query optimization, where it is studied in the con-
text of Mariposa [18], a wide-area database. The optimizer splits the query tree into

15

subqueries and then obtains bids from participating sites that specify a delay and cost
for delivering the result of a subquery. The goal of the proposed multi-objective opti-
mizer [14] is to obtain the Pareto optimal set of plans with respect to cost and delay.
The problem studied there is different because there is only a single query operation tree
and for each node, the optimizer has a list of alternatives for implementing the opera-
tion. In contrast, our solution does not consider a single query tree (i.e. a single order
of operations) but all possible query trees to construct optimal plans in a bottom-up
fashion.

Skyline Queries. The skyline operation finds non-dominated points from a set of
points and has been used in conjunction with standard relational algebra [2] to compute
results. The problem tackled by our approach is not computing results but query plans.
As a result, the relaxed comparability, the conditions under which the scoring functions
are monotonic, the estimation of bounds as well as the proposed DP algorithm are
specific to our problem setting.

6 Evaluation

6.1 Systems

Our Approach. We implemented three versions of our approach. The first version (DP)
implements all the proposed techniques. The second version (DPU) also uses operator
sharing. However, it uses directly the cost instead of the lower and upper bounds that
have been established to guarantee monotonicity of cost. While DPU might compromise
Pareto-optimality (it is an approximate version of our DP solution), it can prune more
aggressively and thus, is expected to exhibit better time performance than DP. The third
version (DPS) does not use operator sharing. We use different settings for b to study the
effect of operator sharing. For example, with b = 0.8 the optimizer assumes that 80% of
the source scan cost is saved, i.e., subsequent reads cost only 20% of the first read.

Baselines. Existing Linked Data approaches implement source ranking to select few
best sources [3, 8], and then process these sources without further optimization. This
processing represents one single plan, whose optimality is unknown. We implement
existing source ranking strategies [3, 8] (RK) and a random source selection strategy
(RD). Then, given the selected sources, we apply our DP solution on top but only to
optimize the cost. Thus, these baselines implements single-objective cost-based opti-
mization where source selection and query processing is decoupled. Based on them, we
study the effect of the holistic treatment of source selection and query processing and
the multi-objective optimization performed by our approach.

Instead of one single cost-optimized plan that returns a certain number of results, our
approach yields a Pareto-set of query plans with varying numbers of results. To produce
different number of results, we extend these baselines to obtain several cost-optimized
plans for different combinations of sources. Both baselines first retrieve all relevant
sources D for a query Q from the source index, i.e. D =

⋃
t∈Q source(t). Then, a set D

containing |D| different subsets of D, each with size in the range [1, |D|] is created. The
baselines differ in how these subsets are selected.

16

• Baseline RD randomly selects the |D| subsets.
• Baseline RK first ranks sources in D by the number of contained triples that

match query triple patterns, calculated as score(d) =
∑

t∈q cardd(t). The subsets
are created by starting with the highest ranked source and then successively adding
sources in the order of their rank to obtain |D| subsets in total.

Each element in D represents a combination of sources. For each of them, a cost-
optimized query plan is created. As a result, these baselines yield a set of plans, which
vary in the number of results as well as cost.

Note that our approach not only selects sources (source scan operators) but also for
which triple patterns these sources are used (selection operators), while sources selected
for the baselines are used for all triple patterns. To obtain even more plans that further
vary in the selection operators used, we create an additional set of m plans for each
previously created plan of the baselines RK and RD by randomly removing a subset of
the inputs (selection operators) from their access plans. In the end, each baseline has at
most m · |D| plans. In this experiment, m is used as a parameter to control the number
of plans generated by the baselines.

 0

 500

 1000

 1500

 2000

R
D

R
K

D
P

D
PU

D
PS

R
D

R
K

D
P

D
PU

D
PS

R
D

R
K

D
P

D
PU

D
PS

R
D

R
K

D
P

D
PU

D
PS

R
D

R
K

D
P

D
PU

D
PS

R
D

R
K

D
P

D
PU

D
PS

R
D

R
K

D
P

D
PU

D
PS

R
D

R
K

D
P

D
PU

D
PS

R
D

R
K

D
P

D
PU

D
PS

R
D

R
K

D
P

D
PU

D
PS

R
D

R
K

D
P

D
PU

D
PS

R
D

R
K

D
P

D
PU

D
PS

R
D

R
K

D
P

D
PU

D
PS

R
D

R
K

D
P

D
PU

D
PS

#P
la

ns

Queries

Pareto-optimal
Non-pareto-optimal

Q14Q13Q12Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1
 0

 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014
 0.016
 0.018

 0.02

0 500 1000 2000

%
 P

ar
et

o-
op

tim
al

m

RD
RK

Figure 4: a) Number of Pareto-optimal and non-pareto-optimal plans for all queries and
systems (b = 0.8,m = 2000), b) Pareto-optimal fraction for RD, RK for dif-
ferent value of m (b = 0.8).

6.2 Setting

Extending the Linked Data query set published in the recent benchmark [16], we obtain
14 BGP queries that have non-empty results. These queries belong to different classes
of complexity, which is reflected in the number of triple patterns. For the classes of 3, 4
and 5 patterns, we have 4, 5, and 5 queries, respectively.

As data, we use real-world Linked Data on the Web. Processing the 14 queries against
Linked Data sources on the Web involves a total of 1,909,109 triples from 516,293 sources
capturing information from popular datasets such as DBpedia, Freebase, New York
Times and LinkedMDB.

We observe that network latency varies. In order to establish a controlled environment
and ensure the repeatability of the experiments, we simulate source loading to obtain a
fixed delay of 1.5s that was observed to be representative of real Linked Data sources
[8]. We also experimented with different delays, but performance differences between
systems were however not sensitive to these settings.

All systems were implemented in Java. All experiments were executed on a system
with a 2.4 GHz Intel Core 2 Duo processor, 4GB RAM (of which 1GB was assigned to

17

the Java VM), and a Crucial m4 128GB SSD.

6.3 Results

Pareto-optimality. Fig. 4a displays the number of plans that were generated by each
system, categorized into Pareto-optimal and non-pareto-optimal (i.e. dominated) plans.
The Pareto-optimal plans were determined by collecting all plans from all systems and
then pruning all dominated plans. We can see that DP produces only Pareto-optimal
plans and that there are many DPU plans that are part of the Pareto-optimal set (56%
on average). However, the RD and RK baselines generate only small fractions of Pareto-
optimal plans (1.9% and 1% on average). Also, DPS finds only few Pareto-optimal plans
(less the 1%).

Fig. 4b shows the Pareto-optimal fraction for RD and RK for different values of m.
For larger values the Pareto-optimal fraction is higher, meaning that the larger plan
space created by randomly removing source inputs is necessary to find Pareto-optimal
plans.

Figs. 6a+b show plots of cost and cardinality of plans generated by all systems for
query Q1. In these plots, a plan dominates all other plans that are to its lower right. We
can see that many of the plans generated by the RD and RK baselines are dominated by
other plans and that all DPS plans are also suboptimal. Fig. 6b shows for all systems
only the plans that are part of the Pareto-optimal set. Here, the dominated DPS plans
no longer appear and only few RD and RK plans remain.

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

0.1 0.2 0.4 0.8

Pl
an

 ti
m

e
[m

s]

b

RD
RK
DP
DPU
DPS

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.4 0.8

%
 P

ar
et

o-
op

tim
al

b

RD
RK
DP
DPU
DPS

 0

 20000

 40000

 60000

 80000

 100000

 120000

3 4 5

Pl
an

 ti
m

e
[m

s]

#Patterns

RD
RK
DP
DPU
DPS

 0

 0.2

 0.4

 0.6

 0.8

 1

3 4 5

%
 P

ar
et

o-
op

tim
al

#Patterns

RD
RK
DP

DPU
DPS

Figure 5: Effect of sharing benefit on a) planning time and b) Pareto-optimal fractions
(m = 2000). Effect of query complexity on c) planning time and d) Pareto-
optimal fractions (b = 0.8,m = 2000).

Thus, ranking sources based on cardinality only does not help to produce Pareto-
optimal plans. Further, this bias towards cardinality as reflected by the RK baseline
actually leads to a smaller amount of optimal plans, compared to RD, the random
strategy (Fig. 4b). DPU optimizes for both objectives, thus is able to produce better
trade-offs than RK and RD in most cases (Fig. 6a). However, because it only uses
approximate estimates for cost, the resulting plans are relatively “good” but not always
optimal.

Planning Time. On average, the fastest systems are RD and RK, while DP is
more than one order of magnitude slower. This is to be expected because RD and
RK randomly choose plans and use only simple source ranking, respectively, while DP
requires computing precise bounds and finding Pareto-optimal plans using these bounds.

18

Interestingly, the approximate version of DP, DPU, can be as fast as RD and RK, and
is only 3 times slower on average. DPU is not only faster than DP but also DPS.
Differences between DPS, DPU and DP are due to operator sharing. DPS is faster than
DP because without operator sharing, it saves time for computing bounds. However,
because operator sharing results in greater cost differences between plans, DPU could
prune more plans compared to DPS (while the overhead it incurs for bound estimation
is small). This is more obvious when we vary the sharing benefit, as discussed in the
following.

1.0e-11

1.0e-10

1.0e-09

1.0e-08

1.0e-07

1.0e-06

0.0e+00
5.0e+05
1.0e+06
1.5e+06
2.0e+06
2.5e+06
3.0e+06
3.5e+06
4.0e+06
4.5e+06

C
ar

di
na

lit
y

Cost

All plans

rand
rank

dp
dpu
dps

1.0e-11

1.0e-10

1.0e-09

1.0e-08

1.0e-07

1.0e-06
0.0e+00

5.0e-12

1.0e-11

1.5e-11

2.0e-11

2.5e-11

3.0e-11

C
ar

di
na

lit
y

Cost

Pareto-optimal plans

rand
rank

dp
dpu

Figure 6: Plans for query Q1 on all systems: a) all plans and b) Pareto-optimal plans
(b = 0.8,m = 2000).

Effect of Sharing Benefit. Figs. 5a+b show the planning time and Pareto-optimal
fraction for different values of b. We see in Fig. 5a that planning times for systems
without operator sharing (DPS, RD and RK) are not affected by b. For DP, planning
time increases with higher sharing benefits, namely from 36.7s for b = 0.1 to 47.7s for
b = 0.8. This is because cost bounds are more loose with increasing benefit, and thus less
plans can be pruned. DPU’s planning time exhibits the opposite behavior, decreasing
from 13.2s (b = 0.1) to 3.8s (b = 0.8). Compared to DP, DPU does not incur the high
cost of estimating bounds, and also, does not have the problem of loose bounds. Higher
benefits only create steeper cost gradient between plans, thus resulting in more plans
that can be pruned.

Not taking precise bounds into account however has a negative effect on the optimal-
ity of plans. Fig. 5b illustrates that DPU produces a smaller fraction of Pareto-optimal
plans. This is because with higher sharing benefit, the deviation of DPU’s bound esti-
mates from the actual bounds increases.

In total, DPU however represents a reasonable trade-off between plan quality and
time, producing 55 times more Parato-optimal plans while being only 3 times slower
than the baselines RD and RK on average.

Effect of Query Complexity. Figs. 5c+d show time and Pareto-optimal fraction

19

for different numbers of triple patterns. An increased number of patterns results in a
larger search space for the query optimizer. As a result, both performance and quality
decrease. Whereas for 3 triple patterns the baselines RD and RK are able to find 11%
and 6% of the Pareto-optimal plans, few are found for 4 and 5 triple patterns (¡ 1%).
DPU provides 70% of the Pareto-optimal set for 3 triple patterns, and 54% for 4 and 5
triple patterns. For all systems, planning time increases with the number of patterns.
From 3 to 5 triple patterns, the planning time of DP increases by a factor of 101.4, DPS
increases by a factor of 28, while the planning time for DPU only increases by a factor
of 18, and RD and RK are largely unaffected.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 5 10 15 20 25

Ti
m

e
[m

s]

#Results

Q1

RD
RK
DP
DPU
DPS

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 100 200 300 400 500 600 700 800 900

Ti
m

e
[m

s]

#Results

Q4

RD
RK
DP
DPU
DPS

Figure 7: Execution times of query plans for queries Q1 and Q4.
Cost-Cardinality Trade-off. We analyze the cost-cardinality trade-off by studying

the times needed for producing different number of results. Different number of results
can be obtained by using different plans. For every query, we randomly chose 20% of

20

the plans generated by each system, execute all of them and record the total time of
planning and processing. Fig. 7 shows the results for two extreme queries. While Q1
produces only 24 results, Q4 yields 836 results. Each point represents the average total
time of all plans that produce a particular number of results. For example, all DP plans
for query Q4 that produce 140 results have an average total query time of 7.1s.

First, we note that while DP and DPU varies in planning time, their total time
performances are comparable. That is, while DP needs more time for planning, this
overhead is compensated by the faster execution that could be achieved through more
optimal plans.

Most importantly, our systems DP, DPU and DPS, which optimize for both objectives,
indeed enable different trade-offs between the two, i.e., reduce total processing time,
when fewer results are needed. We can see for both Q1 and Q4, there is a trend that
total times increase with the number of results. These trade-offs are not possible with
the baseline systems RK and RD. Because the plans they produce are not Pareto-optimal
but cost-optimized, the time performance of RK and RD is rather constant and does
not change or correlate with the number of results. RD is particularly cost-optimized:
while it achieves best performance, the plans it employs do not yield the desired number
of results, e.g. none of its plans produces more than 7 results for Q1.

Further, there are obvious differences between cardinality and cost estimated for the
plans and the actual number of results produced and time required by them. Many of the
plans that are Pareto-optimal according to estimates, actually produce no results. These
plans however, take the longest time to finish. This explains while the trend mentioned
above is not clear, i.e., fewer results require less time but empty results require longest
time.

Despites the simple estimates we employed in this work, the planning overhead can be
outweighed by faster execution when the number of results is limited, i.e., DP and DPU
provide better performance than the RK baseline. For example, to produce 7 results for
Q1, DP and DPU require only 35% of the time RK needed to produce the same amount
of result. Similarly, for Q4, DP and DPU requires only 28% of the total time of RK
when 205 results have to be produced.

Summary. This experiment shows that compared to our work, the cost-based base-
lines produce only a small fraction of Pareto-optimal plans. The planning overhead
incurred by our solution is relatively small compared to the gain in Pareto-optimality,
e.g. 55 times more Pareto-optimal plans at the cost of 3 times higher planning cost
for DPU. This Pareto-optimal planning has an effect on processing time and the actual
results produced: using cost-optimized plans, the baselines cannot achieve the trade-off
between cost and cardinality, while our solution reduces total processing time when fewer
results are needed. This translates to about 4 times faster average performance than the
RK baseline, when no more than 250 results are needed.

21

7 Conclusion

We propose the first solution towards a systematic optimization of Linked Data query
processing, which considers both standard query operators and the specific characteris-
tics of Linked Data source selection. The optimization result is the Pareto-set of optimal
plans, representing different trade-offs between optimization objectives such as cost and
cardinality. In experiments we compare our solution to cost-oriented baselines that inde-
pendently optimize source selection and the processing of queries. Most plans computed
by these baselines are sub-optimal such that the trade-off between different objectives
is not adequately reflected. That is, while some baselines’ plans achieve good time per-
formance, they cannot produce the desired number of results; or they cannot help to
improve time performance, given only a limited number of results are needed. Our solu-
tion provides different optimal tradeoffs, enabling several times reduction of processing
cost when the number of results needed is less than 250.

As future work, we note from the experiments that a simple approximation of the
proposed bounds can provide better planning performance, without compromising too
much on the optimality of plans. We will study different approximations for the proposed
DP solution.

22

References

[1] C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far. International
Journal on Semantic Web and Information Systems (IJSWIS), 2009.

[2] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In Proceedings
of the 17th International Conference on Data Engineering, 2001.

[3] A. Harth, K. Hose, M. Karnstedt, A. Polleres, K. Sattler, and J. Umbrich. Data
summaries for on-demand queries over linked data. In Proceedings of the 19th
International Conference on World Wide Web, Raleigh, North Carolina, USA, 2010.

[4] O. Hartig. Zero-Knowledge Query Planning for an Iterator Implementation of Link
Traversal Based Query Execution. In Proceedings of the 8th Extended Semantic
Web Conference (ESWC), 2011.

[5] O. Hartig, C. Bizer, and J. Freytag. Executing SPARQL queries over the web of
linked data. In The Semantic Web - ISWC 2009, pages 293–309. 2009.

[6] H. Huang and C. Liu. Selectivity estimation for SPARQL graph pattern. In Pro-
ceedings of the 19th international conference on World wide web, WWW ’10, page
1115–1116, New York, NY, USA, 2010.

[7] D. Kossmann and K. Stocker. Iterative dynamic programming: a new class of query
optimization algorithms. ACM Trans. Database Syst., 25(1):43–82, 2000.

[8] G. Ladwig and T. Thanh. Linked data query processing strategies. In Proceedings
of the 9th International Semantic Web Conference (ISWC), 2010.

[9] G. Ladwig and T. Tran. SIHJoin: Querying Remote and Local Linked Data. In
Proceedings of the 8th Extended Semantic Web Conference (ESWC), 2011.

[10] A. Levy, A. Rajaraman, J. Ordille, et al. Querying heterogeneous information
sources using source descriptions. In Proceedings of the International Conference
on Very Large Data Bases, 1996.

[11] T. Neumann. Efficient Generation and Execution of DAG-Structured Query Graphs.
PhD thesis, 2005.

[12] T. Neumann and G. Weikum. Scalable join processing on very large RDF graphs.
In Proceedings of the 35th SIGMOD international conference on Management of
data, pages 627–640, Providence, USA, 2009. ACM.

[13] Z. Nie and S. Kambhampati. Joint optimization of cost and coverage of query
plans in data integration. In Proceedings of the tenth international conference on
Information and knowledge management, CIKM ’01, page 223–230, New York, NY,
USA, 2001. ACM.

23

[14] C. H. Papadimitriou and M. Yannakakis. Multiobjective query optimization. In Pro-
ceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems, PODS ’01, page 52–59, New York, NY, USA, 2001. ACM.

[15] R. Pottinger and A. Halevy. MiniCon: a scalable algorithm for answering queries
using views. The VLDB Journal, 10:182–198, Sept. 2001.

[16] M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, and T. Tran. Fedbench:
A benchmark suite for federated semantic data query processing. In International
Semantic Web Conference (1), pages 585–600, 2011.

[17] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
Access path selection in a relational database management system. In Proceedings
of the 1979 ACM SIGMOD international conference on Management of data, pages
23–34, Boston, Massachusetts, 1979. ACM.

[18] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and
A. Yu. Mariposa: a wide-area distributed database system. The VLDB Journal,
5(1):048–063, Jan. 1996.

[19] B. Vance and D. Maier. Rapid bushy join-order optimization with cartesian prod-
ucts. In Proceedings of the 1996 ACM SIGMOD international conference on Man-
agement of data, SIGMOD ’96, page 35–46, New York, NY, USA, 1996. ACM.

24

