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Abstract don't take the role of enforcing wanted features but spgilin
) . unwanted ones. This approach is motivated by the mathemat-
Motivated by basic ideas from formal concept anal- ical area of formal concept analysis.
ysis, we propose two ways to directly encode clo- In Section 2 we will introduce the basic notiocissure op-
sure operators on finite sets in a 3-layered feed for-  grator andimplicationand show their correspondence. Sec-
ward neural network. tion 3 will sketch the elementary ideas fifrmal concept
analysis based on which we will unfold our representation
1 Introduction approach. Very briefly, Section 4 will recall the notion of a

3-layered feedforward networlSection 5 then combines the
The scientific interest in the integration of symbolic meth-approaches and provides two ways of encoding a formal con-
ods based on computational logic with artificial neural net-text’s closure operator into a neural network of the spatifie
works (also known as connectionist systems) has grown sigind. In Section 6, we show how the approach can be ap-
nificantly in the last years. As a motivating goal of those ef-plied to propositional logic programs, where it can be used t

forts appears to combine the advantages of both approache&mpute models. Finally, in Section 7, we conclude and give

While symbolic systems are superior in dealing (i.e., reptopics for ongoing research.

resenting and reasoning) with structured data, connéstion

systems (the investigation of which has been starteflMry 2 Closure Operators and Implications

Culloch and Pitts, 1943 show impressive capabilities when _ . - :

it comes to learning on larger datasets and generalizing thif! this section, we will introduce two notions — closure eper

results to new input. Sde’Avila Garcezet al, 2003 foran ~ &tor and implications —and show their tight correspondence

overview of this prospering research area. The following considerations are based on an arbitrary set
The well-known neural-symbolic learning cycle (see: Intuitively, it may be conceived as a set featuresor

[Bader and Hitzler, 2005 proposes a general framework for atributesor atomic propositionsdepending on the modelled

organizing a neural-symbolic integration. In our paper, weProblem. Many of the definitions and theoretical results pre

focus on the representation subtask, i.e. encoding ettplici S€nted in this and the next section apply to arbitrary sets; h

prespecified background knowledge. In particular, we inves€VEl: When it comes to questions of practical realizaticth an

tigate ways of canonically encodirgosure operatorsnto ~ computability, finiteness ai/ has to be presumed.

neural networks. Closure operators on attribute or feature W€ Will first define the fundamental notion of a closure

sets arise naturally in diverse domains: whenever theigalid OPerator. Roughly speaking, applying such an operator to a

of some features enforces the validity of others (as in humafi€t €@n be understood as a minimal extension of that set in

associative thinking and logic entailment to name just twoPder to fulfill certain properties.

extremes of a wide spectrum), this can be described by cldDefinition 1 Let M be an arbitrary set. A functiorp :

sure operators. So assume a neural network for some purpo®§M ) — P(M) (whereP (M) denotes the powerset 81)

has to be designed, where some rule-like partial informatio will be called

about the network’s desired behavior is already known and , cyrensivE if A C o(A)forall A C M,

can be stated in form of implications on the feature set. We . B

now look for a neural network obeying those prescribed rules ® MONOTONE, if from A C B follows p(A) € »(B) for

(which can then be trained on an example set to acquire fur- &l 4, B € M, and

ther behavior). Previous approacieslidobler and Kalinke, e IDEMPOTENT, if p(¢p(A)) = ¢(A) forall A C M.

1994; Hitzleret al, 2004 tackle this problem by assigning a ¢ ¢ is extensive, monotone, and idempotent, we will call it a

node of the network to each implication. We propose a cong 5syre opERATOR In this case, we will additionally call
trary approach, where — roughly speaking — network nodes
o ¢(A)thecLOSUREOf 4,
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The family of all closed sets is also calledOSURE SYS Intuitively, a formal context is represented by a so-called
TEM. Furthermore, any closure system constitutdattice  cross table, where each row is associated to an object, each
with set inclusion as the respective order relation. column to an attribute, and crosses indicate which objest ha

Mark that the notion of a closure operator is rather intu-which attributes.

itive in both human associative thinking and classicaldast Definition 4 Let K = (G, M, I) be a formal context. We

monotonic) logics. - S ;
In the sequel, we show, in which way closure operators argeﬂne afunctiori.)” : P(G) — P(M) with
closely related to implications. Al = {m | gIm forall g € A}

Definition 2 Let M be an arbitrary set. AMMPLICATION on . )
M is a pair (A, B) with A, B C M. To support intuition, we for A C G. Furthermore, we use the same notation to define

write A—» 3 instead of( 4. )2 the function(.)! : P(M) — P(G) where

For C C M and a setJ of implications on)M, let C? B :={g| gIm forall m € B}
denote the smallest set with C C? that additionally fulfills .
or B C M.

I 3
] .A g ¢ Zmp_he‘s Bco For convenience, we sometimes wijteinstead of{g}!

for every implicationd — Bin 3.3 If C = C?, we callC  andm! instead offm}!.

J-CLOSED.

Itis well known that for a given sed C M and implication
setJ, A” can be computed in linear time with respect¥o
(see[Dowling and Gallier, 198). As can be easily seen,
for any setJ of implications on any set/, (.)” is a closure -
operator. Moreover, for any closure operajot P(M) —  Proposition 1
P(M), therjga exis}s (at least) a sgtof implications onM e (.)'is a closure operator ofi+ as well as on/.
such that.)’ = ¢. .

An ele(m)entary observation from logic becomes particu- ¢ For4 < G, Alis a(.)!-closed set and dually
larly obvious in this setting: a contradiction implies eper o for B C M, B! is a(.)!!-closed set.
thing. Thus, if, say, two elementsb € M are contradictory,
this can be expressed by the implication b} — M. In the
sequel, we will use the shorthandb — L for these special

Applied to an object set, this function yields all attribsite
common to these objects; by applying it to an attribute set we
get the set of all objects having those attributes. Thewllo
ing facts are consequences of the above definitions:

The next definition shows how a conceptual hierarchy can
be built from a formal context.

cases. Definition 5 Given a formal conteXK = (G, M, I), aFOR-
MAL CONCEPT is a pair (A,B) with A C G, B C M,
3 Formal Concept Analysis A= B' andB = A’

We call the setd EXTENT and the setB INTENT of the
oncept A, B).

et (A1, B1) and (Az, By) be formal concepts of a formal
context. We cal{4;, B1) a SUBCONCEPTOf (A4s, By) (writ-
ten: (Al,Bl) < (AQ,BQ)) if A C As. Then,(AQ,Bg) will
be calledsuPERCONCEPTf (A1, B1).

The mathematical theory of formal concept analysis mainly
deals with conceptual hierarchies which are generated frorﬁ
basic data structures encoding object-attribute relakigs.
Thereby, it provides a rather applied access to latticertheo
For a comprehensive introduction into formal concept analy
sis, sedGanter and Wille, 1997

In this section, we sketch the basic definitions and soméroposition 2 The concept intents of a formal concept are
results from formal concept analysis, as far as they areateed exactly those attribute sets closed with respedtxt.

for this work. We start by defining the central underlyingadat It is well known from FCA that the set of all formal

structure. o concepts of a formal context together with the subconcept-
Definition 3 A (FORMAL) CONTEXTK is atriple (G, M,I)  superconcept-order form a complete lattice, the so catied

with cept lattice

e an arbitrary setG called OBJECTS

e an arbitrary setM called ATTRIBUTES, 4 On Neural Networks

e arelation] C G x M called INCIDENCE RELATION In this section, we recall the notion of a particular neuettn
We readyI'm as: “object g has attributem”. work giving a formal definition that we will build upon in the

subsequent sections.

'For example, in classical first order logic, taking the sealbf  Definition 6 A 3-LAYERED FEEDFORWARD NETWORK S

consequencesons(®) := {p | ® | ¢} of aformulase® isa  defined as atupley = (Z,H,0,t,w) where
closure operator.

2To facilitate reading we will occasionally omit the paressbs, e 7,1, 0O are finite disjoint sets calledNPUT NODES
i.e., we will write a, b— c instead of{a, b} — {c}. HIDDEN NODES, andOUTPUT NODES

®Note, that this is well-defined, since the mentioned progert o t:(ZUHUO) — RistheTHRESHOLD FUNCTION
are closed wrt. intersection. and

4A naive way to achieve this: givep, letd = {A — (A ,
AC M} Y aven { A | o w: (IxH)U(HxO)— RistheWEIGHT FUNCTION.



Clearly, neural networks are intended as computational e ¢(n):= —0.5 foralln e HUO

models, i.e. they are designed to calculate something. é¢lenc
given a neural network we can define a function capturing itsfu

computational behaviour.

Definition 7 Given a 3-layered feedforward network as
specified in Definition 6, theSSOCIATED NETWORK FUNG
TION fy : P(Z) — P(O) is defined in the following
way: For a given argument sef, we define the setlg C
Z UH U O of ACTIVATED NEURONS as follows (using the
shortcuty 4(a) = |{a} N A|):
e foreveryi € 7, we seti € Ag exactly ifys(i) — t(i) >
Ol
e for every h € H, we seth € Ag exactly if
> ier xa(i)wi, —t(h) >0, and
o for everyo € O, we seth € Ag exactly if
> nen XA(i)who — t(0) > 0.
Finally, we setfn (S) = As N O.

This definition exactly mirrors the usual way of calculating
with neural networks, presuming the Heaviside step functio

as activation function.

Next, we will prove that indeed the associated network
nction f, corresponds to the closure operatof’, i.e.,
forall A C M, we have thatd!! = {m | o, € fn, {im |
me A})}

Proposition 3 LetK = (G, M, I) be a formal context and
Nk the corresponding neural network. Then

1. foreveryA C M, activating (exactly) the s€t,,, | m €
A} of input neurons leads to an activation of (exactly)
the set{h, | g € A’} of hidden neurons and

2. for everyB C G, activating (exactly) the s€th, | g €
B} of hidden neurons leads to an activation of (exactly)
the set{o,, | m € B!} of output neurons.

Proof: Consider the hidden layer neurbg representing the
objectg € G. Now, sinceA! = {g | gImforallm € A}
we have thay € A’ exactly if g has all attributes from.
Obviously, this is the case if and only if

Z XAa (im)wimhg = Z Wi, hy = 0> —0.5.

meM meA

In the sequel, we aim at the special case of simulating &he second claim is proved in exactly the same mannér.

closure operatop : P(M) — P (M) with this kind of neural

The next corollary then follows immediately be the defini-

network, i.e., input and output layer correspond to the saméon of (.)!! as twofold application of.)’.

set (hamelyM).

5 Encoding of Closure Operators inspired by
FCA

Corollary 1 Ny computeg.)’’.

This approach is quite close to formal concept analysis
since the neurons of the hidden layer directly correspond to
the object set of the represented formal context. The nega-

The basic idea for this paper is to use formal contexts to reptive weights are necessary due to the fact {bidtis (in both
resent closure operators. In particular (as we have seen kariants) arantitonefunction (i.e.A C BimpliesB! C AT).

Section 3), for a formal conte¥{ = (G, M, I), the function
()L P(M) — P(M) is a closure operator oh/. More-

However, this can be overcome by a simple “work around”:
instead of mirroring the functiond — A’ andB — B (for

over,anyclosure operator on a finite skf can be represented A € M andB C (), one could use the functions — M \

by an appropriate formal context.

Al'andB — (M \ B)! instead. Both of them are monotone

So, in this section, we propose two canonical ways to transand can hence be modelled with only positive weights, and
late a formal context into a 3-layered feedforward network still their composition yields the wanted operatgr”. In the

which — given a setl C M — computes its closura’’.

sequel, we will elaborate this idea.

The intuition hereby is to identify the hidden layer neuronspefinition 9 For a given formal contexK = (G, M, I), we

with the object set of the formal context. We realize tHé!-
operator by first applying )’ to A (which by definition yields

an object set represented by the activated neurons in the hi

den layer) and, afterwards, applyiag’ to A’ thus obtaining
the closure of the attribute set at the output layer.

Definition 8 For a given formal contexk = (G, M, T), we
define a corresponding 3-layered feedforward netwdgkin
the following way:

o I ={i,,|me M}

e O={o,|meM}
H={hy|geC)
t(i) :=0.5 foralli e T

W - - 0 ifglm
imhg = Whoom =1 _1  otherwise.

>0One method, how to construct a formal context with this prop-

erty will be explicated in Section 6.

define a corresponding 3-layered feedforward netwiSikin
Hﬁe following way:

o T={in|me M}

O={om|meM}

« H={h,]geC)

t(i) :=0.5foralli € Z

t(0m) == —0.5+|{g € G| ~gIm}|forall o, € O

0if glm
1 otherwise.

e t(h):=0.5forallh e H

Proposition 4 LetK = (G, M, I) be a formal context and
Nk the corresponding neural network. Then
1. foreveryA C M, activating (exactly) the s€t,,, | m €

A} of input neurons leads to an activation of (exactly)
the set{h, | g € G \ A’} of hidden neurons and

® Wi, hy = Whyo, = {



2. for everyB C @, activating (exactly) the s€th, | g € implication once. The entailment closure operator can then
B} of hidden neurons leads to an activation of (exactly)be simulated by iteratively applyinfp until a fixed point is
the set{o,,, | m € (G \ B)'} of output neurons. reached[Hitzler et al,, 2004 presents an approach to encode
Proof: Tp into a recurrent 3-layered neural network, by assigning
) ) ) ) every implication to a node of the middle layer. To make this
1. Consider the hidden layer neurbprepresenting the ob- - clear, consider the following example.

jectg € G. Now, sinceA” = {g | gIm forallm € A}, Imagine, some kind of animal has to be determined via
we have thay € A’ exactly if g has all attributes from  some tests. Let furthermore the only available tests be
A. Obviously, this is the case if and only if to indicate whether the animal is a mammal, a bird, a
monkey, a donkey, an owl, a fowl or a frog. Hence
Z Wing =0 < 0.5. M := {donkey, monkey, mammal, frog, bird, owl, fowl}.
meA Then the implications presented in Fig. 1 characterizeehe s
Therefore, any,, being activated must be ifi \ A’. ting:
2. Now, consider the output layer neurop representing monkey — mammal
the attributem € M. If B is activated in the hidden donkey —» mammal
layer,o,, will be activated exactly if owl —»  bird
S won = {9 € B | ~gIm}| > ~0.5+|{g € G | ~gIm}| onkey, donker - 1
9eB owl, fowl - 1
Yet, due toB C G, this can only be the case ifiy € mammal, bird — L
B | ~gIm}| = |{g € G | ~gIm}| which is equivalent mammal, frog — L
to the statement thgt/m for all g € G \ B. Hencep,, bird, frog —- 1

is activated exactly ifn € (G'\ B)'.
| Figure 1: Implication representing the knowledge in our ex-
Corollary 2 Nx computes.)’”. ample.
Proof: Due to the preceding proposition, applyifg to Following [Hélldobler and Kalinke, 1994 the neural net-
an attribute set will first activate the hidden neurons rep- work corresponding to th&»-operator representing those
resentingG \ A’ and then the output neurons representingimplications interpreted as a logic program would look like
(G\ (G\ AT)! = (A)T = AT O the one represented in Fig, 2.

As already mentioned, using this type of network will acti-
vate exactly those hidden layer neuremd contained inA’,
if Ais entered.

An interesting feature of both presented networks is their
symmetry: for alln € M andg € G, w;,,, = wh,o,,. Al-
though this puts structural constraints on the neural netwo
and might therefore hamper the application of learningetra
gies, it might be useful from a quite different point of view:
in cases, where the neural network will be hardwired, input
and output layer could be identified and calculation be done
in a “back-and-forth manner” using the links twice for every
calculation.
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6 Application to propositional logic programs (o) (o
In this section, we will show, how the presented strategy can > > TEB
be applled ina prop05|_t|onal Ioglc programming scenario. ?é < £ > o _ 5
Logic programming is especially suited for this approach, £ ] £ S 5 g 3
since
e any logic program essentially consists of a set of impli-Figure 2: Neural network corresponding to thig-operator
cations and hence of our propositional setting. All weights are setto 1. The

. . . dotted lines are those indicating a contradiction.

e entailment can (at least in the negation-free case) there-
fore be described by a closure operator on the ground .

y P 9 The set{donkey, fowl} demonstrates that, in general

facts. . .
) , may have to be applied several times to calculate the clpsure
Consequently, one can assign to every logic program agjnce

operatofT'» which applied to a set of ground facts intuitively
calculates the immediate consequences by “applying” each T»({donkey, fowl}) = {donkey, mammal, fowl, bird}



and

Tp({donkey, mammal, fowl, bird}) = M.
Now we consider how our method would apply. So, we have
to find a formal contexK = (G, M, I), whereA!! = A? for
all A C M. One possibility to do so is to consider the lattice
of all J-closed sets. Fig. 3 represents this.

mammal

fowl

donkey frog owl
Q @)

> ©

e & £

x

c = £ o - _ -
(@] o ] o = = =
= S I = o 1S £

Figure 3: Lattice of th&-closed sets.

Figure 5: Neural network corresponding to the consequence
Yet, a well-known result of FCA provides a direct way operator of our propositional setting. All weights are set t

to find a minimal set of objects for a formal context that is -1

supposed to generate a given lattice. One has to take all

supremum-irreducible elements as objects. Looking atithe d 5 yiyen finite set. We thereby provide a method to support

ﬁgr:_am, th? suprerlnum-wre(_juhck;ble elelments are _ex?ctlpthosthe representation part of the neural-symbolic learningecy
aving only one lower neighbour. In our particular case,;,, ,esenting an encoding strategy for a kind of background

these are exactly all upper neighbours of the bottom elemeng, yjedge generically occurring in the area of knowledge

Hence, we can derive the formal context depicted in Fig. 4. processing

In contrast to other methods, where the closure is approx-

E‘ § E imated iteratively (using a recurrent netvyorl_<), the nek/sor
S |< g o|o|< | presented in our approach will calculate it directly, il®/,a
clS|e|lL|5|8|8 single run of the network.
a1 > > Moreover, as shown by our example, there are cases where
9 < 1 x this kind of reprgsentation is also advantageous in terms qf
s < the number of hidden layer neurons needed. In general, this
04 < approach seems to be especially beneficial, if the number of
~ ~ implications becomes large.
95 Naturally, the proposed method requires preprocessing of

. ) the implicative information to be encoded. Depending on
Figure 4: The formal conteX corresponding to the closure hoy this information is given, it has to be transformed into
operator to describe. a formal context. The way we presented here — namely gen-

) ) ) erating the whole lattice of the closed sets and identifyfiregy
According to the preceding section, there are two waySypremum-irreducible elements of it — is certainly not -opti
of using this kind of formal context to define a neural net-ma| with respect to time costs (in the worst case, the size of

work that computes the closure of a given set directly €., he |attice can be!™!). So one important field of future re-
manyfold application — likewise no recurrent organisation search s to find more efficient methods to convert implieativ
of the net would be necessary). - , knowledge into small contexts.

The first one (corresponding to the definition &%) is

shown in Fig. 5. Note that all drawn edges correspond to
weights of -1. References
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guence operator of our propositional setting. All weights a

setto 1.
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