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Abstract

Motivated by basic ideas from formal concept anal-
ysis, we propose two ways to directly encode clo-
sure operators on finite sets in a 3-layered feed for-
ward neural network.

1 Introduction
The scientific interest in the integration of symbolic meth-
ods based on computational logic with artificial neural net-
works (also known as connectionist systems) has grown sig-
nificantly in the last years. As a motivating goal of those ef-
forts appears to combine the advantages of both approaches:
While symbolic systems are superior in dealing (i.e., rep-
resenting and reasoning) with structured data, connectionist
systems (the investigation of which has been started by[Mc-
Culloch and Pitts, 1943]) show impressive capabilities when
it comes to learning on larger datasets and generalizing the
results to new input. See[d’Avila Garcezet al., 2002] for an
overview of this prospering research area.

The well-known neural-symbolic learning cycle (see
[Bader and Hitzler, 2005]) proposes a general framework for
organizing a neural-symbolic integration. In our paper, we
focus on the representation subtask, i.e. encoding explicitly
prespecified background knowledge. In particular, we inves-
tigate ways of canonically encodingclosure operatorsinto
neural networks. Closure operators on attribute or feature
sets arise naturally in diverse domains; whenever the validity
of some features enforces the validity of others (as in human
associative thinking and logic entailment to name just two
extremes of a wide spectrum), this can be described by clo-
sure operators. So assume a neural network for some purpose
has to be designed, where some rule-like partial information
about the network’s desired behavior is already known and
can be stated in form of implications on the feature set. We
now look for a neural network obeying those prescribed rules
(which can then be trained on an example set to acquire fur-
ther behavior). Previous approaches[Hölldobler and Kalinke,
1994; Hitzleret al., 2004] tackle this problem by assigning a
node of the network to each implication. We propose a con-
trary approach, where – roughly speaking – network nodes
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don’t take the role of enforcing wanted features but spoiling
unwanted ones. This approach is motivated by the mathemat-
ical area of formal concept analysis.

In Section 2 we will introduce the basic notionsclosure op-
erator andimplicationand show their correspondence. Sec-
tion 3 will sketch the elementary ideas offormal concept
analysis, based on which we will unfold our representation
approach. Very briefly, Section 4 will recall the notion of a
3-layered feedforward network. Section 5 then combines the
approaches and provides two ways of encoding a formal con-
text’s closure operator into a neural network of the specified
kind. In Section 6, we show how the approach can be ap-
plied to propositional logic programs, where it can be used to
compute models. Finally, in Section 7, we conclude and give
topics for ongoing research.

2 Closure Operators and Implications
In this section, we will introduce two notions – closure oper-
ator and implications – and show their tight correspondence.

The following considerations are based on an arbitrary set
M . Intuitively, it may be conceived as a set offeaturesor
attributesor atomic propositions, depending on the modelled
problem. Many of the definitions and theoretical results pre-
sented in this and the next section apply to arbitrary sets, how-
ever, when it comes to questions of practical realization and
computability, finiteness ofM has to be presumed.

We will first define the fundamental notion of a closure
operator. Roughly speaking, applying such an operator to a
set can be understood as a minimal extension of that set in
order to fulfill certain properties.

Definition 1 Let M be an arbitrary set. A functionϕ :
P(M) → P(M) (whereP(M) denotes the powerset ofM )
will be called

• EXTENSIVE, if A ⊆ ϕ(A) for all A ⊆ M ,

• MONOTONE, if from A ⊆ B followsϕ(A) ⊆ ϕ(B) for
all A, B ⊆ M , and

• IDEMPOTENT, if ϕ(ϕ(A)) = ϕ(A) for all A ⊆ M .

If ϕ is extensive, monotone, and idempotent, we will call it a
CLOSURE OPERATOR. In this case, we will additionally call

• ϕ(A) theCLOSUREof A,

• A CLOSED, if A = ϕ(A).



The family of all closed sets is also calledCLOSURE SYS-
TEM. Furthermore, any closure system constitutes alattice
with set inclusion as the respective order relation.

Mark that the notion of a closure operator is rather intu-
itive in both human associative thinking and classical (at least
monotonic) logics.1

In the sequel, we show, in which way closure operators are
closely related to implications.

Definition 2 LetM be an arbitrary set. AnIMPLICATION on
M is a pair (A, B) with A, B ⊆ M . To support intuition, we
write A_B instead of(A, B).2

For C ⊆ M and a setI of implications onM , let CI

denote the smallest set withC ⊆ CI that additionally fulfills

A ⊆ CI implies B ⊆ CI

for every implicationA _ B in I.3 If C = CI, we callC
I-CLOSED.

It is well known that for a given setA ⊆ M and implication
setI, AI can be computed in linear time with respect to|I|
(see[Dowling and Gallier, 1984]). As can be easily seen,
for any setI of implications on any setM , (.)I is a closure
operator. Moreover, for any closure operatorϕ : P(M) →
P(M), there exists (at least) a setI of implications onM
such that(.)I = ϕ.4

An elementary observation from logic becomes particu-
larly obvious in this setting: a contradiction implies every-
thing. Thus, if, say, two elementsa, b ∈ M are contradictory,
this can be expressed by the implication{a, b}_ M . In the
sequel, we will use the shorthanda, b _⊥ for these special
cases.

3 Formal Concept Analysis
The mathematical theory of formal concept analysis mainly
deals with conceptual hierarchies which are generated from
basic data structures encoding object-attribute relationships.
Thereby, it provides a rather applied access to lattice theory
For a comprehensive introduction into formal concept analy-
sis, see[Ganter and Wille, 1997].

In this section, we sketch the basic definitions and some
results from formal concept analysis, as far as they are needed
for this work. We start by defining the central underlying data
structure.

Definition 3 A (FORMAL) CONTEXT K is a triple (G, M, I)
with
• an arbitrary setG called OBJECTS,

• an arbitrary setM called ATTRIBUTES,

• a relationI ⊆ G × M called INCIDENCE RELATION

We readgIm as: “objectg has attributem”.

1For example, in classical first order logic, taking the set ofall
consequencescons(Φ) := {ϕ | Φ |= ϕ} of a formula setΦ is a
closure operator.

2To facilitate reading we will occasionally omit the parentheses,
i.e., we will writea, b_c instead of{a, b}_{c}.

3Note, that this is well-defined, since the mentioned properties
are closed wrt. intersection.

4A naïve way to achieve this: givenϕ, let I = {A _ ϕ(A) |
A ⊆ M}.

Intuitively, a formal context is represented by a so-called
cross table, where each row is associated to an object, each
column to an attribute, and crosses indicate which object has
which attributes.

Definition 4 Let K = (G, M, I) be a formal context. We
define a function(.)I : P(G) → P(M) with

AI := {m | gIm for all g ∈ A}

for A ⊆ G. Furthermore, we use the same notation to define
the function(.)I : P(M) → P(G) where

BI := {g | gIm for all m ∈ B}

for B ⊆ M .
For convenience, we sometimes writegI instead of{g}I

andmI instead of{m}I .

Applied to an object set, this function yields all attributes
common to these objects; by applying it to an attribute set we
get the set of all objects having those attributes. The follow-
ing facts are consequences of the above definitions:

Proposition 1

• (.)II is a closure operator onG as well as onM .

• For A ⊆ G, AI is a (.)II -closed set and dually

• for B ⊆ M , BI is a (.)II -closed set.

The next definition shows how a conceptual hierarchy can
be built from a formal context.

Definition 5 Given a formal contextK = (G, M, I), a FOR-
MAL CONCEPT is a pair (A, B) with A ⊆ G, B ⊆ M ,
A = BI , andB = AI .

We call the setA EXTENT and the setB INTENT of the
concept(A, B).
Let (A1, B1) and (A2, B2) be formal concepts of a formal
context. We call(A1, B1) a SUBCONCEPTof (A2, B2) (writ-
ten: (A1, B1) ≤ (A2, B2)) if A1 ⊆ A2. Then,(A2, B2) will
be calledSUPERCONCEPTof (A1, B1).

Proposition 2 The concept intents of a formal concept are
exactly those attribute sets closed with respect to(.)II .

It is well known from FCA that the set of all formal
concepts of a formal context together with the subconcept-
superconcept-order form a complete lattice, the so calledcon-
cept lattice.

4 On Neural Networks
In this section, we recall the notion of a particular neural net-
work giving a formal definition that we will build upon in the
subsequent sections.

Definition 6 A 3-LAYERED FEEDFORWARD NETWORK is
defined as a tupleN = (I,H,O, t, w) where

• I,H,O are finite disjoint sets calledINPUT NODES,
HIDDEN NODES, andOUTPUT NODES,

• t : (I ∪ H ∪ O) → R is theTHRESHOLD FUNCTION,
and

• w : (I×H)∪(H×O) → R is theWEIGHT FUNCTION.



Clearly, neural networks are intended as computational
models, i.e. they are designed to calculate something. Hence
given a neural network we can define a function capturing its
computational behaviour.

Definition 7 Given a 3-layered feedforward networkN as
specified in Definition 6, theASSOCIATED NETWORK FUNC-
TION fN : P(I) → P(O) is defined in the following
way: For a given argument setS, we define the setAS ⊆
I ∪ H ∪ O of ACTIVATED NEURONS as follows (using the
shortcutχA(a) = |{a} ∩ A|):

• for everyi ∈ I, we seti ∈ AS exactly ifχS(i) − t(i) >
0,

• for every h ∈ H, we set h ∈ AS exactly if
∑

i∈I χA(i)wih − t(h) > 0, and

• for every o ∈ O, we set h ∈ AS exactly if
∑

h∈H χA(i)who − t(o) > 0.

Finally, we setfN (S) = AS ∩ O.

This definition exactly mirrors the usual way of calculating
with neural networks, presuming the Heaviside step function
as activation function.

In the sequel, we aim at the special case of simulating a
closure operatorϕ : P(M) → P(M) with this kind of neural
network, i.e., input and output layer correspond to the same
set (namelyM ).

5 Encoding of Closure Operators inspired by
FCA

The basic idea for this paper is to use formal contexts to rep-
resent closure operators. In particular (as we have seen in
Section 3), for a formal contextK = (G, M, I), the function
(.)II : P(M) → P(M) is a closure operator onM . More-
over,anyclosure operator on a finite setM can be represented
by an appropriate formal context.5

So, in this section, we propose two canonical ways to trans-
late a formal context into a 3-layered feedforward network,
which – given a setA ⊆ M – computes its closureAII .

The intuition hereby is to identify the hidden layer neurons
with the object set of the formal context. We realize the(.)II -
operator by first applying(.)I toA (which by definition yields
an object set represented by the activated neurons in the hid-
den layer) and, afterwards, applying(.)I to AI thus obtaining
the closure of the attribute set at the output layer.

Definition 8 For a given formal contextK = (G, M, I), we
define a corresponding 3-layered feedforward networkNK in
the following way:

• I = {im | m ∈ M}

• O = {om | m ∈ M}

• H = {hg | g ∈ G}

• t(i) := 0.5 for all i ∈ I

• wimhg
= whgom

=

{

0 if gIm
−1 otherwise.

5One method, how to construct a formal context with this prop-
erty will be explicated in Section 6.

• t(n) := −0.5 for all n ∈ H ∪O

Next, we will prove that indeed the associated network
function fNK

corresponds to the closure operator(.)II , i.e.,
for all A ⊆ M , we have thatAII = {m | om ∈ fNK

({im̃ |
m̃ ∈ A})}

Proposition 3 Let K = (G, M, I) be a formal context and
NK the corresponding neural network. Then

1. for everyA ⊆ M , activating (exactly) the set{im | m ∈
A} of input neurons leads to an activation of (exactly)
the set{hg | g ∈ AI} of hidden neurons and

2. for everyB ⊆ G, activating (exactly) the set{hg | g ∈
B} of hidden neurons leads to an activation of (exactly)
the set{om | m ∈ BI} of output neurons.

Proof: Consider the hidden layer neuronhg representing the
objectg ∈ G. Now, sinceAI = {g | gIm for all m ∈ A}
we have thatg ∈ AI exactly if g has all attributes fromA.
Obviously, this is the case if and only if

∑

m∈M

χAA
(im)wimhg

=
∑

m∈A

wimhg
= 0 > −0.5.

The second claim is proved in exactly the same manner.2

The next corollary then follows immediately be the defini-
tion of (.)II as twofold application of(.)I .

Corollary 1 NK computes(.)II .

This approach is quite close to formal concept analysis
since the neurons of the hidden layer directly correspond to
the object set of the represented formal context. The nega-
tive weights are necessary due to the fact that(.)I is (in both
variants) anantitonefunction (i.e.A ⊆ B impliesBI ⊆ AI ).

However, this can be overcome by a simple “work around”:
instead of mirroring the functionsA 7→ AI andB 7→ BI (for
A ⊆ M andB ⊂ G), one could use the functionsA 7→ M \
AI andB 7→ (M \ B)I instead. Both of them are monotone
and can hence be modelled with only positive weights, and
still their composition yields the wanted operator(.)II . In the
sequel, we will elaborate this idea.

Definition 9 For a given formal contextK = (G, M, I), we
define a corresponding 3-layered feedforward networkÑK in
the following way:

• I = {im | m ∈ M}

• O = {om | m ∈ M}

• H = {hg | g ∈ G}

• t(i) := 0.5 for all i ∈ I

• t(om) := −0.5 + |{g ∈ G | ¬gIm}| for all om ∈ O

• wimhg
= whgom

=

{

0 if gIm
1 otherwise.

• t(h) := 0.5 for all h ∈ H

Proposition 4 Let K = (G, M, I) be a formal context and
ÑK the corresponding neural network. Then

1. for everyA ⊆ M , activating (exactly) the set{im | m ∈
A} of input neurons leads to an activation of (exactly)
the set{hg | g ∈ G \ AI} of hidden neurons and



2. for everyB ⊆ G, activating (exactly) the set{hg | g ∈
B} of hidden neurons leads to an activation of (exactly)
the set{om | m ∈ (G \ B)I} of output neurons.

Proof:

1. Consider the hidden layer neuronhg representing the ob-
ject g ∈ G. Now, sinceAI = {g | gIm forall m ∈ A},
we have thatg ∈ AI exactly if g has all attributes from
A. Obviously, this is the case if and only if

∑

m∈A

wmg = 0 < 0.5.

Therefore, anyhg being activated must be inG \ AI .

2. Now, consider the output layer neuronom representing
the attributem ∈ M . If B is activated in the hidden
layer,om will be activated exactly if
∑

g∈B

wgm = |{g ∈ B | ¬gIm}| > −0.5+|{g ∈ G | ¬gIm}|

Yet, due toB ⊆ G, this can only be the case iff{g ∈
B | ¬gIm}| = |{g ∈ G | ¬gIm}| which is equivalent
to the statement thatgIm for all g ∈ G \ B. Hence,om

is activated exactly ifm ∈ (G \ B)I .

2

Corollary 2 ÑK computes(.)II .

Proof: Due to the preceding proposition, applying̃NK to
an attribute setA will first activate the hidden neurons rep-
resentingG \ AI and then the output neurons representing
(G \ (G \ AI))I = (AI)I = AII

2

As already mentioned, using this type of network will acti-
vate exactly those hidden layer neuronsnot contained inAI ,
if A is entered.

An interesting feature of both presented networks is their
symmetry: for allm ∈ M andg ∈ G, wimhg

= whgom
. Al-

though this puts structural constraints on the neural network
and might therefore hamper the application of learning strate-
gies, it might be useful from a quite different point of view:
in cases, where the neural network will be hardwired, input
and output layer could be identified and calculation be done
in a “back-and-forth manner” using the links twice for every
calculation.

6 Application to propositional logic programs
In this section, we will show, how the presented strategy can
be applied in a propositional logic programming scenario.

Logic programming is especially suited for this approach,
since

• any logic program essentially consists of a set of impli-
cations and hence

• entailment can (at least in the negation-free case) there-
fore be described by a closure operator on the ground
facts.

Consequently, one can assign to every logic program an
operatorTP which applied to a set of ground facts intuitively
calculates the immediate consequences by “applying” each

implication once. The entailment closure operator can then
be simulated by iteratively applyingTP until a fixed point is
reached.[Hitzler et al., 2004] presents an approach to encode
TP into a recurrent 3-layered neural network, by assigning
every implication to a node of the middle layer. To make this
clear, consider the following example.

Imagine, some kind of animal has to be determined via
some tests. Let furthermore the only available tests be
to indicate whether the animal is a mammal, a bird, a
monkey, a donkey, an owl, a fowl or a frog. Hence
M := {donkey, monkey, mammal, frog, bird, owl, fowl}.
Then the implications presented in Fig. 1 characterize the set-
ting:

monkey _ mammal
donkey _ mammal
owl _ bird
fowl _ bird

monkey, donkey _ ⊥
owl, fowl _ ⊥
mammal, bird _ ⊥
mammal, frog _ ⊥
bird, frog _ ⊥

Figure 1: Implication representing the knowledge in our ex-
ample.

Following [Hölldobler and Kalinke, 1994], the neural net-
work corresponding to theTP -operator representing those
implications interpreted as a logic program would look like
the one represented in Fig, 2.
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Figure 2: Neural network corresponding to theTP -operator
of our propositional setting. All weights are set to 1. The
dotted lines are those indicating a contradiction.

The set{donkey, fowl} demonstrates that, in general,TP

may have to be applied several times to calculate the closure,
since

TP ({donkey, fowl}) = {donkey, mammal, fowl, bird}



and
TP ({donkey, mammal, fowl, bird}) = M.

Now we consider how our method would apply. So, we have
to find a formal contextK = (G, M, I), whereAII = AI for
all A ⊆ M . One possibility to do so is to consider the lattice
of all I-closed sets. Fig. 3 represents this.

monkey donkey frog owl fowl

mammal bird

Figure 3: Lattice of theI-closed sets.

Yet, a well-known result of FCA provides a direct way
to find a minimal set of objects for a formal context that is
supposed to generate a given lattice. One has to take all
supremum-irreducible elements as objects. Looking at the di-
agram, the supremum-irreducible elements are exactly those
having only one lower neighbour. In our particular case,
these are exactly all upper neighbours of the bottom element.
Hence, we can derive the formal context depicted in Fig. 4.

m
o

n
ke

y

d
o

n
ke

y

m
am

m
al

fr
o

g

b
ir

d

ow
l

fo
w

l

g1 × ×
g2 × ×
g3 ×
g4 × ×
g5 × ×

Figure 4: The formal contextK corresponding to the closure
operator to describe.

According to the preceding section, there are two ways
of using this kind of formal context to define a neural net-
work that computes the closure of a given set directly (i.e.,no
manyfold application – likewise no recurrent organisation–
of the net would be necessary).

The first one (corresponding to the definition ofNK) is
shown in Fig. 5. Note that all drawn edges correspond to
weights of -1.

The second network (corresponding to the definition of
ÑK) is shown in Fig. 6. Here all drawn edges carry weight
of 1.

7 Conclusion and Future Work
In our paper, we presented two new canonical ways for gen-
erating neural networks that compute the closure operator of
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Figure 5: Neural network corresponding to the consequence
operator of our propositional setting. All weights are set to
-1.

a given finite set. We thereby provide a method to support
the representation part of the neural-symbolic learning cycle
by presenting an encoding strategy for a kind of background
knowledge generically occurring in the area of knowledge
processing.

In contrast to other methods, where the closure is approx-
imated iteratively (using a recurrent network), the networks
presented in our approach will calculate it directly, i.e.,by a
single run of the network.

Moreover, as shown by our example, there are cases where
this kind of representation is also advantageous in terms of
the number of hidden layer neurons needed. In general, this
approach seems to be especially beneficial, if the number of
implications becomes large.

Naturally, the proposed method requires preprocessing of
the implicative information to be encoded. Depending on
how this information is given, it has to be transformed into
a formal context. The way we presented here – namely gen-
erating the whole lattice of the closed sets and identifyingthe
supremum-irreducible elements of it – is certainly not opti-
mal with respect to time costs (in the worst case, the size of
the lattice can be2|M|). So one important field of future re-
search is to find more efficient methods to convert implicative
knowledge into small contexts.
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