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Abstract. We investigate the possibility of incorporating Boolean role construc-
tors on simple roles into some of today’s most popular description logics, fo-
cussing on cases where those extensions do not increase complexity ofreasoning.
We show that the expressive DLsSHOIQ andSROIQ, serving as the logical
underpinning of OWL and the forthcoming OWL 2, can accommodate arbitrary
Boolean expressions. The prominent OWL-fragmentSHIQ can be safely ex-
tended by safe role expressions, and the tractable fragmentsEL++ and DLP re-
tain tractability if extended by conjunction on roles, where in the case of DLP the
restriction on role simplicity can even be discarded.

1 Introduction

Research on description logics (DLs) is directed by two maingoals: increasing expres-
sivity while preserving desirable computational properties such as decidability (as a
factualconditio sine qua non) and efficiency of reasoning, the latter qualitatively es-
timated in terms of worst-case complexities. These antagonistic dimensions gave rise
to a great variety of logics:SROIQ andSHOIQ being of high expressiveness and
complexity represent the one side of the spectrum, whereas the so called tractable frag-
ments likeEL++ and DLP provide lower expressivity yet allow for polynomialtime
reasoning.

In DL history, Boolean constructors (negation, conjunction, disjunction) on roles
have occurred and have been investigated sporadically in many places, but have never
been integrated into the mainstream of researched languages, let alone influenced stan-
dardisation considerations. In this paper we argue that Boolean constructors can – some-
times with appropriate restrictions – be incorporated intoseveral of the most prominent
DL languages, thereby significantly enhancing expressivity without increasing reason-
ing complexity.

To illustrate this gain in expressivity, we give some examples on the modelling
capabilities of Boolean role constructors:

Universal role. A role U that connects all individuals of the described domain can e.g.
be defined viaU ≡ ¬N as the complement of the empty roleN, which in turn can be
axiomatized by the GCI⊤ ⊑ ∀N.⊥.



Role conjunction.This modelling feature comes in handy if certain non-tree-like prop-
erties (namely cases where two individuals are interconnected by more than one role)
have to be described. The fact that somebody testifying against a relative is not put un-
der oath can e.g. be formalised by∃(testifiesAgainst⊓ relativeOf).⊤ ⊑ ¬UnderOath.
Likewise, role conjunction allows for specifying disjointness of roles, asDis(R,S) can
be paraphrased as⊤ ⊑ ∀(R⊓ S).⊥.

Concept products.Thoroughly treated in [1], the concept product statementC×D ⊑ R
expresses that any instance ofC is connected with any instance ofD via role R. As
an example, the fact that alkaline solutions neutralise acid solutions, which could ex-
pressed by the concept product axiomAlkalineSolution× AcidSolution⊑ neutralises,
can equivalently be stated byAlkalineSolution⊑ ∀(¬neutralises).¬AcidSolutionby us-
ing role negation.

Qualified role inclusion. Likewise, the specialisation of roles due to concept mem-
berships of the involved individuals can be expressed. The rule-like FOL statement
C(x) ∧ R(x, y) ∧ D(y) → S(x, y) (expressing that anyC-instance andD-instance that
are interconnected byR are also interconnected byS) can be cast into the GCIC ⊑
∀(R⊓ ¬S).¬D.

The rest of the paper is organised as follows. After providing the necessary defini-
tions, we review existing work on Boolean role constructors. Then, we deal with the
extension ofSROIQ andSHOIQ by full Boolean role expressions on simple roles.
Thereafter, we provide an according result for integratingsafe Boolean role expressions
into the description logicSHIQ. The subsequent two sections settle the case for the
tractable fragmentsEL++ and DLP, respectively, extending them by role conjunction.
Finally, we conclude and elaborate on future work.

2 Preliminaries

In this section, we give the definition of the expressive description logic SROIQBs

which is obtained from the well-known description logicSROIQ [2] by allowing arbi-
trary Boolean constructors on simple roles. We assume that the reader is familiar with
description logics [3].

The DLs considered in this paper are based on four disjoint sets of individual names
NI , concept namesNC, andsimple role namesNs

R (containing theuniversal role U∈ NR)
as well asnon-simple role namesNn

R. Furthermore, we letNR≔ Ns
R∪ Nn

R.

Definition 1. A SROIQBs Rbox forNR is based on a setR of atomic rolesdefined
asR ≔ NR ∪ {R− | R ∈ NR}, where we setInv(R) ≔ R− and Inv(R−) ≔ R to simplify
notation. In turn, we distinguishsimple atomic rolesRs

≔ Ns
R∪Inv(Ns

R) andnon-simple
atomic rolesRn

≔ Nn
R∪ Inv(Nn

R).
In the sequel, we will use the symbols R,S , possibly with subscripts, to denote

atomic roles.
The set ofBoolean role expressionsB is defined as follows:

BF R | ¬B | B ⊓ B | B ⊔ B.



The setBs of simplerole expressions comprises all those role expressions contain-
ing only simple role names. Moreover, a role expression willbe calledsafe, if in its
disjunctive normal form, every disjunct contains at least one non-negated role name.

A generalisedrole inclusion axiom(RIA) is a statement of the form V⊑ W with
simple role expressions V and W, or of the form

S1 ◦ . . . ◦ Sn ⊑ R

where each Si is a simple role expression or a non-simple atomic role, and where R is a
non-simple atomic role. A set of such RIAs will be called a generalisedrole hierarchy.
A role hierarchy isregularif there is a strict partial order≺ on the non-simple rolesRn

such that

– S ≺ R iff Inv(S) ≺ R, and
– every RIA is of one of the forms
• R◦ R⊑ R,
• R− ⊑ R,
• S1 ◦ . . . ◦ Sn ⊑ R,
• R◦ S1 ◦ . . . ◦ Sn ⊑ R,
• S1 ◦ . . . ◦ Sn ◦ R⊑ R,

such that R∈ NR is a (non-inverse) role name, and Si ≺ R for i = 1, . . . ,n whenever
Si is non-simple.

A role assertionis a statement of the formRef(R) (reflexivity), Asy(V) (asymmetry),
or Dis(V,W) (role disjointness), where V and W are simple role expressions, and R is a
simple role expression or a non-simple role. ASROIQBs Rbox is the union of a set of
role assertions together with a role hierarchy. ASROIQBs Rbox is regular if its role
hierarchy is regular.

Definition 2. Given aSROIQBs RboxR, the set ofconcept expressionsC is defined
as follows:

– NC ⊆ C, ⊤ ∈ C, ⊥ ∈ C,
– if C,D ∈ C, R ∈ R a simple role expression or non-simple role, V∈ Bs a simple

role expression, a∈ NI , and n a non-negative integer, then¬C, C⊓ D, C⊔ D, {a},
∀R.C,∃R.C,∃V.Self, ≤n V.C, and≥n V.C are also concept expressions.

Throughout this paper, the symbols C, D will be used to denoteconcept expressions.
A SROIQBs Tbox is a set ofgeneral concept inclusion axioms(GCIs) of the form
C ⊑ D.

An individual assertioncan have any of the following forms: C(a), R(a,b), ¬S(a,b),
a 0 b, with a,b ∈ NI individual names, C∈ C a concept expression, and R,S ∈ R roles
with S simple. ASROIQBs Abox is a set of individual assertions.

ASROIQBs knowledge base KBis the union of a regular RboxR, and an AboxA
and TboxT for R.

We further give the semantics ofSROIQBs knowledge bases.



Name Syntax Semantics
inverse role R− {(x, y) ∈ ∆I × ∆I | (y, x) ∈ RI}
universal role U ∆I × ∆I

role negation ¬V {(x, y) ∈ ∆I × ∆I | (x, y) < RI}
role conjunction V ⊓W VI ∩WI

role disjunction V ⊔W VI ∪WI

top ⊤ ∆I

bottom ⊥ ∅

negation ¬C ∆I \CI

conjunction C ⊓ D CI ∩ DI

disjunction C ⊔ D CI ∪ DI

nominals {a} {aI}
univ. restriction ∀R.C {x ∈ ∆I | (x, y) ∈ RI impliesy ∈ CI}
exist. restriction ∃R.C {x ∈ ∆I | for somey ∈ ∆I , (x, y) ∈ RI andy ∈ CI}
Self concept ∃S.Self {x ∈ ∆I | (x, x) ∈ SI}
qualified number≤n S.C {x ∈ ∆I | #{y ∈ ∆I | (x, y) ∈ SI andy ∈ CI} ≤ n}
restriction ≥n S.C {x ∈ ∆I | #{y ∈ ∆I | (x, y) ∈ SI andy ∈ CI} ≥ n}

Fig. 1.Semantics of concept constructors inSROIQBs for an interpretationI with domain∆I.

Definition 3. An interpretationI consists of a set∆I calleddomain(the elements of it
being calledindividuals) together with a function·I mapping

– individual names to elements of∆I,
– concept names to subsets of∆I, and
– role expressions to subsets of∆I × ∆I.

The function·I is inductively extended to role and concept expressions as shown in
Table 1. An interpretationI satisfiesan axiomϕ if we find thatI |= ϕ:

– I |= V ⊑W if VI ⊆WI,
– I |= V1 ◦ . . . ◦ Vn ⊑ R if VI1 ◦ . . . ◦ VIn ⊑ RI (◦ being overloaded to denote the

standard composition of binary relations here),
– I |= Ref(R) if RI is a reflexive relation,
– I |= Asy(V) if VI is antisymmetric and irreflexive,
– I |= Dis(V,W) if VI and WI are disjoint,
– I |= C ⊑ D if CI ⊆ DI.

An interpretationI satisfiesa knowledge baseKB (we then also say thatI is a
modelof KB and writeI |= KB) if it satisfies all axioms ofKB. A knowledge baseKB
is satisfiableif it has a model. Two knowledge bases areequivalentif they have exactly
the same models, and they areequisatisfiableif either both are unsatisfiable or both are
satisfiable.

We obtainSROIQ fromSROIQBs by disallowing all junctors in role expressions.
Further details onSROIQ can be found in [2]. We have omitted here several syntac-
tic constructs that can be expressed indirectly, especially role assertions for transitivity,
reflexivity of simple roles, and symmetry. Moreover, the DLSHOIQ is obtained from



SROIQ by discarding the universal role as well as reflexivity, asymmetry, role disjoint-
ness statements and allowing only RIAs of the formR ⊑ S or R◦ R ⊑ R. Further DLs
will be defined as they occur.

3 Related Work

Boolean constructors on roles have been investigated in thecontext of both descrip-
tion and modal logics. [4] for used them extensively for the definition of a DL that is
equivalent to the two-variable fragment of FOL.

As a classical result on complexities, it was shown in [5], that augmentingALC
with full Boolean role constructors (ALCB) leads to NET-completeness of the
standard reasoning tasks (while restricting to role negation [5] or role conjunction [6]
only retains ET-completeness). This complexity does not further increasewhen
allowing for inverses, qualified number restrictions, and nominals as was shown in [6]
by a polynomial translation ofALCIQB intoC2, the two variable fragment of first or-
der logic with counting quantifiers, which in turn was provento be NET-complete
in [7]. Also the recently considered description logicALBO [8] falls in that range of
NET-complete DLs.

On the contrary, it was also shown in [6] that restricting tosafeBoolean role con-
structors keepsALC’s reasoning complexity in ET, even when adding inverses
and qualified number restrictions (ALCIb).

For logics including modelling constructs that deal with role concatenation like tran-
sitivity or – more general – complex rule inclusion axioms, results on complexities in
the presence of Boolean role constructors are more sparse. [9] shows thatALC can be
extended by negation and regular expressions on roles whilekeeping reasoning within
ET. Furthermore, [10] provided ET complexity for a similar logic that in-
cludes inverses and qualified number restriction but reverts to safe negation on roles.

An extension ofSHIQ with role conjunction (denotedSHIQ⊓) is presented in
[11] in the context of conjunctive query answering, the results implying an upper bound
of 2ET.

4 SROIQBs andSHOIQBs

In this section, we show that adding arbitrary (i.e. also unsafe) Boolean role expressions
to the widely known description logicsSROIQ andSHOIQ does not harm their rea-
soning complexities – N2ET [12] and NET [6], repectively – if this extension
is restricted to simple roles.

Note that in the sequel,SHOIQ (resp.SHOIQBs) will be treated as a special case
of SROIQ (resp.SROIQBs), as most considerations hold for both cases.

As shown in [12], anySROIQ (SHOIQ) knowledge base can be transformed into
an equisatisfiable knowledge base containing only axioms ofthe form:



Table 1. Additional transformation forSROIQBs andSHOIQBs. A, B are concept names.V,
W are simple role expressions.Vi are simple role expressions or non-simple roles.V̂ is a simple
role expression that is not just a role.R is a non-simple role name.S is a new simple role name.

A ⊑ ∀V̂.B 7→ {A ⊑ ∀S.B, V̂ ⊑ S}
A ⊑ ≥nV̂.B 7→ {A ⊑ ≥nS.B,S ⊑ V̂}
A ⊑ ≤nV̂.B 7→ {A ⊑ ≤nS.B, V̂ ⊑ S}
A ⊑ ∃V̂.Self 7→ {A ⊑ ∃S.Self,S ⊑ V̂}

Dis(V,W) 7→ {V ⊓W ⊑ S,⊤ ⊑ ∀S.⊥}
V1 ◦ . . . ◦ V̂ ◦ . . . ◦ Vn ⊑ R 7→

{V1 ◦ . . . ◦ S ◦ . . . ◦ Vn ⊑ R, V̂ ⊑ S}

A ⊑ ∀R.B

A ⊑ ≥n S.B

A ⊑ ≤n S.B

�
Ai ⊑
⊔

Bj

A ≡ {a}

A ≡ ∃S.Self

S1 ⊑ S2

S1 ⊑ S−2

Dis(S1,S2)

R1 ◦ . . . ◦ Rn ⊑ R.

Trivially, this normalization can be applied toSROIQBs (SHOIQBs) as well,
yielding the same types of axioms whereas simple role expressions may occur in the
place of simple roles. A second transformation carried out by exhaustively applying
the transformation steps depicted in Table 1 yields an equisatisfiable knowledge base
containing only the original axiom types depicted above (i.e. again only simple role
names in places ofS(i) and role names in places ofRi) and just one additional axiom
typeW ⊑ V with W,V simple role expressions. As shown in [12], any of these original
axiom types except the one containing role concatenation can be translated intoC2, the
two-variable fragment of first order logic with counting quantifiers. The additionally
introduced type of axiom can clearly also be transformed into C2 statements namely
into the proposition∀xy(Φ(W)→ Φ(V)) whereΦ is inductively defined by:

Φ(S) = S(x, y)
Φ(S−) = S(y, x)
Φ(¬V) = ¬Φ(V)

Φ(V ⊓W) = Φ(V) ∧Φ(W)
Φ(V ⊔W) = Φ(V) ∨Φ(W)

Further following the argumentation from [12], the remaining complex role inclu-
sions not directly convertible intoC2 can be taken into account by cautiously material-
izing the consequences resulting from their interplay withaxioms of the typeA ⊑ ∀R.B
through automata encoding techniques – see also [13]. This way, one obtains aC2 the-
ory that is satisfiable exactly if the original knowledge base is. In the case ofSROIQ
(and henceSROIQBs), this can result in an exponential blowup of the knowledge
base while forSHOIQBs (and henceSHOIQ) the transformation is time polyno-
mial. Thus we see that the upper complexity bounds forSROIQ andSHOIQ carry
over toSROIQBs andSHOIQBs by just a slight extension of the according proofs



from [12] while the lower bounds follow directly from those of SROIQ andSHOIQ.
Hence, we can establish the following theorem.

Theorem 1. Satisfiability checking, instance retrieval, and computing class subsump-
tions forSROIQBs (SHOIQBs) knowledge bases isN2ET-complete (NET-
complete).

While the results established in this section are rather straightforward consequences
of known results, their implications for practice might be more significant: they show
that the DLs underlying OWL and OWL 2 can be extended by arbitrary Boolean con-
structors on simple roles without increasing the worst casecomplexity of reasoning.

5 SHIQbs

SHIQ is a rather expressive fragment obtained fromSHOIQ by disallowing nomi-
nals, where (in contrast to the NET-completeSHOIQ) reasoning is known to be
ET-complete [6].

In this section we will introduce the extension ofSHIQ by safe role expressions
on simple roles. Thereafter, we will present a technique forremoving transitivity state-
ments fromSHIQbs knowledge bases in a satisfiability preserving way. This yields
two results: on the one hand, we provide a way how existing reasoning procedures for
ALCIb like e.g. those described in [6, 10, 14] can be used to solveSHIQbs reasoning
tasks. On the other hand, as the transformation procedure can be done in polynomial
time, the known upper bound for the complexity of reasoning in ALCIb – namely
ET – carries over toSHIQbs.

Definition 4. A SHIQbs knowledge base is aSHOIQBs knowledge base that con-
tains no nominals and only safe role expressions.

Based on a fixed knowledge baseKB, we define⊑∗ as the smallest binary relation
on the non-simple atomic rolesRn such that:

– R⊑∗ R for every atomic role R,
– R⊑∗ S andInv(R) ⊑∗ Inv(S) for every Rbox axiom R⊑ S , and
– R⊑∗ T whenever R⊑∗ S and S⊑∗ T.

Given an atomic non-simple role R, we writeTrans(R) ∈ KB as an abbreviation for:
R◦ R⊑ R ∈ KB or Inv(R) ◦ Inv(R) ⊑ Inv(R) ∈ KB.

Slightly generalising according results from [15], we now show that anySHIQbs

knowledge base can be transformed into an equisatisfiable knowledge base not contain-
ing transitivity statements.

Definition 5. Given aSHIQbs knowledge baseKB, let clos(KB) denote the smallest
set of concept expressions where

– NNF(¬C ⊔ D) ∈ clos(KB) for any Tbox axiom C⊑ D,
– D ∈ clos(KB) for every subexpression D of some concept C∈ clos(KB),
– NNF(¬C) ∈ clos(KB) for any≤n R.C ∈ clos(KB),



– ∀S.C ∈ clos(KB) wheneverTrans(S) ∈ KB and S⊑∗ R for a role R with∀R.C ∈
clos(KB).

Moreover, letΩ(KB) denote the knowledge base obtained fromKB by

– removing all transitivity axioms R◦ R⊑ R and
– adding the axiom∀R.C ⊑ ∀S.(∀S.C) for every∀R.C ∈ clos(KB) with Trans(S) ∈

KB and S⊑∗ R.

Proposition 1. LetKB ba aSHIQbs knowledge base. Then,KB andΩ(KB) are equi-
satisfiable.

Proof. Obviously, we have that KB|= Ω(KB), hence every model of KB is a model of
Ω(KB) as well.

For the other direction, letI = (∆I, ·I) be a model ofΩ(KB). Then we define a new
interpretationJ = (∆J , ·J ) as follows:

– ∆J := ∆I

– aJ := aI for everya ∈ NI

– AJ := AI for everyA ∈ NC

– for all simple rolesR, we setRJ := RI

– for all non-simple rolesR, RJ is set to the transitive closure ofRI if Trans(R) ∈ KB,
otherwiseRJ := RI ∪

⋃
S⊑∗R,S∈Nn

R
SJ

As a direct consequence of this definition, note that for all simple concept expres-
sionsV ∈ Bs we haveVJ = VI (fact†).

We now prove thatJ is a model of KB by considering all axioms starting with the
Rbox: Firstly, every transitivity axiom of KB is obviously fulfilled by definition ofJ .
Secondly, every role inclusionV ⊑W axiom is fulfilled:

If both V andW are simple role expressions this is a trivial consequence from (†).
If V is a simple role expression andW is a non-simple role, this follows from (†) and
the fact that by construction ofJ , for every non-simple roleRholdsRI ⊆ RJ .

It remains the case that bothV andW are non-simple roles. In caseW is not tran-
sitive, this follows directly from the definition, otherwise we can conclude it from the
fact that the transitive closure is a monotone operation w.r.t. set inclusion.

We proceed by examining the concept expressionsC ∈ clos(KB) and show via
structural induction thatCI ⊆ CJ . As base case, for every concept of the formA,
or ¬A for A ∈ NC this claim follows directly from the definition ofJ . We proceed
with the induction steps for all possible forms of a complex conceptC (mark that all
C ∈ clos(KB) are in negation normal form):

– Clearly, if DI1 ⊆ DJ1 andDI2 ⊆ DJ2 by induction hypothesis, we can directly con-
clude (D1 ⊓ D2)I ⊆ (D1 ⊓ D2)J as well as (D1 ⊔ D2)I ⊆ (D1 ⊔ D2)J .

– Likewise, as we haveVI ⊆ VJ for all simple role expressions and non-simple
roles V and againDI ⊆ DJ due to the induction hypothesis, we can conclude
(∃V.D)I ⊆ (∃V.D)J as well as (≥n V.D)I ⊆ (≥n V.D)J .



– Now, consider aC = ∀V.D. If V is a simple role expression, we know thatVJ = VI,
whence we can derive (∀V.D)I ⊆ (∀V.D)J from the induction hypothesis.
It remains to consider the caseC = ∀R.D for non-simple rolesR. Assumeδ ∈
(∀R.D)I. If there is noδ′ with (δ, δ′) ∈ RJ , thenδ ∈ (∀R.D)J is trivially true. Now
assume there are suchδ′. For each of them, we can distinguish two cases:

• (δ, δ′) ∈ RJ , implying δ′ ∈ DI and, via the induction hypothesis,δ′ ∈ DJ ,
• (δ, δ′) < RJ . Yet, by construction ofJ , this means that there is a roleS with

S ⊑∗ RandTrans(S) ∈ KB and a sequenceδ = δ0, . . . , δn = δ′ with (δk, δk+1) ∈
SI for all 0 ≤ k < n. By definition ofΩ, the knowledge baseΩ(KB) contains
the axiom∀R.D ⊑ ∀S.(∀S.D), hence we haveδ ∈ ∀S.(∀S.D) wherefrom a
simple inductive argument ensuresδk ∈ DI for all δk includingδn = δ′.

So we can conclude that for all suchδ′ we haveδ′ ∈ DI. Via the induction hypoth-
esis followsδ ∈ DJ and hence we can concludeδ ∈ (∀R.D)J .

– Finally, considerC = ≤n R.D and assumeδ ∈ (≤n R.D)I. From the fact thatRmust
be simple followsRJ = RI. Moreover, since bothD andNNF(¬D) are contained
in clos(KB) the induction hypothesis givesDJ = DI. Those two facts together
directly implyδ ∈ (≤n R.D)I.

Now considering an arbitrary KB Tbox axiomC ⊑ D, we find (NNF(¬C) ⊔ D)I =
∆I asI is a model of KB. Moreover – by the correspondence just shown –we have
(NNF(¬C) ⊔ D)I ⊆ (NNF(¬C) ⊔ D)I and hence also (NNF(¬C) ⊔ D)J = ∆J making
C ⊑ D an axiom satisfied inJ . This finishes the proof. ⊓⊔

Taking into account that the presented transformation is time polynomial, this result
can now be employed to determine the complexity ofSHIQbs.

Theorem 2. Reasoning inSHIQbs is ET-complete.

Proof. Clearly, all standard reasoning problems can be reduced to knowledge base sat-
isfiability checking as usual.

Now, by Proposition 1, any givenSHIQbs knowledge base KB can be transformed
into anALCHIb knowledge baseΩ(KB) in polynomial time. Furthermore, all role in-
clusion axioms can be removed fromΩ(KB) as follows. First, all role names contained
in Ω(KB) can be declared to be simple without violating the syntactic constraints. Sec-
ond, every role inclusion axiomV ⊑ W (with V,W being safe by definition) can be
equivalently transformed into the GCI⊤ ⊑ ∀(V ⊓ ¬W).⊥. Note that thenV ⊓ ¬W is
safe as well and therefore admissible. Moreover the transformation is obviously time
linear. So we end up with anALCIb knowledge base whose satisfiability checking is
ET-complete due to [6]. ⊓⊔

So we have shown that allowing safe Boolean expressions on simple roles does not
increase the ET reasoning complexity ofSHIQ. On the other hand, the recent re-
sults onSHIQ⊓ [11] seem to indicate that the role simplicity condition is essential for
staying within ET even though no definite hardness result for generalSHIQ⊓ was
provided. The safety condition on role expressions, in turn, is clearly needed: dropping
it would lead to a DL comprisingALCBwhich is known to be NET-complete
[5].



6 EL
++(⊓s)

In this section, we investigate role conjunction for the DLEL++ [16], for which many
typical inference problems can be solved in polynomial time. We simplify our presenta-
tion by omitting concrete domains fromEL++ – they are not affected by our extension
and can be treated as shown in [16].

Definition 6. An atomic role ofEL++(⊓s) is a (non-inverse) role name. AnEL++(⊓s)
role expression is a simple role expression containing onlyrole conjunction. AnEL++(⊓s)
Rbox is a set of generalised role inclusion axioms (usingEL++(⊓s)role expressions and
non-simple atomic roles), and anEL++(⊓s) Tbox is aSROIQBs Tbox that contains
only the concept constructors:⊓, ∃, ⊤, ⊥ and onlyEL++(⊓s)role expressions.

Note that we do not have any requirement for regularity of roles but we have to
introduce the notion of role simplicity in the context ofEL++. In a first step, we observe
that anyEL++(⊓s) knowledge base can be converted into a normal form.

Definition 7. An EL++(⊓s) knowledge baseKB is in normal formif it contains only
axioms of one of the following forms:

A ⊑ C A⊓ B ⊑ C R ⊑ T
∃R.A ⊑ B A ⊑ ∃R.B R◦ S ⊑ T

R⊓ S ⊑ T

where A, B ∈ NC ∪ {{a} | a ∈ NI } ∪ {⊤}, C ∈ NC ∪ {{a} | a ∈ NI } ∪ {⊥}, and R,S,T ∈ NR.

Proposition 2. AnyEL++(⊓s) knowledge base can be transformed into an equisatis-
fiableEL++(⊓s) knowledge base in normal form. The transformation can be done in
linear time.

Proof. The transformation is accomplished by the rules of Table 2, where each rule
describes the replacement of some axiom by one or more alternative axioms. In every
of the five steps, the corresponding rules are applied exhaustively to the knowledge
base. Polynomiality of this conversion can then be shown in analogy to the normal
form transformation given in [16]. ⊓⊔

Subsequently, we show that the only axiom type of this normalform not covered by
EL++ can be removed from anEL++(⊓s) knowledge base while preserving satisfiability
if the relevant consequences are materialized before.

Definition 8. Given anEL++(⊓s) knowledge baseKB in normal form, letΘ⊓(KB) de-
note the knowledge base obtained fromKB by

– adding R1 ⊑ R2 for all R2 ∈ R⊑1 where S⊑ ⊆ NR denotes the smallest set of role
names containing S and satisfying
• T ∈ S⊑, whenever R∈ S⊑ and R⊑ T ∈ KB as well as
• T ∈ S⊑, whenever R1,R2 ∈ S⊑ and R1 ⊓ R2 ⊑ T ∈ KB,

– removing every axiom of the form S1 ⊓ S2 ⊑ R and instead adding the axioms
∃S1.{o} ⊓ ∃S2.{o} ⊑ ∃R.{o} for every individual name{o}.



Table 2.Normal form transformation forEL++(⊓s). A, B, C, Â, Ĉ, andD are concept expressions,
whereÂ andĈ are neither concept names nor nominals.Vi , W are simple concept expressions or
non-simple role names, whilêV, Ŵ are simple concept expressions that are not role names.R,
Ri are simple role name,S, andT are non-simple role names. Every overlined role or concept
name is fresh. Commutativity and associativity of⊓ (for both concepts and roles) is assumed to
simplify the rule set.

P1: V1 ◦ . . . ◦ Vn−1 ◦ Vn ⊑ R 7→ {V1 ◦ . . . ◦ Vn−1 ⊑ T,T ◦ Vn ⊑ R}
B⊓ Â ⊑ C 7→ {Â ⊑ D,D ⊓ B ⊑ C}
∃V.Â ⊑ B 7→ {Â ⊑ D,∃V.D ⊑ B}
⊥ ⊑ C 7→ ∅

P2: A ⊑ B⊓C 7→ {A ⊑ B,A ⊑ C}
Â ⊑ Ĉ 7→ {Â ⊑ D,D ⊑ Ĉ}
A ⊑ ∃V.Ĉ 7→ {A ⊑ ∃V.D,D ⊑ Ĉ}
A ⊑ ⊤ 7→ ∅

P3: A ⊑ ∃(R1 ⊓ . . . ⊓ Rn).B 7→ {A ⊑ ∃R.B,R⊑ Ri | 1 ≤ i ≤ n}
∃V̂.A ⊑ B 7→ {∃R.A ⊑ B, V̂ ⊑ R}

V̂ ◦W ⊑ S 7→ {V̂ ⊑ R,R◦W ⊑ S}
W ◦ V̂ ⊑ S 7→ {V̂ ⊑ R,W ◦ R⊑ S}

P4: V̂ ⊑ Ŵ 7→ {V̂ ⊑ R,R⊑ Ŵ}
R ⊑ S1 ⊓ . . . ⊓ Sm 7→ {R⊑ Si | 1 ≤ i ≤ m}

P5: R1 ⊓ . . . ⊓ Rn−1 ⊓ Rn ⊑ S 7→ {R1 ⊓ . . . ⊓ Rn−1 ⊑ R,R⊓ Rn ⊑ S}

Note thatΘ⊓(KB) can be computed in polynomial time. In particular, finding the
closed setsR⊑ can be done in linear time w.r.t. the size of KB, e.g. using thelinclosure
algorithm from [17].

Proposition 3. Let KB be anEL++(⊓s) knowledge base. Then,KB andΘ⊓(KB) are
equisatisfiable.

Proof. First, note that any model of KB is a model ofΘ⊓(KB) as all the axioms in
Θ⊓(KB) \ KB are consequences from KB.

Second, assumeΘ⊓(KB) is satisfiable. We now use an arbitrary modelI of Θ⊓(KB)
to construct an interpretationJ as follows (where we letN′R denote the simple role
names occurring in KB andNI

I := {oI | o ∈ NI }):

– ∆J ≔ NI
I ∪ ((Ns

R∪ {∅}) × (∆I \ NI
I)). I.e., every unnamed individualδ from ∆I is

substituted by copies endowed with the simple role names andone additional copy
(∅, δ). We will use the functionorig : ∆J → ∆I to refer to the “I-origin” of an
J-individual by lettingorig(oJ ) := oI for all o ∈ NI as well asorig((x, δ)) := δ for
every (x, δ) ∈ ∆J \ NI

I.
– for o ∈ NI , let oJ := oI

– for δ ∈ ∆J , let δ ∈ AJ iff orig(δ) ∈ AI

– (δ, ǫ) ∈ SJ , iff (orig(δ), orig(ǫ)) ∈ SI and one of the following is the case:
• ǫ = oI for someo ∈ NI , (*)



• S is non-simple, (**)
• ǫ = (R, δ) for someδ ∈ ∆I \ NI

I andS ∈ R⊑. (***)

We now proceed by showing thatJ is a model of KB.
Clearly,J satisfies all axioms of the shapeA ⊑ C andA⊓ B ⊑ C sinceI does.

Considering the axiom type∃R.A ⊑ B, we observe the following for everyδ ∈
(∃R.A)J : taking the witnessǫ ∈ ∆J with (δ, ǫ) ∈ RJ and ǫ ∈ AJ , we find that
(orig(δ), orig(ǫ)) ∈ RI as well asorig(ǫ) ∈ AI, hence,orig(δ) ∈ (∃R.A)I and via the
considered axiomorig(δ) ∈ BI, such that we can by construction concludeδ ∈ BJ .

For axioms of the typeA ⊑ ∃R.B, assumeδ ∈ AJ directly implyingorig(δ) ∈ AI.
By the considered axiom being inΘ⊓(KB), we also find someη ∈ ∆I for which
(orig(δ), η) ∈ RI andη ∈ AI. First, observe that anyη′ ∈ ∆J originating fromη satis-
fiesη′ ∈ AJ . Hence, it remains to show that there always exists such anη′ for which
additionally (δ, η′) ∈ RJ . If η = oI for someo ∈ NI , this is assured by (*). IfR is
non-simple,η′ := (∅, η) has the desired property. IfR is simple, lettingη′ := (R, η) will
satisfy the claim by (***). Thus, we have derived the validity of A ⊑ ∃R.B in KB.

Considering the axiom typeR1 ⊑ R2, assume (δ, ǫ) ∈ RJ1 , whence we can conclude
(orig(δ), orig(ǫ)) ∈ RI1 which yields (orig(δ), orig(ǫ)) ∈ RI2 , as the considered axiom is
contained inΘ⊓(KB). In the caseǫ = orig(ǫ) = oI for someo ∈ NI , we find (δ, ǫ) ∈ RJ2
by (*). The same follows from (**) wheneverR2 is non-simple. It remains to consider
the case thatR2 (and hence alsoR1) is simple andǫ = (x, orig(ǫ)). The casex = ∅ can
be excluded as then (δ, ǫ) < RJ1 by construction. Hence,x = R for some simple roleR.
From (δ, ǫ) ∈ RJ1 and the construction ofJ we can conclude thatR1 ∈ R⊑. Via R1 ⊑ R2

being in KB and the definition of·⊑ follows R2 ∈ R⊑, whereby the construction ofJ
ensures (δ, ǫ) ∈ RJ2 .

Considering the axiom typeR1 ◦ R2 ⊑ R3, let (δ, ǫ) ∈ RJ1 and (ǫ, ζ) ∈ RJ2 , implying
(orig(δ), orig(ǫ)) ∈ RI1 as well as (orig(ǫ), orig(ζ)) ∈ RI2 . As the considered axiom is
contained inΘ⊓(KB), this entails (orig(δ), orig(ζ)) ∈ RI3 . By construction ofJ and due
to the fact thatR3 is non-simple, for anyδ′ resp.ζ′ originating fromorig(δ) resp.orig(ζ)
follows (δ′, ζ′) ∈ RJ3 . Hence, in particular, this is the case forδ andζ. Therefore,R1 ◦

R2 ⊑ R3 is valid inJ .

Finally, we consider the axiom typeR1 ⊓ R2 ⊑ R3. Hence, assume (δ, ǫ) ∈ RJ1 and
(δ, ǫ) ∈ RJ2 which implies (orig(δ), orig(ǫ)) ∈ RI1 as well as (orig(δ), orig(ǫ)) ∈ RI2 (claim
†).

In the caseǫ = orig(ǫ) = oI for someo ∈ NI , we find (orig(δ), orig(ǫ)) ∈ RI3 as
Θ⊓(KB) contains the axiom∃R1.{o}⊓∃R2.{o} ⊑ ∃R3.{o}, thereby we obtain (δ, ǫ) ∈ RJ3 .
The same follows from (**) wheneverR3 is non-simple.

It remains to consider the case thatR3 is simple andǫ = (x, orig(ǫ)). Remember that
R1 andR2 are required to be simple. Hence, the casex = ∅ can be excluded as then
(δ, ǫ) < RJ1 (as well as (δ, ǫ) < RJ2 ) by construction. Hence,x = R for some simple role
R. From (δ, (R, orig(ǫ))) ∈ RJ1 and (δ, (R, orig(ǫ))) ∈ RJ2 as well as the construction of
J we can conclude thatR1,R2 ∈ R⊑. Yet thenΘ⊓(KB) also contains the axiomR⊑ R3,



whence (†) entails (orig(δ), orig(ǫ)) ∈ RI3 . Moreover,R3 ∈ R⊑ guarantees (δ, ǫ) ∈ RJ3
via (***). ⊓⊔

The shown reduction – besides providing a way of using existingEL++ reasoning
algorithms for reasoning inEL++(⊓s) – now gives rise to the complexity result for
EL++(⊓s).

Theorem 3. Satisfiability checking, instance retrieval, and computing class subsump-
tions forEL++(⊓s) knowledge bases is possible in polynomial time in the size ofthe
knowledge base.

Proof. Given an arbitraryEL++(⊓s) knowledge base KB, Proposition 2 ensures that it
can be transformed in polynomial time into an equisatisfiable knowledge base KB′ in
normal form. Again in polynomial time, we can compute the knowledge baseΘ⊓(KB′)
that – by Proposition 3 – is equisatisfiable with KB′ (and hence also with KB). Finally,
asΘ⊓KB′ is anEL++ knowledge base, we can check satisfiability in polynomial time.

⊓⊔

We finish this section with some general remarks.
On the one hand, note that conjunction on roles enhances expressivity ofEL++

significantly. For example, it allows for the following modelling features:

– Disjointness of two simple rolesS,R. This feature, also provided bySROIQ as
Dis(S,R), can be modelled inEL++(⊓s) by the axiom∃(S ⊓ R).⊤ ⊑ ⊥.

– Atleast cardinality constraints on the right hand side of a GCI. The axiomA ⊑
≥n R.B can be modelled by the axiom set{Ri ⊑ R,A ⊑ ∃Ri .B | 1 ≤ i ≤ n} ∪ {∃(Ri ⊓

Rj).⊤ ⊑ ⊥ | 1 ≤ i < j ≤ n} whereR1, . . . ,Rn are new simple role names.

On the other hand, it is easy to see that incorporating more than just conjunction on
simple roles intoEL++ would render the respective fragment intractable at best:

Allowing conjunction on non-simple roles would even lead toundecidability as
stated in Theorem 1 of [18].

Allowing disjunction or negation on simple roles would allow to model disjunction
on concepts: for instance, the GCIA ⊑ B⊔ C can be expressed by the axiom set{A ⊑
∃(R⊔ S).⊤,∃R.⊤ ⊑ B,∃S.⊤ ⊑ C} or the axiom set{A⊓ ∃R.{o} ⊑ C,A⊓ ∃¬R.{o} ⊑ B}
for new rolesR,S and a new individual nameo. Hence, any extension ofEL++ into this
direction would be ET-hard [16].

7 DLP(⊓)

Description Logic Programs(DLP) constitutes a tractable knowledge representation
formalism in the spirit of (Horn) logic programming [19]. Essentially, it consists of
thoseSHOIQ axioms which can be naively translated into (non-disjunctive) Datalog,
such that the original knowledge base and its translation are semantically equivalent.
As such it represents the fragment ofSHOIQ that can entail neither disjunctive infor-
mation nor the existence of anonymous individuals as extensively studied in the context
of Horn description logics [20]. Though rather complex syntactic definitions can be
given to characterise all admissible axioms of such logics,we use a simpler definition
comprising all essential expressive features of DLP without including all their syntactic
varieties.



Definition 9. Atomic roles of DLP are defined as inSROIQ, including inverse roles. A
DLP body conceptis anySROIQ concept expression that includes only concept names,
nominals,⊓, ∃, ⊤, and⊥. A DLP head conceptis anySROIQ concept expression that
includes only concept names, nominals,⊓, ∀, ⊤, ⊥, and expressions of the form≤1.C
where C is a DLP body concept.

A DLP knowledge baseis a set of Rbox axioms of the form R⊑ S and R◦ R ⊑ R,
Tbox axioms of the form C⊑ D, and Abox axioms of the form D(a) and R(a,b), where
C ∈ C is a body concept, D∈ C is a head concept, and a,b ∈ NI are individual names.

DLP(⊓) knowledge bases are defined just as DLP knowledge bases, withthe addi-
tion that conjunctions of roles may occur in DLP(⊓) in all places where roles occur in
DLP.

Note that we do not have to distinguish between simple and non-simple roles for
DLP.

In [20] it is shown that DLP is of polynomial worst-case complexity. This can be
seen most easily by realising that DLP knowledge bases can betransformed in polyno-
mial time (in the size of the knowledge base) into an equisatisfiable set of function-free
first-order Horn rules (i.e. non-disjunctive Datalog rules) with at most three variables
per formula. On the basis of this result, it is easy to show that DLP(⊓) is also of poly-
nomial complexity. We give a brief account of the argument.

Consider a DLP(⊓) knowledge baseK. We now perform the following transforma-
tion of K:

– For any role conjunctionR1 ⊓ · · · ⊓Rn occuring in the knowledge base, replace the
conjunction by a new roleR, and add the axiomsR1 ⊓ · · · ⊓Rn ⊑ RandR⊑ Ri , for
all i = 1, . . . ,n, to the knowledge base.

The resulting knowledge base is obviously equisatisfiable with K. It consists of two
types of axioms: Axioms which are in DLP and axioms of the formR1 ⊓ · · · ⊓ Rn ⊑

R. The latter axioms correspond to function-free Horn rules with only two variables.
Hence, any DLP(⊓) knowledge base can be transformed in polynomial time into an
equisatisfiable set of function-free Horn rules.

Theorem 4. Satisfiability checking, instance retrieval, and computing class subsump-
tions for DLP(⊓) knowledge bases is possible in polynomial time in the size ofthe
knowledge base.

Proof. First note that instance retrieval and class subsumption can be reduced to sat-
isfiability checking: Retrieval of instances for a classC is done by checking for all
individualsa if they are inC – which in turn is reduced to satisfiability checking by
adding the axiomsC⊓E ⊑ ⊥ andE(a) to the knowledge base, whereE is a new atomic
class name. Class subsumptionC ⊑ D is reduced by adding the axiomsC(a), E(a) and
D ⊓ E ⊑ ⊥, for a new individuala and a new atomic class nameE.

Now to check satisfiability of a DLP(⊓) knowledge base, it is first transformed into
an equisatisfiable set of function-free first-order Horn rules as mentioned above. The
satisfiability of such a set of formulae can be checked in polynomial time, since any
Horn logic program is semantically equivalent to itsgrounding(the set of all possible



Fig. 2. Overview of complexities and expressivity relationships of DLs in the context of this
paper.

ground instances of the given rules based on the occuring individual names). For a
program with a bounded numbern of variables per rule, this grounding is bounded
by r × in, wherei is the number of individual names andr is the number of rules in
the program. Finally, the evaluation of ground Horn logic programs is known to beP-
complete. ⊓⊔

8 Conclusion

In our work, we have thoroughly investigated the reasoning complexities of DLs al-
lowing for Boolean constructors on simple roles. We found that the expressive DLs
SROIQ (being the basis of the forthcoming OWL 2 standard) andSHOIQ (the log-
ical underpinning of OWL) can accommodate full Boolean role operators while keep-
ing their reasoning complexities N2ET and NET, respectively. Likewise, the
ET-completeSHIQ can be safely extended by safe Boolean expressions. Finally,
both the tractable fragmentsEL++ and DLP retain polynomial time reasoning complex-
ity when adding just role conjunction, where in the case of DLP the role simplicity con-
dition is not necessary. Figure 2 shows our findings integrated with other well-known
complexity results relevant in this respect.



In particular we want to draw the reader’s attention to the fact that – as opposed to
hitherto proposed ways – the modelling of concept products and qualified role inclu-
sions as presented in Section 1 doesnot automatically render the inferred roles non-
simple. Moreover, due to the safety of the respective axiom,qualified role inclusions
can even be modelled inSHIQbs.

Future work on that topic includes the further integration of the established results
with our work on DL Rules [21], as well as the further investigation of the effects on
complexity and decidability when allowing for Boolean constructors on non-simple
roles.

Finally note that our results forSHIQbs, EL
++(⊓s), and DLP(⊓) provide direct

ways for adapting existing reasoning algorithms forSHIQ, EL++, and DLP, respec-
tively. ForSROIQBs andSHOIQBs, however, setting up efficient algorithms seems
less straightforward and represents another interesting direction of future research.
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