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Abstract. We investigate the possibility of incorporating Boolean role construc-
tors on simple roles into some of today’s most popular description logies, f
cussing on cases where those extensions do not increase complegagafing.
We show that the expressive DISHOZQ andSROIQ, serving as the logical
underpinning of OWL and the forthcoming OWL 2, can accommodate aritr
Boolean expressions. The prominent OWL-fragm8#{7Q can be safely ex-
tended by safe role expressions, and the tractable fragréefitsand DLP re-
tain tractability if extended by conjunction on roles, where in the case of D&P th
restriction on role simplicity can even be discarded.

1 Introduction

Research on description logics (DLs) is directed by two ngaials: increasing expres-
sivity while preserving desirable computational propestsuch as decidability (as a
factualconditio sine qua ngnand dficiency of reasoning, the latter qualitatively es-
timated in terms of worst-case complexities. These antatiordimensions gave rise
to a great variety of logicsSROZQ and SHOIQ being of high expressiveness and
complexity represent the one side of the spectrum, wheheasat called tractable frag-
ments likeEL** and DLP provide lower expressivity yet allow for polynomtahe
reasoning.

In DL history, Boolean constructors (negation, conjunttidisjunction) on roles
have occurred and have been investigated sporadically ity places, but have never
been integrated into the mainstream of researched langpuiag@lone influenced stan-
dardisation considerations. In this paper we argue thalaoaonstructors can — some-
times with appropriate restrictions — be incorporated g&eeral of the most prominent
DL languages, thereby significantly enhancing expresswithout increasing reason-
ing complexity.

To illustrate this gain in expressivity, we give some exaspbn the modelling
capabilities of Boolean role constructors:

Universal role. A role U that connects all individuals of the described domain cgn e.
be defined vidd = =N as the complement of the empty rdie which in turn can be
axiomatized by the GCI C VN. L.



Role conjunction.This modelling feature comes in handy if certain non-tike-rop-
erties (namely cases where two individuals are intercaedeay more than one role)
have to be described. The fact that somebody testifyinghagairelative is not put un-
der oath can e.g. be formalised BftestifiesAgainst1 relativeOf). T C -UnderOath
Likewise, role conjunction allows for specifying disjairgss of roles, aBis(R, S) can
be paraphrased asC V(R S)..L.

Concept productsThoroughly treated in [1], the concept product staten@rtD C R
expresses that any instance@fis connected with any instance bBf via role R. As
an example, the fact that alkaline solutions neutralisd aclutions, which could ex-
pressed by the concept product axidthkalineSolutionx AcidSolutionC neutralises
can equivalently be stated BykalineSolutiorc V(—neutralise$.—AcidSolutionby us-
ing role negation.

Qualified role inclusion. Likewise, the specialisation of roles due to concept mem-
berships of the involved individuals can be expressed. Tielike FOL statement
C(X) A R(x,y) A D(y) — S(x,y) (expressing that an§-instance andD-instance that
are interconnected big are also interconnected I8) can be cast into the GA C

V(R I —|S).—|D.

The rest of the paper is organised as follows. After progdime necessary defini-
tions, we review existing work on Boolean role constructditsen, we deal with the
extension ofSROIQ and SHOIQ by full Boolean role expressions on simple roles.
Thereafter, we provide an according result for integrasiafg Boolean role expressions
into the description logiSHZQ. The subsequent two sections settle the case for the
tractable fragment€£** and DLP, respectively, extending them by role conjunction.
Finally, we conclude and elaborate on future work.

2 Preliminaries

In this section, we give the definition of the expressive dption logic SROI QB4
which is obtained from the well-known description lod#R0O7Q [2] by allowing arbi-
trary Boolean constructors on simple roles. We assumetieatetader is familiar with
description logics [3].

The DLs considered in this paper are based on four disjoistgendividual names
N, concept namelc, andsimple role namel, (containing theuniversal role Ue Ng)
as well amon-simple role namesy. Furthermore, we lelg := N§ U Nj.

Definition 1. A SROIQ8Bs Rbox forNg is based on a saR of atomic rolesdefined
asR := NRU{R | R € Ng}, where we selnv(R) := R~ andInv(R") := R to simplify
notation. In turn, we distinguissimple atomic role&® := Njulnv(Ng) andnon-simple
atomic rolesR" := N} U Inv(NR).

In the sequel, we will use the symbolsSR possibly with subscripts, to denote
atomic roles.

The set oBoolean role expressiotis defined as follows:

B:=R|-B|BrB|BUB.



The seB; of simplerole expressions comprises all those role expressionsagont
ing only simple role nhames. Moreover, a role expression bellcalledsafe if in its
disjunctive normal form, every disjunct contains at least @on-negated role name.

A generalisedrole inclusion axiom(RIA) is a statement of the form ¥ W with
simple role expressions V and W, or of the form

Si0...05,CR

where each Sis a simple role expression or a non-simple atomic role, ahdr@ R is a
non-simple atomic role. A set of such RIAs will be called aegalisedrole hierarchy
A role hierarchy isregularif there is a strict partial orde< on the non-simple roleR"
such that

- S<R if Inv(S)<R,and
— every RIA is of one of the forms
e RoRCR,
e RCR,
e S;o0...05,CR,
e RoS;0...05,CR,
e S;0...05,0RCR,
such that Re Ngris a (non-inverse) role name, and S Rfori=1,...,nwhenever
Si is non-simple.

Arole assertiolis a statement of the forRef(R) (reflexivity), Asy(V) (asymmetry,
or Dis(V, W) (role disjointnesg where V and W are simple role expressions, and R is a
simple role expression or a non-simple roleSROI Q%8s Rboxis the union of a set of
role assertions together with a role hierarchy.SR0O7 Q8 Rbox is regular if its role
hierarchy is regular.

Definition 2. Given aSROZQBs RboxR, the set ofconcept expressiors is defined
as follows:

—NccC, TeC,LeC,

— ifC,D € C, R € R a simple role expression or non-simple role,\VBg a simple
role expression, & N,, and n a non-negative integer, thelt, Crn D, Cu D, {a},
YR.C,dRC, V.Self, <nV.C, and>n V.C are also concept expressions.

Throughout this paper, the symbols C, D will be used to denoteept expressions.
A SROI@QSBs Thox is a set ofgeneral concept inclusion axionf&Cls) of the form
cch.

Anindividual assertiortan have any of the following forms(8), R(a, b), =S(a, b),
a # b, with g b € N, individual names, G C a concept expression, andRe R roles
with S simple. ASROIQBs Abox is a set of individual assertions.

A SROIQB;s knowledge base KB the union of a regular RboR, and an AboxA
and Thox7™ for R.

We further give the semantics 8RO7Q8Bs knowledge bases.



Name Syntax|Semantics

inverse role R {(x,y) e 4X x A7 | (y,X) € RY}
universal role |U AT x AF

role negation |-V {(xy) €e4? x A7 | (x,y) ¢ RT}
role conjunctionV W [V n W/

role disjunction [V uW |V u W/

top T A7
bottom 1 0
negation -C |[4'\C!
conjunction CnD [C'nD?
disjunction CubD |[CfuD?
nominals (&) {a’}

univ. restriction [YRC |{x € 47 | (x,y) € R” impliesy € C’}
exist. restriction|IRC  |{x € 47 | for somey € 4% , (x,y) € Rl andy € C’}
Self concept  |3S.Self|{x € 47 | (x,X) € S}

qualified numbexn S.C |{x € 47 | #{y € 47 | (x,y) € ST andy € C’}
restriction >nSC [{xe 4’ |#ye 47| (x,y) € ST andy € CT}

nj
n}

<
>

Fig. 1. Semantics of concept constructorsSROT QB for an interpretatiod with domaina?.

Definition 3. An interpretation consists of a set’ calleddomain(the elements of it
being calledindividualg together with a functior’ mapping

— individual names to elements f,
— concept names to subsets4df, and
— role expressions to subsetsAf x 47,

The function? is inductively extended to role and concept expressions@sisin
Table 1. An interpretatiod” satisfiesan axiomy if we find that E ¢:

- TEVCWIfVI cW,

—TEVio...oVaERIifV/ o...0Vl £ R (o being overloaded to denote the
standard composition of binary relations here),

— T = Ref(R) if R? is a reflexive relation,

— T = Asy(V) if VI is antisymmetric and irreflexive,

— I E Dis(V,W) if VZ and W are disjoint,

- IECccDifcf c D

An interpretations satisfiesa knowledge bas&B (we then also say thaf is a
modelof KB and write I | KB) if it satisfies all axioms okKB. A knowledge baskB
is satisfiablef it has a model. Two knowledge bases acpiivalentf they have exactly
the same models, and they @guisatisfiabléf either both are unsatisfiable or both are
satisfiable.

We obtainSROIQ from SROI QB by disallowing all junctors in role expressions.
Further details ol8ROIQ can be found in [2]. We have omitted here several syntac-
tic constructs that can be expressed indirectly, espgaizlk assertions for transitivity,
reflexivity of simple roles, and symmetry. Moreover, the BHOZQ is obtained from



SROIQ by discarding the universal role as well as reflexivity, asatry, role disjoint-
ness statements and allowing only RIAs of the fd@ S or Ro RC R. Further DLs
will be defined as they occur.

3 Related Work

Boolean constructors on roles have been investigated icdh&ext of both descrip-
tion and modal logics. [4] for used them extensively for tledimtion of a DL that is
equivalent to the two-variable fragment of FOL.

As a classical result on complexities, it was shown in [5httAugmentingALC
with full Boolean role constructorsALCSB) leads to NEpTmme-completeness of the
standard reasoning tasks (while restricting to role negd] or role conjunction [6]
only retains EpTime-completeness). This complexity does not further increeisen
allowing for inverses, qualified number restrictions, andimals as was shown in [6]
by a polynomial translation gLCI QS into C?, the two variable fragment of first or-
der logic with counting quantifiers, which in turn was provetbe NEpTmme-complete
in [7]. Also the recently considered description logfiie. B0 [8] falls in that range of
NExpTmve-complete DLs.

On the contrary, it was also shown in [6] that restrictingsédeBoolean role con-
structors keepsALC’s reasoning complexity in #Time, even when adding inverses
and qualified number restrictiongiCCIb).

For logics including modelling constructs that deal witterconcatenation like tran-
sitivity or — more general — complex rule inclusion axionesults on complexities in
the presence of Boolean role constructors are more spatshdws thatALC can be
extended by negation and regular expressions on roles wdglging reasoning within
ExpTmve. Furthermore, [10] provided &eTive complexity for a similar logic that in-
cludes inverses and qualified number restriction but rexersafe negation on roles.

An extension ofSHIQ with role conjunction (denote@HIQ") is presented in
[11] in the context of conjunctive query answering, the lssmplying an upper bound
of 2ExpTIME.

4 SROIQBsand SHOIQSB:

In this section, we show that adding arbitrary (i.e. alscaf@sBoolean role expressions
to the widely known description logicSROZQ andSHOIQ does not harm their rea-
soning complexities — N2&Tme [12] and NEpTiME [6], repectively — if this extension
is restricted to simple roles.

Note that in the sequeSHOIQ (resp.SHOIQSB;) will be treated as a special case
of SROIQ (resp.SROIQB;), as most considerations hold for both cases.

As shown in [12], anySROIQ (SHOIQ) knowledge base can be transformed into
an equisatisfiable knowledge base containing only axiontiseoform:



Table 1. Additional transformation foSRO7QBs andSHOIQBs. A, B are concept namev,
W are simple role expressioné,. are simple role expressions or non-simple roléss a simple
role expression that is not just a roRis a non-simple role namé&. is a new simple role name.
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Trivially, this normalization can be applied t8ROZ7QBs (SHOIQSB;) as well,
yielding the same types of axioms whereas simple role egjmes may occur in the
place of simple roles. A second transformation carried gquexhaustively applying
the transformation steps depicted in Table 1 yields an atjsi@ble knowledge base
containing only the original axiom types depicted above. @gain only simple role
names in places dd; and role names in places Bf) and just one additional axiom
typeW C V with W,V simple role expressions. As shown in [12], any of these oailgi
axiom types except the one containing role concatenatinmedranslated intg?, the
two-variable fragment of first order logic with counting auifiers. The additionally
introduced type of axiom can clearly also be transformed @t statements namely
into the propositiory xy(®(W) — @(V)) whered is inductively defined by:

D(S) = S(x.Y)

D(S7) = S(y. X)

D(=V) = ~D(V)
BV W) = B(V) A B(W)
BV LW) = B(V) v B(W)

Further following the argumentation from [12], the remamicomplex role inclu-
sions not directly convertible int6? can be taken into account by cautiously material-
izing the consequences resulting from their interplay \&ittoms of the typéA C YR.B
through automata encoding techniques — see also [13]. Tdjsame obtains &2 the-
ory that is satisfiable exactly if the original knowledge d&s In the case afROIQ
(and henceSROI@QSBs), this can result in an exponential blowup of the knowledge
base while forSHOIQBs (and henceSHOIQ) the transformation is time polyno-
mial. Thus we see that the upper complexity boundsS807Q and SHOIQ carry
over toSROIQBs and SHOIQSBs by just a slight extension of the according proofs



from [12] while the lower bounds follow directly from thosé 8ROZQ andSHOIQ.
Hence, we can establish the following theorem.

Theorem 1. Satisfiability checking, instance retrieval, and compgtitass subsump-
tions forSROI QBs (SHOIQB;) knowledge bases 2ExpTive-complete NExpTiMEe-
complete).

While the results established in this section are ratheigstifarward consequences
of known results, their implications for practice might benma significant: they show
that the DLs underlying OWL and OWL 2 can be extended by arlyitBarolean con-
structors on simple roles without increasing the worst caseplexity of reasoning.

5 SHIQb

SHIQ is a rather expressive fragment obtained fr8MOIQ by disallowing nomi-
nals, where (in contrast to the NETmMe-completeSHOI Q) reasoning is known to be
ExpTiMe-complete [6].

In this section we will introduce the extension 8 7Q by safe role expressions
on simple roles. Thereafter, we will present a techniquedoroving transitivity state-
ments fromSH I Qbs knowledge bases in a satisfiability preserving way. Thisdgie
two results: on the one hand, we provide a way how existingamiag procedures for
ALCIblike e.g. those described in [6, 10, 14] can be used to s8&Wd Qbs reasoning
tasks. On the other hand, as the transformation procedarbeaone in polynomial
time, the known upper bound for the complexity of reasonmgAiLC7b — namely
ExpTmme — carries over t&SH 7 Qbs.

Definition 4. A SHIQbs knowledge base is 8HOI QB knowledge base that con-
tains no nominals and only safe role expressions.

Based on a fixed knowledge bdsB, we definec* as the smallest binary relation
on the non-simple atomic rolé%, such that:

— RC* R for every atomic role R,
— RC* S andinv(R) C* Inv(S) for every Rbox axiom R S, and
— RC* T whenever BE* S and SC* T.

Given an atomic non-simple role R, we wriians(R) € KB as an abbreviation for:
RoRC Re KB or Inv(R) o Inv(R) C Inv(R) € KB.

Slightly generalising according results from [15], we ndvow that anySH 7 Qbs
knowledge base can be transformed into an equisatisfiablgledge base not contain-
ing transitivity statements.

Definition 5. Given aSH 7Qbs knowledge baskKB, let clos(KB) denote the smallest
set of concept expressions where

— NNF(=C u D) € clos(KB) for any Thox axiom G D,
— D € clos(KB) for every subexpression D of some concepgt €os(KB),
— NNF(=C) € clos(KB) for any<n RC € clos(KB),



— VYS.C € clos(KB) whenevefTrans(S) € KB and SC* R for a role R withYR.C €
clos(KB).

Moreover, letQ(KB) denote the knowledge base obtained fiSBhby

— removing all transitivity axioms RRC R and
— adding the axionYR.C C VS.(VS.C) for everyYR.C € clos(KB) with Trans(S) €
KB and SC* R.

Proposition 1. LetKB ba aSH I Qbs knowledge base. ThekB and Q(KB) are equi-
satisfiable.

Proof. Obviously, we have that KB Q(KB), hence every model of KB is a model of
Q(KB) as well.

For the other direction, lef = (47, /) be a model of2(KB). Then we define a new
interpretation = (47, -7) as follows:

— A9 =4

— a7 = al foreveryace N,

— A7 = A for everyA € N¢

— for all simple rolesR, we setR7 := Rf

— for all non-simple role®, R7 is set to the transitive closure Bf if Trans(R) € KB,
otherwiseR” := R" U Usc-rseny S

As a direct consequence of this definition, note that forialipde concept expres-
sionsV € Bs we havevy = V7 (factt).

We now prove thatf is a model of KB by considering all axioms starting with the
Rbox: Firstly, every transitivity axiom of KB is obviouslylffilled by definition of 7.
Secondly, every role inclusiovi © W axiom is fulfilled:

If both V andW are simple role expressions this is a trivial consequerara {f).

If V is a simple role expression aWd is a non-simple role, this follows from( and
the fact that by construction ¢f, for every non-simple rol& holdsR? c R7.

It remains the case that bothandW are non-simple roles. In ca$¥ is not tran-
sitive, this follows directly from the definition, otherveisve can conclude it from the
fact that the transitive closure is a monotone operation.\wet inclusion.

We proceed by examining the concept expressions clos(KB) and show via
structural induction tha€? ¢ C7. As base case, for every concept of the foAn
or -A for A € N¢ this claim follows directly from the definition off. We proceed
with the induction steps for all possible forms of a complexaeptC (mark that all
C € clos(KB) are in negation normal form):

— Clearly, if D{ C D{ and D-g - D~27 by induction hypothesis, we can directly con-
clude O; 1 Dy)! c (D111 Dy)Y as well as Dy U Dy)? € (Dy L Dy)Y.

— Likewise, as we hav&/? ¢ VJ for all simple role expressions and non-simple
rolesV and againD? ¢ DJ due to the induction hypothesis, we can conclude
(Av.D)! c (AV.D)7 as well as£nV.D)! c (=nV.D)7.



— Now, consider & = VV.D. If V is a simple role expression, we know théat = V7,
whence we can derive/{.D)? ¢ (YV.D)7 from the induction hypothesis.
It remains to consider the cag: = YRD for non-simple roleR. Assumes e
(YR.D)!. If there is nad’ with (6,¢") € R7, thens € (YRD) is trivially true. Now
assume there are suéh For each of them, we can distinguish two cases:
e (6,8") € R7, implying " € D’ and, via the induction hypothesi%,e D7,
e (5,8") ¢ RY. Yet, by construction off, this means that there is a rdfewith
S C* RandTrans(S) € KB and a sequencg= d, . .., 0, = ¢ With (k, Sks1) €
S’ for all 0 < k < n. By definition ofQ, the knowledge bas@(KB) contains
the axiomVYRD C VS.(V¥S.D), hence we havé € VYS.(VYS.D) wherefrom a
simple inductive argument ensuig&se D7 for all 6 includings, = &'.

So we can conclude that for all suéhwe haves’ € D?. Via the induction hypoth-
esis followss € DY and hence we can conclude (YR.D)7.

— Finally, consideC = <nRD and assumé e (<n RD)”. From the fact thalR must
be simple followsR” = R’. Moreover, since botld andNNF(-D) are contained
in clos(KB) the induction hypothesis give®” = D’. Those two facts together
directly imply 6 € (<nRD).

Now considering an arbitrary KB Thox axio@®C D, we find NNF(=C) u D)? =
47 asT is a model of KB. Moreover — by the correspondence just showre-have
(NNF(=C) u D) ¢ (NNF(=C) u D)* and hence alsdNNF(-C) L D)7 = 49 making
C C D an axiom satisfied if/. This finishes the proof. O

Taking into account that the presented transformatiomris fholynomial, this result
can now be employed to determine the complexitsé{ 7 Qbs.

Theorem 2. Reasoning irSH 7 Qbs is ExpTiMe-complete.

Proof. Clearly, all standard reasoning problems can be reducedawlkdge base sat-
isfiability checking as usual.

Now, by Proposition 1, any giveSH 7 Qbs knowledge base KB can be transformed
into anALCH I'b knowledge bas@(KB) in polynomial time. Furthermore, all role in-
clusion axioms can be removed frag{KB) as follows. First, all role names contained
in Q(KB) can be declared to be simple without violating the sgtitaconstraints. Sec-
ond, every role inclusion axiold C W (with V, W being safe by definition) can be
equivalently transformed into the GGl C VY(V N -W).L. Note that therV n -W is
safe as well and therefore admissible. Moreover the tramsftion is obviously time
linear. So we end up with aflLCZb knowledge base whose satisfiability checking is
ExpTiMe-complete due to [6]. O

So we have shown that allowing safe Boolean expressionsmpiesioles does not
increase the & TiMe reasoning complexity a$H 7Q. On the other hand, the recent re-
sults onSHIQ" [11] seem to indicate that the role simplicity condition ssential for
staying within &pTMe even though no definite hardness result for gensf4l Q"' was
provided. The safety condition on role expressions, in,tisralearly needed: dropping
it would lead to a DL comprisingALC8Bwhich is known to be NEpTmMe-complete

[5].



6 &L(Ny)

In this section, we investigate role conjunction for the BX** [16], for which many
typical inference problems can be solved in polynomial tidie simplify our presenta-
tion by omitting concrete domains fro81L.** — they are not fiected by our extension
and can be treated as shown in [16].

Definition 6. An atomic role of6L** (M) is a (non-inverse) role name. AAL* (M)
role expression is a simple role expression containing mi/conjunction. AL (M)
Rbox is a set of generalised role inclusion axioms (uglfg* (Ms)role expressions and
non-simple atomic roles), and aiL™*(Ms) Thox is aSROIQBs Thox that contains
only the concept constructors, 3, T, L and onlyEL**(Ms)role expressions.

Note that we do not have any requirement for regularity oésdbut we have to
introduce the notion of role simplicity in the context@f"**. In a first step, we observe
that any&L**(ms) knowledge base can be converted into a normal form.

Definition 7. An EL**(1s) knowledge bas&B is in normal formif it contains only
axioms of one of the following forms:

AcCC AnBcC C RC T
JRAC B AC JdRB RoSC T
RS CT

where ABe NcU{{a} |ae N;JU{T},CeNcu{{a)|aeNJu{L},and RS, T € Ng.

Proposition 2. Any EL**(Ms) knowledge base can be transformed into an equisatis-
fiable 8L (ms) knowledge base in normal form. The transformation can beedon
linear time.

Proof. The transformation is accomplished by the rules of Table lZere each rule
describes the replacement of some axiom by one or more afliegraxioms. In every
of the five steps, the corresponding rules are applied etikialysto the knowledge
base. Polynomiality of this conversion can then be shownnelagy to the normal
form transformation given in [16]. O

Subsequently, we show that the only axiom type of this noforah not covered by
EL™ can be removed from afl.L** (Ms) knowledge base while preserving satisfiability
if the relevant consequences are materialized before.

Definition 8. Given anEL**("s) knowledge baskB in normal form, let0™(KB) de-
note the knowledge base obtained friiB by

—addingR C R, forall R, € R% where & C Ngr denotes the smallest set of role
names containing S and satisfying
e T € S5, whenever R S and RC T € KB as well as
e TeSEk wheneverRR, e SFand RMR, C T € KB,
— removing every axiom of the formy & S, C R and instead adding the axioms
3S;.{o} M 3S,.{o} C IR {0} for every individual nam¢o}.



Table 2.Normal form transformation faE.£**(Ms). A, B, C, A, €, andD are concept expressions,
whereA andC are neither concept names nor noming|sW are simple concept expressions or
non-simple role names, whilé, W are simple concept expressions that are not role naRjes.
R are simple role names, andT are non-simple role names. Every overlined role or concept
name is fresh. Commutativity and associativityroffor both concepts and roles) is assumed to
simplify the rule set.

P1: Vio...oVaq0Vy, C R — {Vio...oVp1CT,ToV,CR
BmAcCC — {AcD,DNBCC}
VA c B — {AcD,3v.Dc B}
1+ cC - 0
P2: AcC BnC — {ACB,ACC)
Ac ¢ — {AcD,Dc ¢}
Ac avC ~ {AC3IvD,Dc ¢}
AC T - 0
P3: AC 3R MN...NR).B ~» {ACIRBRCR |1<i<n}
VAC B —~ {(ARACBVCR
VoWcC S — (VCRRoWELS}
WoV C S ~ (VCRWoRCS)
P4: VW ~ (VCRRCZC W
RC S;M...MSn ~ {RCS|1<i<m
P5 RM..MR.4MR, CS - {RiM...NMR.CRRAR,CS)

Note that®@™(KB) can be computed in polynomial time. In particular, finglithe
closed set&- can be done in linear time w.r.t. the size of KB, e.g. usinglithelosure
algorithm from [17].

Proposition 3. Let KB be an&EL**(Ms) knowledge base. TheKB and &"(KB) are
equisatisfiable.

Proof. First, note that any model of KB is a model 6f'(KB) as all the axioms in
O"(KB) \ KB are consequences from KB.

Second, assum@'(KB) is satisfiable. We now use an arbitrary modef 0" (KB)
to construct an interpretatiofil as follows (where we leNy denote the simple role
names occurring in KB anld,? := {0’ |0 e N}}):

— A7 = N7 U ((NRU{0)) x (47 \ Ni%)). Le., every unnamed individualfrom 47 is
substituted by copies endowed with the simple role name®aadcdditional copy
(0,6). We will use the functiororig : 47 — 47 to refer to the T-origin” of an
J-individual by lettingorig(o”) := o for all 0 € N; as well asorig((x, 6)) := 6 for
every (x,6) € 47 \ N, 7.

— foroe N, leto? = of

— for 6 € 47, lets € A7 iff orig(s) € AL

— (6,€) € ST, iff (orig(s), orig(€)) € S* and one of the following is the case:

e ¢ =0 for someo e N, *)



e Sis non-simple, (**)
e € = (R 6)for somes € 47 \ N,¥ andS € RE. (*¥**)

We now proceed by showing th&t is a model of KB.
Clearly, J satisfies all axioms of the shapez C andAn B C C sincef does.

Considering the axiom typaR A C B, we observe the following for ever§ €
(ARA)7: taking the witness € 47 with (6,e) € R ande € A7, we find that
(orig(6), orig(€)) € R’ as well asorig(e) € A?, henceorig(s) € (ARA)? and via the
considered axionorig(s) € B?, such that we can by construction conclude B .

For axioms of the typé = JIR.B, assume € A7 directly implyingorig(s) € AZ.
By the considered axiom being i@"(KB), we also find some; € 4% for which
(orig(6),n) € R andn € AL. First, observe that any € 47 originating fromz satis-
fiesiy € A7, Hence, it remains to show that there always exists suaji &r which
additionally ¢,7") € R7. If = o for someo € N, this is assured by (*). IR is
non-simpley’ := (0,7) has the desired property. ®is simple, letting;’ := (R, ;) will
satisfy the claim by (***). Thus, we have derived the validdf AC IR.Bin KB.

Considering the axiom typ&; C Ry, assumed, €) € Rf whence we can conclude
(orig(s), orig(e)) € R! which yields 6rig(), orig(e)) € RS, as the considered axiom is
contained in@™(KB). In the case = orig(e) = o for someo € N;, we find ¢, €) € RZJ
by (*). The same follows from (**) wheneveR; is non-simple. It remains to consider
the case thaR, (and hence alsR,) is simple and = (X, orig(e)). The casex = 0 can
be excluded as thew, ) ¢ Rf by construction. Hences = R for some simple rolé&.
From @,¢) € Rf and the construction gf we can conclude thd®; e R=. ViaR C R>
being in KB and the definition of follows R, € R=, whereby the construction ¢f
ensuresd, €) € RJ .

Considering the axiom typ; o R, C R, let (5, €) € RV and €,¢) € RY, implying
(orig(s), orig(e)) € R as well as ¢rig(e), orig(¢)) € R;. As the considered axiom is
contained in@"(KB), this entails érig(6), orig()) € Rg By construction off and due
to the fact thaR; is non-simple, for any’ resp.Z’ originating fromorig(s) resp.orig(¢)
follows (¢,¢") € R37 Hence, in particular, this is the case tband{. ThereforeR; o
R, C Rzisvaliding.

Finally, we consider the axiom tyg® M R, C Rs. Hence, assumé,(e) Rf and
(6, €) € R] which implies 6rig(6), orig(e)) € RI as well as ¢rig(), orig(e)) € RE (claim
7)-

In the case: = orig(e) = o for someo € N;, we find ©rig(s), orig(e)) € Rg as
O"(KB) contains the axiomlR;.{o} M dR,.{0} C JRs.{0}, thereby we obtainy ¢) € I{
The same follows from (**) whenevdg; is non-simple.

It remains to consider the case tiRgtis simple and: = (X, orig(e)). Remember that
R; andR; are required to be simple. Hence, the case 0 can be excluded as then
(0,€) ¢ R/ (as well as & €) ¢ R)) by construction. Hences = R for some simple role
R. From ¢, (R orig(e))) € Rf and ¢, (R orig(e))) € Rg as well as the construction of
J we can conclude thd®;, R, € R=. Yet then@™(KB) also contains the axiolRC Rs,



whence ) entails 6rig(s), orig(e)) € Rf. Moreover,R; € RE guaranteess(e) € Rg
via (***). O

The shown reduction — besides providing a way of using edstiL™* reasoning
algorithms for reasoning i€L**(Ms) — now gives rise to the complexity result for
ELT ().

Theorem 3. Satisfiability checking, instance retrieval, and compgtifass subsump-
tions for &L (Ms) knowledge bases is possible in polynomial time in the sizheof
knowledge base.

Proof. Given an arbitrang.L"*(Ms) knowledge base KB, Proposition 2 ensures that it
can be transformed in polynomial time into an equisatistidowledge base KBn
normal form. Again in polynomial time, we can compute thetezlge bas@"™(KB')
that — by Proposition 3 — is equisatisfiable with K@nd hence also with KB). Finally,
as®"KB’ is anEL™* knowledge base, we can check satisfiability in polynomiakti
O

We finish this section with some general remarks.

On the one hand, note that conjunction on roles enhancesssipity of E£**
significantly. For example, it allows for the following mdlieg features:

— Disjointness of two simple roleS, R. This feature, also provided h§RO7Q as
Dis(S, R), can be modelled i&L** (M) by the axiomd(SM R).T C L.

— Atleast cardinality constraints on the right hand side of @.G'he axiomA C
>n RB can be modelled by the axiomd& CR ACIAR.B|1<i<nfU{3I(R N
R).TE L|1<i<]<n}whereRy,...,R,are new simple role names.

On the other hand, it is easy to see that incorporating mairejthst conjunction on
simple roles int&€ L™ would render the respective fragment intractable at best:

Allowing conjunction on non-simple roles would even leadutedecidability as
stated in Theorem 1 of [18].

Allowing disjunction or negation on simple roles would alito model disjunction
on concepts: for instance, the GBIC B LI C can be expressed by the axiom setC
A(RuU S).T,dRT C B,3S.T C C} or the axiom setAn dR.{o} C C, Arn 3-R{o} C B}
for new rolesR, S and a new individual nam& Hence, any extension 6£** into this
direction would be EpTmve-hard [16].

7 DLP(N)

Description Logic ProgramgDLP) constitutes a tractable knowledge representation
formalism in the spirit of (Horn) logic programming [19]. &mtially, it consists of
thoseSHOIQ axioms which can be naively translated into (non-disjusjtDatalog,
such that the original knowledge base and its translatiersamantically equivalent.
As such it represents the fragmentS5H{O7Q that can entail neither disjunctive infor-
mation nor the existence of anonymous individuals as ektelysstudied in the context

of Horn description logics [20]. Though rather complex syatic definitions can be
given to characterise all admissible axioms of such logiesuse a simpler definition
comprising all essential expressive features of DLP witlmeluding all their syntactic
varieties.



Definition 9. Atomic roles of DLP are defined as#RO7Q, including inverse roles. A
DLP body concepis anySROI Q concept expression that includes only concept names,
nominals,1, 3, T, and L. ADLP head conceps anySROIQ concept expression that
includes only concept names, nominaisY, T, L, and expressions of the forgl.C
where C is a DLP body concept.

A DLP knowledge basis a set of Rbox axioms of the formtRS and R RC R,
Tbhox axioms of the form € D, and Abox axioms of the form(8) and Ra, b), where
C e Cis abody concept, @ C is a head concept, and b € N, are individual names.

DLP(r) knowledge bases are defined just as DLP knowledge basesheittudi-
tion that conjunctions of roles may occur in D{CA in all places where roles occur in
DLP.

Note that we do not have to distinguish between simple andsimaple roles for
DLP.

In [20] it is shown that DLP is of polynomial worst-case comewty. This can be
seen most easily by realising that DLP knowledge bases ctmam&formed in polyno-
mial time (in the size of the knowledge base) into an equgable set of function-free
first-order Horn rules (i.e. non-disjunctive Datalog rQlesth at most three variables
per formula. On the basis of this result, it is easy to show EiaP () is also of poly-
nomial complexity. We give a brief account of the argument.

Consider a DLR{) knowledge bas&. We now perform the following transforma-
tion of K:

— For any role conjunctioR, - - - M R, occuring in the knowledge base, replace the
conjunction by a new rol®&, and add the axiom&; N --- MR, C RandRC R, for
alli=1,...,n, to the knowledge base.

The resulting knowledge base is obviously equisatisfiabth ¥. It consists of two
types of axioms: Axioms which are in DLP and axioms of the fdkgmT1--- MR, C

R. The latter axioms correspond to function-free Horn ruléth wnly two variables.
Hence, any DLR{() knowledge base can be transformed in polynomial time imto a
equisatisfiable set of function-free Horn rules.

Theorem 4. Satisfiability checking, instance retrieval, and compgtatass subsump-
tions for DLRM) knowledge bases is possible in polynomial time in the sizhef
knowledge base.

Proof. First note that instance retrieval and class subsumptiarbeareduced to sat-
isfiability checking: Retrieval of instances for a claSds done by checking for all
individualsa if they are inC — which in turn is reduced to satisfiability checking by
adding the axiom€n E C L andE(a) to the knowledge base, whelEss a new atomic
class name. Class subsumpt®rm D is reduced by adding the axiori§a), E(a) and
DnEC L, foranew individuab and a new atomic class nar&e

Now to check satisfiability of a DLIP() knowledge base, it is first transformed into
an equisatisfiable set of function-free first-order Horresuas mentioned above. The
satisfiability of such a set of formulae can be checked in patyial time, since any
Horn logic program is semantically equivalent togt®unding(the set of all possible
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Fig. 2. Overview of complexities and expressivity relationships of DLs in the canié this
paper.

ground instances of the given rules based on the occuringidodl names). For a
program with a bounded numbaerof variables per rule, this grounding is bounded
by r x i", wherei is the number of individual names ands the number of rules in
the program. Finally, the evaluation of ground Horn logiognams is known to be-
complete. O

8 Conclusion

In our work, we have thoroughly investigated the reasonimigexities of DLs al-
lowing for Boolean constructors on simple roles. We foundl tthe expressive DLs
SROIQ (being the basis of the forthcoming OWL 2 standard) &td07Q (the log-

ical underpinning of OWL) can accommodate full Boolean rgermtors while keep-
ing their reasoning complexities NRETmve and NEpTiME, respectively. Likewise, the
ExpTmmMe-completeSH I Q can be safely extended by safe Boolean expressions. Finally
both the tractable fragmenfs.™* and DLP retain polynomial time reasoning complex-
ity when adding just role conjunction, where in the case oPDhe role simplicity con-
dition is not necessary. Figure 2 shows our findings integratith other well-known
complexity results relevant in this respect.



In particular we want to draw the reader’s attention to the fhat — as opposed to
hitherto proposed ways — the modelling of concept produstscualified role inclu-
sions as presented in Section 1 does automatically render the inferred roles non-
simple. Moreover, due to the safety of the respective axiqumlified role inclusions
can even be modelled 8H 7Qbs.

Future work on that topic includes the further integratiéthe established results
with our work on DL Rules [21], as well as the further inveatign of the #ects on
complexity and decidability when allowing for Boolean ctrastors on non-simple
roles.

Finally note that our results faBH7Qbs, EL**(Ns), and DLP(1) provide direct
ways for adapting existing reasoning algorithms 8% 7Q, L, and DLP, respec-
tively. For SROIQBs and SHOIQBs, however, setting upficient algorithms seems
less straightforward and represents another interestiegtibn of future research.
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