
Pay-as-you-go Approximate Join Top-k Processing for the
Web of Data – Technical Report

Andreas Wagner
AIFB, Karlsruhe Institue of

Technology
Karlsruhe, Germany

a.wagner@kit.edu

Veli Bicer
IBM Research, Smarter Cities

Technology Centre
Dublin, Ireland

velibice@ie.ibm.com

Thanh Duc Tran
AIFB, Karlsruhe Institue of

Technology
Karlsruhe, Germany

ducthanh.tran@kit.edu

ABSTRACT
In recent years, the amount of RDF data on the Web has drasti-
cally increased. For an effective search over such a large Web of
data, ranking of results is crucial. To allow efficient query pro-
cessing of ranked queries, top-k join processing has been proposed,
which aims at computing k top-ranked results, without complete re-
sult materialization. However, Web search poses novel challenges.
Most notably, users are frequently willing to sacrifice result accu-
racy in favor of result computation time. Thus, there is a strong
need to approximate the top-k results. Previous work on approxi-
mate top-k processing, however, is not applicable for the join top-k
setting – it solely targets the selection top-k problem. Further, exist-
ing approaches require offline computed score statistics to be avail-
able. Unfortunately, many important kinds of Web search queries,
e.g., keyword or spatial queries, commonly query-/user-dependent
ranking is employed. Thus, one only has score information at run-
time. In this paper, we address these shortcomings and propose
a novel approximate top-k join framework, well-suited for Web
search queries and ranking. For this, all necessary score statistics
are learned via a pay-as-you-go training at runtime. We study our
approach in a theoretical manner, and formally show its efficiency
as well as effectiveness. Further, we conducted experiments on
benchmarks comprising synthetic as well as real-world Web data/-
queries. Our results are very promising, as we could achieve up to
65% time savings, while maintaining a high precision/recall.

1. INTRODUCTION
With the proliferation of the Web of data, RDF (Resource De-

scription Format) has gained a significant amount of attention. In
fact, RDF has become an accepted standard for publishing data on
the Web.1 Adhering to a set of triples {〈s, p, o〉}, RDF data forms
a data graph, cf. Fig. 1-a. Every triple describes a particular entity
(the subject) s through a predicate/object pair: p, o.

Web Search Ranking. For web-scale data, queries frequently
produce a large number of results (bindings), thereby making rank-
ing a key factor for an effective search. Each result has a rank-
ing score associated, measuring its relevance for the user/informa-
tion need. In a Web search setting, however, ranking functions of-

1http://webdatacommons.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

ten need to reflect on query constraints or user characteristics, for
judging a binding’s relevance.
Example 1. Find movies with highest ratings, featuring an actress
“Audrey Hepburn”, and playing close to Rome, cf. Fig. 1.

Exp. 1 would require a ranking function to incorporate the movie
rating, quality of keyword matches for “Audrey Hepburn”, and dis-
tance of the movie’s location to Rome. While one may assume that
a higher rating value is preferred by any user and query, scores for
keyword and location constraint dependent on query and/or user
characteristics. For instance, in order to rank a triple t for “Audrey
Hepburn”, a function may measure the edit distance between that
keyword and triple t’s attribute value. Notice, given another key-
word (e.g., only “Audrey”), t’s attribute value would yield a differ-
ent score. Further, depending on the user’s geographic knowledge
of Italy, she may have different notions of “closeness” to Rome,
e.g., distance ≤ 100 km. These three ranking criteria could be ag-
gregated via a summation, Fig. 1-c. Ranking functions of that kind
are commonly referred to as query-/user-dependent ranking [1, 7,
37], and are employed for many important Web search queries, e.g.,
keyword, spatial or temporal queries, cf. [4, 8, 9, 22, 23].

Join Top-k Processing. Most RDF query processing approaches
focus on efficiency gains via query optimization, indexing or join
techniques – without taking ranking scores into account [16].

On the other hand, work on relational databases has shown that
result computation efficiency may be drastically improved by rank-
aware query processing [18]. Rank-aware approaches (also known
as top-k query processing) aim at computing k top-ranked bindings
without full materialization of the result set. That is, after comput-
ing a certain number of bindings, the algorithm allows to terminate
early, as it can guarantee that no binding with higher score, than
those already found, exists [18].

Web search queries commonly feature one or more joins to com-
bine multiple triples into a result [16]. Focusing on such queries,
we target a particular flavor of top-k processing: the join top-k prob-
lem. Here, a complete binding is obtained by joining single triples,
and the score of a complete binding is an aggregation of its com-
prised triples’ scores [18].

Two recent papers proposed join top-k for the Web of data [25,
39]. However, these works miss to target common Web search be-
havior/information needs. That is, search on Web data is mostly
performed by end-users having information needs that do not re-
quire a high result accuracy or completeness. In fact, while systems
may compute a large number of top-ranked results, users oftentimes
only investigate a small fraction of those results. For instance, in
Exp. 1 a system could return the top-50 movie results. However, a
user may just visit one or two results, until she discovers a movie of
interest. Thus, users likely “miss” relevant results, because of their
search behavior and information need. This drives the need for ap-

r

“Audrey K.
Hepburn“

“Roman
Holiday“

Movie

starring

type

title

m1

-74.006

8.1

rating

m2

type

“Breakfast at
Tiffany's“

title

7.7 rating starring

m3

12.4839

loc

type 8.5
rating

“Amélie“

41.8947

40.7146

Location

l1

type

lat

long

lat
long

type “Audrey
Tautou“

title

starring

loc
mrating

“Audrey
Hepburn“

starring
loc

(a) (b)

(c)

l
Q = {tp1,tp2,tp3}tp1

tp3

tp2

scoreQ(b) = rating(r) + (1 - editDistance(s,“Audrey Hepburn“))
+ (IF [distance(l,(41.8947,12.4839)) ≤ 100km] 1 ; ELSE 0)
with b = (t1=<m,rating,r>, t2=<m,starring,s>, t3=<m,loc,l>)

“Rome“

name

l2

“New York“

name

Figure 1: (a) Data about the movies “Roman Holiday”, “Breakfast at Tiffany’s”, and “Amélie”. (b) Query graph asking for a movie starring
“Audrey Hepburn”. (c) Scoring function aggregating (via a summation) scores for triple pattern bindings (bold): movie ratings, edit distance
w.r.t. “Audrey Hepburn”, and distance of the movie’s location to Rome (lat: 41.8947, long: 12.4839) ≤ 100 km. While the first constraint
is query- and user-independent, the keyword constraint is query-dependent, and the location ranking is user-dependent, due to user-defined
notion of “closeness” (here: ≤ 100 km).

proximated Web search query processing: a system should be able
to trade off result accuracy/completeness for computation time.

Approximate Join Top-k Processing. Approximate top-k strate-
gies, allowing false positive/negative top-k bindings, have been pro-
posed before [2, 3, 28, 35, 38]. Unfortunately, these approaches are
not well-suited Web search:

(P1) Binding Probability. RDF data adheres to a fine-grained
triple model, and frequently many joins are required to form a
query. However, existing approaches are not targeted at join top-k,
but instead aim at the selection top-k problem [2, 3, 28, 35, 38]. Se-
lection top-k is a very different task, as it computes top-ranked re-
sults, where each result is a “single” entity. In particular, no joins of
multiple triples/entities are considered [18]. Applying such works
for approximate join top-k is not straightforward, because those ap-
proaches do not capture the “binding probability” of a partial result:
Example 2. Say a partial binding b = (∗, 〈m2, starring, “Audrey
K. Hepburn” 〉, ∗) in Fig. 1-a matches the starring constraint,
tp2, in Fig. 1-b, but still has to be joined with bindings for its un-
evaluated patterns (tp1 and tp3). The binding probability estimates
how likely b will join with bindings for tp1 and tp3, thereby con-
tributing to one or more complete bindings.

(P2) Score Probability. To determine the probability for a partial
binding to have a “sufficiently” large score to lead to a top-k result,
score probability distributions are employed:
Example 3. Partial binding b in Exp. 2 has a known/fixed score
for its triple 〈m2, starring, “Audrey K. Hepburn” 〉. However,
bindings for pattern tp1 and tp3 are unknown, and their scores are
modeled by means of a probability distribution.

Web search often uses an user-/query-dependent ranking, e.g.,
for keyword or spatial queries. For these ranking functions, scores
are only known at runtime, see Exp. 1. Existing approaches, how-
ever, require ranking scores to be available at offline time, in or-
der to estimate and store the score probability distributions, e.g.,
via histograms [2, 3, 28, 35, 38]. Thus, for user-/query-dependent
ranking, previous works would need to load all matching triples for
each pattern into memory, compute their scores, and construct the
necessary score statistics/distributions at runtime. Notice, this must
be done every time a query is issued. Such a procedure, however,
would nullify the advantages of top-k processing, as materializa-
tion of bindings from disk is commonly the most expensive task in
query processing.

This problem is exacerbated by the fact that score probability dis-
tributions must also capture aggregated scores from multiple pat-
terns. For instance, in Exp. 3 we would need to estimate a distribu-
tion over scores for bindings of tp1 Z tp3. As tp3 is ranked via an
user-dependent functions (Exp. 1), we again have no offline score
information about the scores for tp1 Z tp3. So, one would either

need to materialize/sample the join tp1 Z tp3 at runtime, or (given a
summation as score aggregation) compute the desired score distri-
bution as a convolution of the two probability distributions for tp1

and tp3. However, the former is associated with prohibitive costs,
and the latter restricts the score aggregation to be a summation as
well as imposes a harsh independence assumption.

In order to address problem P1 and P2, we propose an approxi-
mate join top-k strategy well-suited for the Web of data.

With regard to binding probabilities, we reuse existing works on
selectivity estimation [24, 31, 32, 36]. Traditionally, selectivity es-
timation has been exploited to estimate the result set size for a given
query, and to optimize join processing accordingly. In the follow-
ing, we show how to make use of such solutions in order to approx-
imate the binding probability.

For score probabilities, we propose a flexible approach based on
Bayesian inferencing. In particular, we support any kind of ranking
function, including query-/user-dependent functions. For this, we
use scores seen during join processing as “training examples” to
iteratively learn score probability distribution at runtime.

Contributions. Our contributions are as follows:
• While previous works solely aimed at top-k approximation

for a relational setting, this is the first work towards an ap-
proximate join top-k processing for Web search.

• Our approach is lightweight, i.e., we do not require offline
knowledge about ranking functions or score distributions.
Every score statistic needed can be learned at runtime fol-
lowing the pay-as-you-go paradigm.

• We provide a theoretical analyses of our approach, and for-
mally show its efficiency as well as effectiveness. In partic-
ular, we proof our distribution learning to have a constant
space complexity, and a runtime complexity bounded by the
result size. Furthermore, we give bounds for the approxima-
tion error of our overall approach.

• We implemented our approach and conducted experiments
on two RDF benchmarks. Evaluation results are promising,
as we could achieve time savings of up to 65%, while still
having a high precision/recall.

Outline. We outline preliminaries in Sect. 2, and present the
approximate top-k join in Sect. 3. In Sect. 4, we discuss evaluation
results. Last, we give an overview over related works in Sect. 5,
and conclude with Sect. 6.

2. PRELIMINARIES
Data Model. Given a set of edge labels `, a RDF data is a labeled

graph G = (V,E, `), where V = VE] VA with entity nodes as
VE and attribute nodes as VA. Triples are given by edges E =

{〈s, p, o〉}, with s ∈ VE as subject, p ∈ ` as predicate, and o ∈
VE] VA as object. An example is depicted in Fig. 1-a.

Query and Result Model. We abstract from a particular type
of queries, e.g., keyword or spatial queries, and model queries as
basic graph patterns (BGPs), thereby capturing a key fragment of
SPARQL.2 A BGP query Q constitutes a directed labeled graph
Q = (VQ,EQ), with VQ = VQV] V

Q

C as disjoint union of variable,
VQV , and constant nodes, VQC . Edges EQ are called triple patterns,
with each pattern adhering to tp = 〈s, p, o〉, where s ∈ VQV , p ∈ `,
and o ∈ VQV] V

Q

C . For example, pattern 〈m, starring, “Audrey
Hepburn”〉 has one variable, m, one constant, “Audrey Hepburn”,
as object, and starring as predicate, Fig. 1-b. As shorthand we
write Q as a set of its triple patterns: Q = {tpi}i.

A binding b for a query Q is a vector (t1, . . . , tn) of triples, such
that each triple ti matches (defined below) exactly one pattern tpi

in Q, and triples in b form a connected subgraph of G. Via the
matching of patterns in Q to triples, b binds variables to nodes in
the data. Formally, for binding b there is a function µb : VQV 7→ V,
mapping every variable in Q to an entity/attribute value node inV.

During query processing partial bindings, which feature some
patterns with no matching triples, may occur. We refer to such
a pattern, say tpi, as unevaluated, and write ∗ in b’s i-th posi-
tion: (t1, . . . , ti−1, ∗, ti+1, . . . , tn). For a partial binding b we denote
its evaluated pattern as Q(b) ⊆ Q, and its unevaluated pattern as
Qu(b) = Q \ Q(b). b is complete, if all pattern have been evaluated.

A binding b comprises a binding b′, if any matched triple ti in b′

is also contained in b at position i. We say b′ contributes to b.
Example 4. In Fig. 1-b, Q = {tp1, tp2, tp3}. Partial binding b31 =

(∗, ∗, t31 = 〈m1, loc, l1〉) in Fig. 2-a matches pattern tp3, while
Qu(b31) = {tp1, tp2} are unevaluated. b31 binds variable m and l to
entity m1 and l1, respectively. Complete binding b = (t12, t21, t31)
comprises partial binding b31, and b31 contributes to b.

Ranking Function. For quantifying the relevance of a binding
b w.r.t. query Q, we employ a ranking function: scoreQ : BQ 7→
R, with BQ as set of all partial/complete bindings for Q. More
precisely, scoreQ(b) is given by an aggregation over b’s triples:
scoreQ(b) =

⊕
t ∈ b scoreQ(t), with ⊕ as monotonic aggregation

function. Function scoreQ is specific for Q, and the user who is-
sued Q. Thus, we allow for user-/query-dependent ranking of triple
patterns bindings. A ranking function for our example is in Fig. 1-c.
Note, scoreQ could be defined as part of the query, e.g., by means
of an “extended” ORDER BY clause in SPARQL.

Sorted Access. For every pattern tpi in query Q, a sorted access
sai retrieves matching triples in descending score order. Previous
works on join top-k over Web data discussed efficient sorted access
implementations for RDF stores [25, 39]. Let us present simple
approaches for our running example, Fig. 2-a:
Example 5. Given the keyword pattern tp2 = 〈m, starring, “Au-
drey Hepburn” 〉, a sorted access must materialize all triples, which
have a value that contains “Audrey” or “Hepburn”. After materi-
alization, these triples are sorted with descending similarity w.r.t.
that keyword – measured via, e.g., edit distance. Thus, sorted ac-
cess sa2 loads three triples comprising “Audrey” or “Hepburn”,
and sorts them according to their edit distance to “Audrey Hep-
burn”. On the other hand, for pattern 〈m, loc, l〉, an R-tree on
the attribute pair (lat, long) may be used [14]. This offline com-
puted index yields two hits: l1 and l2. While l1 is an exact match,
thus, ranking its triple t31 with max. score 1, l2 is more distant from
Rome. Note, l2 and triple t32, respectively, is only loaded if needed,
i.e., if join-2 pulls on sa3 a second time. An index for attribute
rating can be constructed offline. Here, triples are sorted with
descending attribute value. Sorted access sa1 can simply iterate
over this index, and materialize a triple each time join-1 pulls.

2http://www.w3.org/TR/rdf-sparql-query/

Partial bindings retrieved from sorted accesses are combined via
joins. That is, an equi-join combines two (or more) inputs, each
of them either being another join or a sorted access. This way,
multiple joins form a tree. For instance, three sorted accesses are
combined via two joins in Fig. 2-a.

It is important to notice: if a join input i produces a partial bind-
ing b, its set of unevaluated triple patterns, Qu(b), is the same for
any binding from that input. Thus, we say input i has a set of
unevaluated patterns Qu(i) associated. For instance, input i1 has
Qu(i1) = {tp2, tp3} as unevaluated patterns, Fig. 2-a.

Problem. Our goal is to produce k high-ranked, complete query
bindings that may differ from the true top-k results in terms of false
positives/negatives. These approximations aim at saving computa-
tion time and input depth (#bindings pulled from sorted accesses).
For this, we use a top-k test: for a given partial query binding, we
estimate its probability for contributing to the final top-k results,
and discard partial bindings having only a minor probability.

In our work, we exploit conjugate priors from the field of Bayes-
ian statistics for learning necessary probability distributions.

Bayesian Inference. Let Θ be a set of parameters. One can
model prior beliefs about these parameters in the form of proba-
bilities: Θ ∼ P(Θ | α), with Θ ∈ Θ [15]. α is a vector of hy-
perparameters allowing to parametrize the prior distribution. Sup-
pose we observe relevant data x = {x1, . . . , xn} w.r.t. Θ, where each
xi ∼ P(xi | Θ). Then, the dependency between observations x and
prior parameters Θ can be written as P(x | Θ). Using the Bayes the-
orem we can estimate a posterior probability, capturing parameters
Θ conditioned on observed events x. In simple terms, a posterior
distribution models how likely parametersΘ are, in light of the seen
data x, and the prior beliefs [15]:

P(Θ | x, α) ∝ P(x | Θ) · P(Θ | α) =
P(x | Θ) · P(Θ | α)∑

Θ P(x | Θ)P(Θ)
(1)

Example 6. For the rating pattern tp1 in Fig-2-a, scores are based
on rating values. So, we can compute sufficient statistics, i.e, mean
x̄1 = 8.1 and variance s2

1 = 0.16, for these scores at offline time,
cf. stat1 in Fig-2-b. Such statistics represent prior beliefs about
the true distribution, which is capturing only those scores observed
for bindings of tp1 that are part of a complete binding. Only triple
t11 and t12 contribute to complete bindings, thus, only their scores
should be modeled via a distribution. We update the prior beliefs
using scores samples x observed during query processing, thereby
learning the true (posterior) distribution as we go.

As we are interested in estimating an unobserved event x∗, we
need to calculate the posterior predictive distribution, i.e., the dis-
tribution of new events given observed data x:

P(x∗ | x, α) =
∑

Θ

P(x∗ | Θ)P(Θ | x, α) (2)

An important kind of Bayesian priors are the conjugate priors [15]:

Definition 1 (Conjugate Prior). A prior distribution familyD for a
parameter set Θ is called conjugate iff P(Θ) ∈ D ⇒ P(Θ | x) ∈ D.

Intuitively, conjugate priors require the posterior and prior dis-
tribution to belong to the same distribution family. In other words,
these priors provide an “computational convenience” as they give
a closed-form of the posterior distribution [15]. Thus, posterior
computation is easy and efficient.

3. APPROXIMATE TOP-K JOIN
We now present an approximated top-k join processing algo-

rithm, allowing a trade-off between result computation efficiency
and accuracy. For this, we extend the well-known Pull/Bound Rank
Join [34] with a novel probabilistic component PC.

O1+2+3 score

complete bindings: tp1+ tp2 + tp3

sa1: <m,rating,r> sa2: <m,starring,“Audrey
Hepburn“>

sa3: <m,loc,l>
H1 score H2 score

m

O1+2 score

A1

Hyperpara
meters: α1

A2

Hyperpara
meters: α2

A4

Hyperpara
meters: α4

partial bindings
tp2

partial
bindings tp3

partial
bindings
tp1+tp2

partial bindings
tp1

κ and score samples
for bind. tp2+ tp3

κ and score samples for bind. tp3

κ and
score samples
for bind. tp1+3

κ and score
samples for

bind. tp1+ tp3

Input i1 Input i2

b11 = (t11 = <m3,rating,8.5>, *, *) 8.5

t11:<m3,rating,8.5>, 8.5
t12:<m1,rating,8.1>, 8.1
t13:<m2,rating,7.7>, 7.7

Offline Index: RatingOffline Index: Rating

Sorted Access
Pointer at next
matching
triple

 t21:<m1,starring,“Audrey K. Hepburn“>, 0.9
 t22:<m2,starring,“Audrey K. Hepburn“>, 0.9
 t23:<m3,starring,“Audrey Tautou“>, 0.3

Sorted List at Runtime:
Triples containing “Audrey“ or “Hepburn“

Sorted List at Runtime:
Triples containing “Audrey“ or “Hepburn“

 l2: (41.8947,12.4839)
 l1: (40.7146,-74.006)

R-Tree Offline Index:
Location

R-Tree Offline Index:
Location

A-PBRJ j1

partial bindings: tp1+ tp2

Score: rating(r) Score: 1 - editDistance(s,“Audrey Hepburn“)

b21 = (*, t21 = <m1,starring,
“Audrey K. Hepburn“>, *)

0.9

H1+2 score

Input i4

Input i3

H3 score

b31 = (*, *, t31 = <m1,loc,l2>) 1

A3

Hyperpara
meters: α3

Score: IF [distance(l,(41.8947,

12.4839)) ≤ 100km] 1 ; ELSE 0

(a) (b) Sufficient StatisticsTree of Approximate Top-k Joins

Stat1: Offline computed
sample mean and variance

for rating ranking

Stat2: Runtime computed
sample mean and variance
for edit distance ranking

Stat3: Runtime computed
mean and variance for

location ranking based on
uniform distribution

m

A-PBRJ j2

Figure 2: (a) Tree of approximate rank joins, combining three sorted accesses (one for each triple pattern in Fig. 1-b). Two information flows
occur between operators in the tree: partial bindings (green), and score samples (blue). (b) Sufficient statistics calculated based on scores
observed at indexing time (stat1) and runtime (stat2 and stat3), respectively.

In particular, we will show that our instantiation ofPC is efficient
and effective. For the former, we show our score distribution train-
ing to have a constant space complexity, and a runtime complexity
bounded by the result size (Lemma 1 and 2). For the latter, we dis-
cuss the quality of learned score distributions in Thm. 1 and 2, and
provide an upper bound for approximation errors in Thm. 3.

3.1 Approximate Rank Join Framework
We define an approximate Pull/Bound Rank Join (A-PBRJ) com-

prising three parts: a pulling strategy PS, a bounding strategy BS,
and a probabilistic component PC. PS determines the next join
input to pull from [34]. The bounding strategy BS gives an upper
bound, β, for the maximal possible score of unseen results for that
join [34]. Last, we use PC to estimate a probability for a partial
binding to contribute to the final top-k result.

Approximate Pull/Bound Rank Join. The A-PBRJ is depicted
in Algo. 1. Following [34], on line 5 we check whether output
buffer O comprises k complete bindings, and if there are unseen
bindings with higher scores – measured via bound β. If both con-
ditions hold, the A-PBRJ terminates and reports O. Otherwise, PS
selects an input i to pull from (line 6), and produces a new partial
binding b from the sorted access on input i, line 7. After material-
ization, we update β using bounding strategy BS.
Example 7. By means of strategyPS, join j2 decides to first pull on
sorted access sa3, and materialize partial binding t31, see Fig. 2-a.
Then, join j2 pulled on input i4 (join j1), which in turn pulled on its
input i1 (sa1) loading binding t11, and afterwards on input i2 (sa2)
marginalizing t21. t11 Z t21 on variable m fails as m3 , m1.

In line 9, PC estimates the probability for partial binding b lead-
ing to a complete top-k binding: the top-k test. If b fails this top-k
test b is pruned. That is, we do not attempt to join it, and do not in-
sert it in Hi, which holds “seen” bindings from input i. Otherwise,
if this test holds, b is further processed (lines 10 - 15). That is, we
join b with seen bindings from the other input j, and add results to
O. Further, b is inserted into buffer Hi, line 11. For learning the
necessary probability distributions, PC trains on seen bindings/-
scores in O, line 13. Notice, we continuously train PC throughout
the query processing – every time “enough” new bindings are in O,
line 12. PC requires parameter κ for its pruning decision. κ holds

Algorithm 1: Approx. Pull/Bound Rank Join (A-PBRJ).
Params: Pulling strategy PS, bounding strategy BS,

probabilistic component PC.
Index : Sorted access sai and sa j for input i and j, resp..
Buffer : Output buffer O. Hi and H j for “seen” bindings

pulled from sai and sa j. Hyperparameter buffer A.
Input : Query Q, result size k, and top-k test threshold τ.
Output : Approximated top-k result.

1 begin
2 PC.initialize()
3 β← ∞
4 κ ← −∞
5 while | O |< k or minb′ ∈O scoreQ(b′) < β do
6 i← PS.input()
7 b← next triple pattern binding from sai

8 β← BS.update(b)
// top-k test

9 if PC.probabilityTopK(b,κ) > τ then
10 H j Z {b} and add each binding to O
11 Add b to Hi

12 if #new bindings b in O ≥ training threshold then
13 PC.train(b)
14 Retain only k top-ranked bindings in O
15 if |O | ≥ k then κ ← minb′ ∈O scoreQ(b′)
16

// return approximated top-k results
17 return O

the the smallest currently known top-k score (line 15). Note, κ is
initialized as −∞, line 4. See Fig. 2-a for a tree of A-PBRJs.

Choices for PS and BS. Multiple works proposed bounding,
e.g., [12, 17, 26, 34], and pulling strategies, e.g., [17, 27]. Com-
monly, the corner bound [17] is employed as bounding strategy:

Definition 2 (Corner Bound). For a join operator, we maintain ui

and li for each input i. ui is the highest score observed from i,
while li is the lowest observed score on i. If input i is exhausted,
li is set to −∞. The bound for scores of unseen join results is β =

max{u1 ⊕ l2, u2 ⊕ l1}.

In example Fig. 2-a, join j1 currently has β = max{8.5 + 0.9, 0.9 +

8.5}, with u1 = l1 = 8.5, and u2 = l2 = 0.9.
On the other hand, the corner-bound-adaptive strategy [17] is

frequently used as pulling strategy PS:

Definition 3 (Corner-Bound-Adaptive Pulling). The corner-bound-
adaptive pulling strategy chooses the input i such that: i = 1 iff
u1 ⊕ l2 > u2 ⊕ l1, and i = 2 otherwise. If u1 ⊕ l2 = u2 ⊕ l1, the input
with the smaller # unseen partial bindings is chosen.

For instance, as 8.5 + 0.9 = 0.9 + 8.5 in join j1, with both inputs
having 2 unseen partial bindings, either input may be selected.

3.2 Probabilistic Component
The probabilistic component implements the top-k test, which

follows a simple intuition: For a partial binding b, a subset of query
patterns are evaluated, Q(b), while some others are not, Qu(b).
Thus, scores (bindings) of unevaluated patterns are uncertain. How-
ever, partial bindings for already evaluated patterns restrict the
space of likely/possible scores (bindings) for unevaluated patterns.

We model these binding and score uncertainties via two prob-
abilities: (1) Probability for partial binding b contributing to one
or more complete bindings (binding probability). (2) Probability
distribution over scores of complete bindings (score probability).

Binding Probability. To address the former probability, we use
a selectivity estimation function sel. Simply put, given a query Q,
sel(Q) estimates the probability that there is at least one binding
for Q, see [24, 31, 32, 36]. For example, selectivity of pattern
tp3 = 〈m,loc, l〉 is sel(tp3) = 2

3 , because out of the three movie
entities only two have a loc predicate, cf. Fig. 1-a.

By means of function sel, we define a complete binding indicator
for partial binding b:

1(Qu(b) | b) B

1 if sel(Qu(b) | b) > 0
0 otherwise

(3)

Intuitively, 1(Qu(b) | b) models whether matching triples for b’s
remaining unevaluated patterns can exist, given variable assign-
ments dictated by b.

That is, Qu(b) | b is a set of patterns {tpi}, such that pattern tpi ∈

Qu(b), and each variable v in tpi that is bound by b is replaced with
its assignment in b, µb(v), resulting in a new pattern tpi.
Example 8. Consider Fig. 2-a and partial binding b11 = (t11 = 〈m3,
rating, 8.5〉, ∗, ∗). Here,Qu(b11) | b11 is {〈m3, starring, “Audrey
Hepburn”〉, 〈m3, loc, l〉}, which is obtained by replacing variable
m in tp2 and tp3 with its assignment in b11 (µb11(m) = m3).

It is important to notice that the complete binding indicator (Eq. 3)
is independent of a particular sel implementation – any selectivity
estimation for BGP queries may be used.

For our experiments we reused work from [31, 32]. The authors
employed indexes for triple patterns with two constants: SP, PS, SO,
OS, PO, and OP. Each index maps a 〈val1, val2〉 pair to its cardinality,
i.e., the number of its matching triples in the data. For instance,
〈m1, starring〉 would map to 1 in Fig. 1-a. However, the binding
indicator only requires a selectivity estimation function to make a
boolean decision: either sel(Qu(b) | b) > 0 or not. Thus, not all six
indexes are necessary: SP, PO, and SO are sufficient. A rudimentary
implementation of sel(Qu(b) | b) returns 1 iff

∀〈s,p,o〉 ∈ Qu(b) | b, where s ∈ VESP.card(〈s, p〉) > 0 ∧ (4a)
∀〈s,p,o〉 ∈ Qu(b) | b, where o ∈ VE]VAPO.card(〈p, o〉) > 0 ∧ (4b)

∀〈s,p,o〉 ∈ Qu(b) | b, where s ∈ VE ∧ o ∈ VE]VASO.card(〈s, o〉) > 0 (4c)

and 0 otherwise, with card as cardinality function.

Example 9. For Qu(b11) | b11 in Exp. 8, 1 (Qu(b11) | b11) = 0,
because selectivity for both patterns is 0. In our implementation
probe in SP for 〈m3, loc〉 returns “pair does not exist”. Thus, our
sel(Qu(b11) | b11) correctly returns 0.

Score Probability. Given a partial binding b, let Xs
b be a random

variable for modeling scores of complete bindings comprising b.
Further, scores for bindings of b’s unevaluated patterns, Qu(b), are
captured via Xs

Qu(b). Then, it holds:

P
(
Xs

b ≥ x
)

= P
(
Xs
Qu(b) ≥ δ(x, b)

)
(5)

where δ(x, b) B x − scoreQ(b). LHS of Eq. 5 may be simplified
to the RHS, because partial binding b already has a “certain” score,
scoreQ(b), and only the scores for its unevaluated patterns are un-
known. So, δ(x, b) may be seen as “delta” between b’s score and a
desired score x. For instance, b31 has a score of 1, however, scores
for bindings to tp1 and tp2 are uncertain, and modeled via Xs

Qu(b31).
Top-k Test. Having introduced above probabilities, we can de-

fine the top-k test. For a partial binding b, we are interested in b’s
probability of contributing to a complete binding in the top-k re-
sults. Thus, we use (1) the binding probability, i.e., the complete
binding indicator, to determine whether b might contribute to any
complete binding, and (2) the score probability to estimate scores
for complete bindings comprising b:

P
(
Xs

b ≥ κ
)
· 1 (Qu(b) | b) > τ⇔ (6a)

P
(
Xs
Qu(b) ≥ δ(κ, b)

)
· 1 (Qu(b) | b) > τ (6b)

with κ as the smallest currently known top-k score (see Algo. 1
line 15), and τ ∈ [0, 1] as test threshold.

Discussion. Threshold τ provides a key instrument for Web
search systems, as it always to adjust result accuracy, depending
on user and information need. For instance, a system may decide
to compute top-50 results in total, and increase τ every time a new
top-ranked binding could be reported. Generally speaking, τ should
not be conceived as a constant, but rather as a function in reported
top-ranked results. This way, systems may reflect on the typical
user behavior, who frequently only visit a small subset of the com-
puted results.

Second, note that κ in Eq. 6 refers to the smallest currently known
top-k binding score. Thus, as long as no k complete bindings have
been found, κ is set to −∞ (Algo. 1, line 4), and the score proba-
bility is always 1. So, the only reason for a partial binding b to be
pruned is, if it fails the complete binding indicator. That is, if b is
not expected to contribute to any complete binding.

Last, each top-k test computation causes costs in the form of
probability estimations. We will provide empirical results regard-
ing those costs in our evaluation. On the other hand, recent work
introduced a “cost-aware” rank join, which schedules sorted and
random accesses based on their associated costs [27] – this line of
work can be directly applied here. In fact, the top-k test may be
treated as “one more” access in their optimization problem [27].

3.3 Score Distribution Learning
With regard to the binding probability, we only require a selec-

tivity estimation function. For this, all necessary indexes can be
computed offline. We leave the selectivity estimation problem to
orthogonal work, and focus on score probabilities in this paper.

Estimation of score probabilities is rather difficult: (1) In a join
top-k setting, we are only interested in scores for complete bind-
ings. Consider join j1 in Fig. 2-a: we are not interested in “any” ag-
gregation of two scores for bindings of tp1 and tp2, e.g., scoreQ(t11)
+ scoreQ(t21) = 8.5 + 0.9. Instead, we wish to capture only scores
of valid join results, e.g., scoreQ(t11) + scoreQ(t23). (2) We allow

Predictive Distributions Priors

stat3:
(0.25, 0.08)

stat2 stat3:
(0.7 + 0.25, 0.12 + 0.08) =

(0.95,0.20)

stat1 stat2:
(8.1 + 0.7, 0.16 + 0.12)=

(8.8,0.28)

stat1 stat3:
(8.1 + 0.24, 0.16 + 0.08) =

(8.35,0.24)

In
p

u
t

i1
In

p
u

t
i2

In
p

u
t

i4
In

p
u

t
i3

(a) (b)

Figure 3: (a) Four predictive score distributions, one for each join
input, together with their priors. For instance, Xs

Qu(i1) models scores
for bindings to tp2 Z tp3, which are comprised in complete bind-
ings. (b) Priors are based on sufficient statistics. Note, aggregation
function ⊕ in Fig. 1-c is a summation. For instance, stat1 ⊕ stat3

becomes (8.1 + 0.24, 0.16 + 0.08).

for user-/query-dependent ranking. For those functions, no offline
score statistics can be constructed. At the same time, for other
ranking functions, e.g., based on the rating predicate, we do have
offline score statistics. Thus, we aim for a flexible framework al-
lowing to incorporate any offline information.

3.3.1 Overview
We estimate probabilities for Xs

Qu(b) by approximating its true
distribution with Xs

Qu(i) with i as the input from which b was pulled,
and Qu(i) as set of i’s unevaluated patterns:

P
(
Xs
Qu(b)

)
≈ P

(
Xs
Qu(i)

)
Example 10. For instance, in Fig. 2-a we approximate P(Xs

Qu(b11))
with P(Xs

Qu(i1)), as binding b11 is produced by input i1. Xs
Qu(i1) cap-

tures scores for bindings to patterns {tp2, tp3}.
So, instead of learning a distribution for every partial binding b,

we train a score distribution Xs
Qu(i) for each input i. For our example

we learn four distributions, cf. Fig. 3.
Relying on Xs

Qu(i), we provide an implementation ofPC.initialize(),
PC.train() in Algo. 2, and PC.probabilityTopK() in Algo. 3 – as re-
quired by our A-PBRJ framework in Algo. 1.

3.3.2 Pay-as-you-go Distribution Learning
We use conjugate priors, which allow a pay-as-you-go distribu-

tion learning for Xs
Qu(i) . With runtime ranking scores, we have no

information about the true distribution of Xs
Qu(i). In such a scenario,

a common assumption is to use a Gaussian score distribution. Thus,
we employ a Gaussian conjugate prior (Eq. 7a). However, we also
outline how to extend our approach to other distributions, if offline
knowledge about Xs

Qu(i) is available (Sect. 3.3.3).
Using a Gaussian conjugate prior with unknown mean and un-

known variance, prior and posterior distribution can be decom-
posed as: P(µ, σ2 | α) = P(µ | σ2, α) · P(σ2 | α) [15]. The mean µ
follows a Gaussian, Eq. 7b, and the variance σ2 a inverse-Gamma
distribution, Eq. 7c. Hyperparameters α0 = (µ0, η0, σ

2
0, ν0) param-

eterize both distributions, where µ0 is prior mean with quality η0,
and σ2

0 is prior variance with quality ν0 [15]:

Xs
Qu(i) ∼ normal

(
µ, σ2

)
(7a)

µ | σ2 ∼ normal
(
µ0,

σ2

η0

)
(7b)

σ2 ∼ inverse-gamma
(
0.5 · ν0, 0.5 · ν0σ

2
0

)
(7c)

Prior Distribution. Prior initialization is implemented by means
of the PC.initialize() method in Algo. 1 (line 2). For each in-
put i we specify a prior distribution for Xs

Qu(i) via prior hyperpa-
rameters α0. For α0 we require sufficient score statistics in the
form of a sample mean, x̄ = 1

n

∑
xi ∈ x xi, and a sample variance

s2 = 1
(n−1)

∑
xi ∈ x(xi− x̄)2, with x as sample. There are multiple ways

to obtain the necessary score samples, depending on what kinds of
ranking functions are used:
Example 11. Fig. 2-b depicts three sufficient statistics based on in-
formation from the sorted accesses: (1) Offline information in the
case of sa1. That is, scores are known before runtime, thus, x̄1 = 8.1
and s2

1 = 0.16 can be computed offline. (2) Online information for
access sa2. Recall, the list of matching triples for keywords “Au-
drey” and “Hepburn” must be fully materialized. So, x̄2 = 0.7 and
s2

2 = 0.12 may be computed from runtime score samples. (3) Last,
given access sa3, we have neither offline scores, nor a fully materi-
alized list of triples (sa3 loads a triple solely upon a pull request).
In lack of more information, we assume each score to be equal
likely, i.e., a uniform distribution. With min. score as 0 and max.
score as 1: x̄3 = 0.25 and s2

3 = 0.08.

Algorithm 2: PC.train()
Params: Weight w ≥ 1 for score sample x.
Buffer : Buffer A storing hyperparameters.
Input : Complete bindings B ⊆ O, and join j.

1 begin
// train hyperparameters for each input

2 foreach input i in join j do
// load prior hyperparameters for input i

3 αn = (µn, ηn, σ
2
n, νn)← Ai

// get scores of bindings of unevaluated patterns
4 foreach complete binding b ∈ B do
5 get b′ comprised in b for patterns Qu(i)
6 add scoreQ(b′) to score sample x

// sample mean and variance

7 x̄← mean(x) = 1
n

∑
xi

8 s2 ← var(x) = 1
(n−1)

∑
(xi − x̄)2

// posterior hyperparameters
9 νn+1 ← νn + w

10 ηn+1 ← ηn + w
11 µn+1 ←

ηnµn+wx̄
ηn+1

12 σ2
n+1 ←

1
νn+1
·
(
νnσ

2
n + (w − 1)s2 +

ηnw
ηn+1
· (x̄ − µn)2

)
// store hyperparameters for input i in join j

13 Ai ← αn+1 = (µn+1, ηn+1, σ
2
n+1, νn+1)

Similar to [15], we initialize hyperparameters α0 with: µ0 as
sample mean, σ2

0 as sample variance, and η0 = ν0 as sample size/-
quality. For every input, we aggregate necessary sample means and
variances for µ0 and σ2

0, respectively. The aggregation function for
these statistics must be the same as for the ranking function, ⊕. For
example, given input i1 where Qu(i1) = {tp2, tp3}, we sum up (ag-
gregate) statistics stat2 and stat3: x̄2 + x̄3 for µ0, and s2

2 + s2
3 for

σ2
0. Similarly, priors for the remaining three distributions can be

calculated, see Fig. 3. Further, η0 and ν0 are used to quantify the
prior quality. For instance, stat1 and stat2 are exact statistics, while
stat3 relies on a uniform distribution. So, a prior may be weighted
depending on its employed statistics. In other words, weighting
reflects the “trustworthiness” of the prior.

Posterior Distribution. Having estimated a prior distribution,
we continuously update the distribution with seen scores during
query processing. Based on [15], the training procedure PC.train()

is given in Algo. 2.
Intuitively, each time new complete bindings (Algo. 1, line 12)

are produced, all distributions Xs
Qu(i) could be trained. That is, com-

plete binding scores are used to update hyperparameters from the
previous n-th training iteration, αn, resulting in new posterior hy-
perparameters, αn+1. For this, we use standard training (Algo. 2,
lines 11-12) as discussed in [15]:

µn+1 =
ηnµn + wx̄
ηn+1

(8a)

σ2
n+1 =

1
νn+1

·

(
νnσ

2
n + (w − 1)s2 +

ηnw
ηn+1

· (x̄ − µn)2
)

(8b)

In simple terms, the prior mean µn is updated with the new sam-
ple mean x̄, Eq. 8a, and the prior variance σ2

n is updated with the
sample variance s2, Eq. 8b. Each input “extracts” its own score
sample x (Algo. 2, lines 5-6), from which the sample mean and
variance is computed. This is because every Xs

Qu(i) models scores
for different “unevaluated” patterns.

Prior hyperparameters are weighted via ηn and νn. Further, for
each hyperparameter update, a parameter w is used as weight, which
indicates the quality of the score samples x. In our experiments, we
set w as sample size. Finally, new hyperparameters αn+1 are stored
(Algo. 2, line 13), and used as prior for the next training.
Example 12. Consider input i1, and say η0 = ν0 = 1, its prior is
α0 = (0.95, 1, 0.20, 1), cf. Fig. 3. We observe scores x = {x1, x2}

from B = {(t12, t21, t31), (t13, t22, t32)}, with w = |x| = 2, x1 = 1.9 =

scoreQ(t21) + scoreQ(t31), and x2 = 0.9 = scoreQ(t22) + scoreQ(t32).
Then, s2 = 0.26, x̄ = 1.4, and posterior hyperparameters are:

η1 = ν1 = 1 + 2 = 3

σ2
1 =

1
3
·

(
0.2 + (2 − 1) · 0.26 +

(1.4 − 0.95)2

3

)
= 0.26

µ1 =
(0.95 + 2 · 1.4)

3
= 1.25

After each such update only posterior hyperparameters are stored,
thereby making the learning highly space efficient:

Lemma 1 (Distribution Learning Space Complexity). Given an A-
PRBJ operator j, at any time during query processing, we require
O(1) of space for score distribution learning.

Proof Sketch. Given an A-PRBJ operator, for every of its inputs a
single parameter vector (hyperparameters α) is stored after a train-
ing iteration (Algo. 2, line 13). As each vector, α, features a fixed
number of parameters, the space consumption remains constant,
i.e., independent of #training iterations �

Further, for the learning time complexity we can show:

Lemma 2 (Distribution Learning Time Complexity). Given an A-
PRBJ operator j, and B complete bindings, score learning time
complexity is bounded by O(|B|).

Proof Sketch. Given an A-PRBJ operator, and a set of new results
B: A score sample, x, is constructed (Algo. 2, lines 5-6) with O(|B|)
complexity. Mean and variance is computed from x in O(|x|) time.
However, as |x| ≤ |B|, it holds that O(|x|) ∈ O(|B|). Notice, compu-
tation of mean and variance could also be done while collecting the
sample in lines 5-6. Further, hyperparameters are updated via x in
constant time (Algo. 2, lines 9-12). Thus, every training iteration
costs overall O(|B|) �

Predictive Distribution. In Algo. 3, we provide an implemen-
tation of the PC.probabilityTopK() method, see Algo. 1 line 9. At
any point during query processing, one may need to perform a top-k
test. For this, our approach allows to always give a distribution for

Xs
Qu(i) based on the currently known hyperparameters αn (Algo. 3,

line 2). As hyperparameters are continuously trained, the distribu-
tions improve over time.

More specifically, we use the posterior predictive distribution.
This distribution estimates probabilities for new scores, based on
observed scores, and prior distribution. As shown in [15], this dis-
tribution can be easily obtained in a closed form as non-standardized
Student’s t-distribution with νn degrees of freedom, see Algo. 3,
line 3. Being able to compute the posterior predictive in such an
easy manner is an advantage of a Gaussian conjugate prior – for
other priors this estimation may be more complex [15].

Using the posterior predictive distribution, we may give an ap-
proximation of P(Xs

Qu(b)) via P(Xs
Qu(i)), Algo. 3, line 4. Last, in line 5

we compute the binding probability (Eq. 3) by means of the selec-
tivity estimation function. Now we have obtained binding as well
as score probability, and can return a probability for b contributing
to the top-k results, line 6 (Eq. 6).

Algorithm 3: PC.probabilityTopK()
Buffer : Buffer A storing hyperparameters.
Input : Partial bindings b, input i, and join j.
Output : Probability that b will result in one (or more) final

top-k bindings.
1 begin

// load hyperparameters for input i at join j

2 αn = (µn, ηn, σ
2
n, νn)← Ai

// posterior predictive distribution based on current αn

3 Xs
Qu(i) ∼ t(νn)

(
x | µn,

σ2
n(ηn+1)
ηn

)
// approximate score probability

4 pS ← P
(
Xs
Qu(b) ≥ δ(κ, b)

)
≈ P

(
Xs
Qu(i) ≥ δ(κ, b)

)
// compute binding probability

5 pB ← 1(Qu(b) | b)
// probability that b contributes to top-k

6 return pS · pB

3.3.3 Discussion
Refined Conjugate Priors. Whenever one has offline informa-

tion about the true distribution of Xs
Qu(i) (or good approximation for

it), we may replace the Gaussian conjugate prior in Eq. 7 with a
more suitable one. For this, only minor changes in the training
(Algo. 2), and predictive distribution estimation (Algo. 3, line 3)
are required. Both these tasks are well-known problems in the lit-
erature [15]. No further modifications are needed – the top-k test
works with any valid score distribution for Xs

Qu(i).
A wide variety of discrete/continuous conjugate priors are known,

thus, in the best case, there is a conjugate prior for the true distri-
bution of Xs

Qu(i). Otherwise, if no matching conjugate prior exists,
we can exploit a mixture of multiple conjugate priors:

∑
i wiPi (Θ)

with each Pi (Θ) being a conjugate prior, and wi as weights such that∑
i wi = 1 and 0 < wi < 1. Notice, [5] showed that any distribu-

tion from the exponential family could be approximated (arbitrarily
close) by means of a mixed conjugate prior.

Maintenance. We require maintenance of binding and score
probabilities. Binding probabilities are estimated via a selectivity
estimation function, Eq. 3. Maintenance of these statistics varies
with the specific selectivity estimation implementation, and is out
of scope for this work.

With regard to score probabilities, we train posterior distribu-
tions during query processing. Thus, only for prior distributions
sufficient statistics are needed. These statistics may differ depend-
ing on the ranking functions employed. For example, given the

rating ranking in Fig. 1-c, sufficient statistics can be computed
before runtime in the form of a sample mean and variance: stat1 =

(x̄1 = 8.1, s2
1 = 0.16), Fig. 2-b. In fact, one may even store fur-

ther distribution characteristics, e.g., distribution skewness or sym-
metry. This way, more refined conjugate priors could be estimated
(see paragraph above). In contrast, for user-/query-dependent rank-
ing, e.g., the keyword constraint “Audrey Hepburn” in Fig. 1-c,
scores are unknown before runtime. Thus, no sufficient statistic can
be stored and/or maintained. However, in such a case, a minimal
and maximal score may be kept. For instance, for the distance
ranking constraint, we would store a minimal and maximal score
as 0 and 1, respectively. This way, we may assume an uniform
score distribution as naive prior, and compute mean and variance
as: stat3 = (x̄3 = 0.25, s2

3 = 0.08), cf. Fig. 2-b and Exp. 11.

3.4 Theoretical Analysis
In this section, we discuss theoretical aspects concerning the ef-

fectiveness of the A-PBRJ operator. That is, we discuss the qual-
ity of the learned score distributions (Thm. 1 and 2), and provide
bounds for the approximation error, cf. Thm. 3.

Distribution Quality. The aggregation function ⊕ for our rank-
ing function scoreQ could be any monotonic function. However,
when we restrict the aggregation to a summation (see Fig. 1-c), we
can formally show that a Gaussian distribution/conjugate prior in
Eq. 7 is a good approximation for the true distribution of Xs

Qu(i).
Notice, many common aggregations employ summations, e.g., TF-
IDF inspired functions may be represented by summations [38].
For such a summation-based aggregation function it holds:

Theorem 1. Given a query Q = {tpk} and Xs
Qu(i) =

∑
tpk ∈ Q

u(i) Xs
tpk

,
the Central Limit Theorem (CLT) holds:∑

k

(
Xs

tpk
− µk

)
√∑

k σ
2
k

∼
n→∞

normal(0, 1)

with n as the number of patterns in Qu(i), and Xs
tpk

as random vari-
able modeling scores of bindings for pattern tpk. Further, µk and
σ2

k stand for the finite mean and variance of Xs
tpk

.

Informal Proof Sketch. As we do not have knowledge about the
ranking functions, scoreQ, or the distributions for Xs

tpk
, we can only

outline a very informal sketch of proof in the following.
Our argumentation is based on two assumptions: (A1) Recall, we

define a separate ranking function scoreQ for every triple pattern
tpk in query Q, cf. Sect. 2. In particular, each function computes its
score solely by considering the triple binding of “its own” pattern,
tpk. Thus, assuming scores from different ranking functions to be
independently distributed is a reasonable simplification. Formally,
for every two pattern tp1 and tp2 in Q, we assume: Xs

tp1
⊥ Xs

tp2
.

(A2) We assume each random variable Xs
tpk

to have a finite mean
µk and variance σ2

k . Notice, most common distributions feature
a finite mean and variance. So, this assumption does not restrict
scoreQ and Xs

tpk
, respectively.

In its simplest form, the Central Limit Theorem is only applica-
ble to i.i.d. random variables [13, p. 329]. However, in the Linde-
berg Theorem this restriction is lifted, i.e., every variable Xs

tpk
may

adhere to a different distribution [13, p. 330]:

Lemma 3 (Lindeberg Condition). If

lim
n→∞

1
s2

n

∑
k

E
(
(Xs

tpk
− µk)2

)
· 1

(
|Xs

tpk
− µk | ≥ εsn

)
= 0

holds, where s2
n =

∑
k σ

2
k , then the Central Limit Theorem in Thm. 1

holds.

Further, it is known that [6, p. 368]:

Lemma 4. If each random variable Xs
tpk

is uniformly bounded, and
limn→∞ sn = ∞, then the Lindeberg Condition in Lemma 3 holds.

As our scoreQ function is bounded in [0, 1] (defined in Sect. 2),
every variable Xs

tpk
is also bounded: P(0 ≤ Xs

tpk
≤ 1) = 1. Further,

the variance σ2
k can be expected to be > 0 for each Xs

tpk
, because

Xs
tpk

models ranking scores. That is, ranking scores are supposed to
vary between different results, in order to assist an users in discov-
ering results of interest. Therefore, it holds that sn =

∑
k σ

2
k → ∞

with n→ ∞ �
In simple terms, Thm. 1 states that the true distribution of Xs

Qu(i)
converges (in the number of patterns in Qu(i)) to a Gaussian distri-
bution. Now, the question is: “how fast” does Xs

Qu(i) converge to a
Gaussian distribution? For this convergence it holds:

Theorem 2 (Berry-Esseen Theorem). Let ρk = E
(
|Xs

tpk
|3
)
< ∞ be

the third absolute normalized moment of Xs
tpk

. Then, it holds [13,
p. 355]:

sup
x
|F(x) − φ(x)| ≤ C ·

∑
k ρk(∑

k σ
2
k

) 3
2

with φ(x) as standard Gaussian CDF, and F(x) as exact CDF of
Xs
Qu(i). Further, tpk, µk, and σ2

k are defined as in Thm. 1.

C is a constant in Thm. 2, and is currently estimated as 0.4097 ≤
C ≤ 0.5600 [13, p. 355]. Thus, intuitively, Thm. 2 gives an abso-
lute bound on how close the true distribution of Xs

Qu(i) is to a Gaus-
sian.

Approximation Error. Let Xe
i denote a random variable for the

error introduced by pruning from input i. This error may be mea-
sured as the number of pruned partial bindings from i, which would
have contributed to the final top-k result. Then, it holds that:

Lemma 5. Random variable Xe
i follows a binomial distribution

such that: Xe
i ∼ bin(ci, ε + τ). ci stands for the # bindings pulled

from input i, in order to produce the top-k results. Further, τ is the
error threshold from Eq. 6, and ε is a small constant ≥ 0.

Proof Sketch. From a given input i we pull ci partial bindings. Ev-
ery of these bindings could be pruned “wrongfully” by the top-k
test in Eq. 6, either because the binding probability was falsely es-
timated as 0, or because the score probability was smaller than the
threshold τ. Let the probability for the former be bounded by a con-
stant ε ≥ 0, while the probability for the latter is known to be ≤ τ.
Thus, the overall probability for a partial bindings to be wrongfully
pruned in Eq. 6 is ≤ ε + τ. Further, pulling ci partial bindings
from input i may be conceived as ci trails, where a wrongly pruned
binding is a “hit”. Therefore, we can model Xe

i by means of bino-
mial distribution, with ci as number of trails, and ε+ τ as “success”
probability. Formally, Xe

i ∼ bin(ci, ε + τ), cf. Lemma 5 �
Note, ε is a small error introduced by the binding indicator func-

tion 1(Qu(b) | b), see also Eq. 3. This error depends on the accu-
racy of the selectivity estimation, however, as the binding indicator
only requires a binary decision, its induced error is frequently very
small. In fact, our simplistic implementation in Eq. 4 is exact, i.e.,
leads to ε = 0.

Given a tree of one or more A-PBRJ operators having a total
of n inputs, let Xe capture the overall error, i.e., number of false
positives/negatives in the top-k results. We can show that Xe also
adheres to a binomial distribution:

Theorem 3. Xe ∼ bin
(∑n

i=1 ci, ε + τ
)
, with input depth ci, threshold

τ, and ε, as defined in Lemma 5.

Proof Sketch. Given a tree of joins having n inputs: {i1, . . . , in}.
Let every input i j pull c j partial bindings, in order for the join tree
to produce the desired k top-ranked results. Further, the error (#
wrongly pruned partial bindings) for each input i j is modeled via
variable Xe

i ∼ bin(ci, ε+ τ), cf. Lemma 5. False positives/negatives
results comprised in the final top-k bindings are caused by wrongly
pruned partial bindings. More precisely, for a given input i j, ev-
ery wrongfully pruned partial binding could lead to a false posi-
tive/negative top-k result. Thus, errors from the individual inputs
“sum up” to a total error – captured by Xe. In other words, random
variable Xe is a summation over the random variables Xe

i . Further,
errors made in the inputs are independent of each other, i.e., ev-
ery pair of variables, Xe

i and Xe
j , is independent: Xe

i ⊥ Xe
j . Thus,

Xe is again a binomial distribution with
∑n

i=1 ci trails and “success”
probability ε + τ: Xe ∼ bin

(∑n
i=1 ci, ε + τ

)
�

Exploiting Thm. 3, we can give an expected error as a function
of threshold τ: E (Xe) =

∑n
i=1 ci · (ε + τ).

4. EVALUATION
We conducted experiments for (1) analyzing the efficiency and

effectiveness of the A-PBRJ operator in Sect. 4.2, and (2) inspect-
ing the behavior of our probabilistic component in Sect. 4.3. By
means of the former, we illustrate the overall performance of our
approach, when compared with the exact PBRJ. The latter provides
insights into overhead and accuracy of the probabilistic component.

4.1 Evaluation Setting
Data. We used two RDF benchmarks based on synthetic/real-

world data: (1) The SP² benchmark features synthetic DBLP data
comprising information about computer science bibliographies [33].
(2) The DBpedia SPARQL benchmark (DBPSB), which holds real-
world data extracted from the DBpedia knowledge base [29]. For
both benchmarks we used datasets of 10M triples each.

Queries. We employed queries from the SP² benchmark [33]
and the DBPSB benchmark [29]. As both benchmarks comprise
SPARQL queries, we translated the queries to our query model (ba-
sic graph patterns). Queries featuring no basic graph patterns were
discarded, i.e., we omitted 12 and 4 queries in DBPSB and SP², re-
spectively. This lead to 13 SP² queries and 120 queries for DBPSB
– a comprehensive load of 133 queries in total.

The DBPSB queries were generated from 8 “seed queries” as
proposed in [29]: each seed query comprises a special variable,
which is randomly assigned a constant. Note, each constant is cho-
sen such that the resulting query has a non-empty result. With ev-
ery instantiation of that variable, a new benchmark query is given.
Overall, we instantiated each of the 8 seed queries with 15 random
bindings, resulting in a total of 120 queries. Queries varied in #
pattern ∈ [2, 9] and result sizes ∈ [1, 5390436]. Additional query
statistics are in Table 1, and a complete query listing is given in the
appendix, Sect. 8.

SP² Queries DBPSB Queries
Queries 13 120
Triple pattern [2, 9] [2, 4]
Mean(#Triple pattern) 5 2.8
Var(#Triple pattern) 6.4 0.6
Results [1, 5.4M] [1, 50]
Mean(#Results) 590K 3.9
Var(#Results) 2.1B 51.6

Table 1: Query statistics for the SP² and DBPSB benchmark.

Systems. We randomly generated bushy query plans. For a given
query, all systems rely on the same plan. We implemented three

systems, solely differing in their join operator: (1) A system with
join-sort operator, JS, which does not employ top-k processing,
but instead produces all results, and then sorts them. (2) An exact
rank join operator, PBRJ, featuring the corner-bound (Def. 2), and
the corner-bound-adaptive pulling strategy in Def. 3. (3) Last, we
implemented our approximate operator, A-PBRJ, see Sect. 3. All
systems have indexes for random and sorted access.

Aiming at Web search ranking, we assume no offline score in-
formation for the A-PBRJ operator. Thus, we employ a Gaussian
conjugate prior (with unknown mean and variance) for score prob-
ability learning. Training and top-k test implementation follows
Algo. 2 and 3, see Sect. 3.3.2. Further, we used sufficient statistics
based on a uniform distribution over [0, 1], as discussed in Exp. 11
for sorted access sa3. Prior weights ν0 and η0 are both 1. Weight
w in Algo. 2 is the sample size, |x|. Scores for single triple pat-
tern bindings are random (see below), and complete binding scores
are computed as summation. For binding probabilities, we aimed
at a simple implementation as presented in Eq. 4, Sect. 3.2. The
necessary SP, PO, and SO indexes were loaded into memory.

We implemented all systems in Java 6. Experiments were run
on a Linux server with two Intel Xeon 5140 CPUs at 2.33GHz,
48GB memory (16GB assigned to the JVM), and a RAID10 with
IBM SAS 148GB 10K rpm disks. Before each query execution,
all operating system caches were cleared. The presented values are
averages collected over five runs.

Hypothesis (H1): We expect that JS is outperformed by PBRJ, as
it computes all results for a query. Further, we expect A-PBRJ to
outperform JS and PBRJ, by trading effectiveness for efficiency.

Parameters. We used parameters as follows: We vary the num-
ber of results to be computed: k ∈ {1, 5, 10, 20}.

Hypothesis (H2): We predict efficiency to decrease in parameter
k for A-PBRJ and PBRJ. Effectiveness should not be affected.

We chose triple pattern binding scores, scoreQ(t), at random with
distribution d ∈ {u, n, e} (uniform, normal, and exponential distribu-
tion). By means of varying distributions, we aim at an abstraction
from a particular ranking function, and examine performance for
different “classes” of functions. We employed standard parameters
for all distributions, and normalized scores to be in [0, 1].

Hypothesis (H3): A-PBRJ’s efficiency and effectiveness is not
influenced by the choice of the ranking function and its score dis-
tribution, respectively.

We used top-k test thresholds τ ∈ [0, 0.8] for inspecting the trade-
off between computation efficiency and effectiveness.

Hypothesis (H4): We expect efficiency of A-PBRJ to be increas-
ing in τ, while its effectiveness will be decreasing in τ.

Metrics. We measure efficiency via: (1) Number of sorted and
random accesses. (2) Time spend for top-k result computation.
(3) Max. memory needed for buffering intermediate results.

As effectiveness metrics we use: (1) Precision: fraction of ap-
proximated top-k results being exact top-k results. (2) Recall: frac-
tion of exact top-k results being reported as approximate results.
Notice, precision and recall have identical values, as both share the
same denominator k. We therefore discuss only precision results
in the following. Further, precision is given as average over our
query load, the so-called macro-precision. (3) Rank distance: ap-
proximate vs. exact top-k rank: 1

k

∑
i=1,...,k |rank∗(b) − rank(b)|, with

rank∗(b) and rank(b) as approximated and exact rank for bind-
ing b [19]. (4) Score error: approximate vs. exact top-k score:
1
k

∑
b=1,...,k |score∗

Q
(b)− scoreQ(b)|, with score∗

Q
(b) and scoreQ(b) as

approximated and exact score for binding b [38].

4.2 Evaluation: A-PBRJ
First, we the performance of the A-PBRJ system in terms of its

0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.4 0.6 0.8

M
ac

ro
-P

re
ci

si
o

n

Threshold τ

A-PBRJ (E)
A-PBRJ (N)
A-PBRJ (U)

0.93

0.98

0 0.1 0.2 0.4 0.6 0.8

M
ac

ro
-P

re
ci

si
o

n

Threshold τ

A-PBRJ (E)
A-PBRJ (N)
A-PBRJ (U)

1E+02

1E+03

1E+04

0 0.1 0.2 0.4 0.6 0.8

B
u

ff
e

r
Si

ze
 (K

B
yt

e
)

Threshold τ

JS

PBRJ

A-PBRJ

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

0 0.1 0.2 0.4 0.6 0.8

B
u

ff
e

r
Si

ze
 (K

B
yt

e
)

Threshold τ

JS

PBRJ

A-PBRJ

2.0E+06

2.2E+06

2.4E+06

2.6E+06

2.8E+06

3.0E+06

3.2E+06

0 0.1 0.2 0.4 0.6 0.8

#I
n

p
u

ts

Threshold τ

JS

PBRJ

A-PBRJ

3.5E+04

4.5E+04

5.5E+04

6.5E+04

7.5E+04

8.5E+04

0 0.1 0.2 0.4 0.6 0.8

Ti
m

e
 (

m
s)

Threshold τ

JS

PBRJ

A-PBRJ

0E+00

1E-02

2E-02

3E-02

4E-02

5E-02

6E-02

7E-02

0 0.1 0.2 0.4 0.6 0.8

Sc
o

re
 E

rr
o

r

Threshold τ

A-PBRJ (E)
A-PBRJ (N)
A-PBRJ (U) SP

2

(a) (b) (c) (d) (e)

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

7.0E+05

0 0.1 0.2 0.4 0.6 0.8

#I
n

p
u

ts

Threshold τ

JS

PBRJ

A-PBRJ

2.0E+03

4.0E+03

6.0E+03

8.0E+03

1.0E+04

1.2E+04

0 0.1 0.2 0.4 0.6 0.8

Ti
m

e
 (

m
s)

Threshold τ

JS

PBRJ

A-PBRJ

D
B

P
SB

5E-03

1E-02

2E-02

2E-02

3E-02

3E-02

0 0.1 0.2 0.4 0.6 0.8

Sc
o

re
 E

rr
o

r

Threshold τ

A-PBRJ (E)
A-PBRJ (N)
A-PBRJ (U)

(f) (g) (h) (i) (j)

Figure 4: Average results over all queries from SP² and DBPSB: (a) + (f) Efficiency: #inputs vs. threshold τ. (b) + (g) Efficiency: time vs.
threshold τ. (c) + (h) Efficiency: buffer sizes vs. threshold τ. (d) + (i) Effectiveness: macro-precision vs. threshold τ, given varying score
distributions. (e) + (j) Effectiveness: score error vs. threshold τ, given varying score distributions.

effectiveness and efficiency.
Efficiency: Overall Results. Efficiency results are depicted in

Fig. 4 (a)+(f), (b)+(g), and (c)+(h), as functions in threshold τ for
SP² and DBPSB. As expected in hypothesis H1, we observed #in-
puts and computation time to be decreasing in τ, cf. Fig. 4 (a)+(f)
and (b)+(g). For SP² (DBPSB), A-PBRJ needed up to 25% (23%)
less inputs w.r.t. baseline PBRJ, and 30% (67%) regarding JS. We
explain these gains with pruning of partial bindings, thereby omit-
ting “unnecessary” joins and join attempts. Thus, A-PBRJ produces
overall fewer partial and complete bindings, as determined by prun-
ing of the top-k test. Fewer #inputs translated into average time
savings of 35% (65%) as compared to PBRJ, and 47% (80%) w.r.t.
JS, given SP² (DBPSB). Further, we noticed smaller buffers, hold-
ing less intermediate results, to contribute to these time savings,
due to more efficient probing and maintenance of their hash tables.

Interestingly, we saw an increase in #inputs for τ ∈ [0.2, 0.4] in
SP², and τ ∈ [0.4, 0.8] in DBPSB, Fig. 4 (a)+(f). For instance, com-
paring τ = 0.2 and τ = 0.4 in SP², A-PBRJ read 8% more inputs.
DBPSB was less effected – we noticed a marginal increase of 2%
for τ = 0.4 vs. τ = 0.6. We explain the increase in both benchmarks
with a too “aggressive” pruning, i.e., too many partial bindings have
been wrongfully pruned, leading to more inputs being read in order
to produce the desired k results. More precisely, we inspected SP²
benchmark runs for τ = 0.2 vs. τ = 0.4, and noticed a large number
of partial bindings throughout the tree were pruned “too early”, i.e.,
they would have led to a larger or even a complete binding. In both
cases, β thresholds (Algo. 1, line 8), capturing the upper-bound for
unseen join results, were not accurate any more, as they depended
on seeing these pruned bindings. In fact, τ ∈ [0.6, 0.8] was even
more aggressive, however, the ratio between pruned bindings and
read inputs was high enough to compensate for the extra inputs,
Fig. 4 (a). Note, such wrongfully pruned bindings not necessarily
have an effect on result quality. That is, we frequently observed
these bindings to not contribute to the exact top-k result. Overall,
we saw a “sweet spot” at τ ≈ 0.2 for SP² and DBPSB – here, we
noted pruning to be fairly accurate, i.e., only few partial bindings
were wrongfully pruned. This is also reflected in high precision
(recall) values for both benchmarks given τ ≈ 0.2: 88% (95%) in
SP² (DBPSB) – as discussed in the following.

With regard to computation time for SP² and DBPSB queries, we
noticed similar effects as for the #inputs, cf. Fig. 4 (b)+(g). In par-
ticular, the “sweet spot” at τ ≈ 0.2 is also reflected here. That is, for
τ = 0.2 A-PBRJ needs 40% (68%) less time than PBRJ. In compari-

son to JS, A-PBRJ is 51% (82%) faster in SP² (DBPSB). We explain
such drastic time savings with the less #inputs being read, due par-
tial bindings pruned by our top-k test. For instance, we were able
to prune up to 40% (90%) of the inputs, given SP² (DBPSB). This
lead to significantly less join attempts, and also smaller buffers (ex-
plained below). In fact, we noted that binding probabilities played a
crucial role, as they oftentimes allowed reliable discovery (pruning)
of partial bindings with little/no probability of leading to complete
bindings. Thus, similar to a random access, binding probabilities
allowed to “probe” unevaluated patterns.

Last, considering buffer sizes in SP² (DBPSB), we saw 60%
(95%) less space consumption w.r.t. PBRJ, and 75% (99%) in con-
trast to JS, cf. Fig. 4 (c)+(h). Note, Fig. 4 (c)+(h) shows aver-
age buffers size per join in KByte, while employing a dictionary
encoding for nodes in the data graph. Smaller buffers in A-PBRJ
are possible due to fewer intermediate results and less inputs be-
ing loaded. Interestingly, as these buffers are based on hash tables,
we observed smaller buffers to also have a positive effect on run-
time behavior. That is, less maintenance was necessary, and they
allowed for more efficient probing, due to less entries. So, buffer
sizes also contributed to the above discussed time savings.

Efficiency: Sensitivity Analysis. Let us discuss efficiency sensi-
tivity for different parameters – as expressed in hypotheses H2-H4.

As expressed by hypothesis H2, we observed #inputs and time
to increase in k for A-PBRJ and PBRJ. For instance, comparing
k = 1 and k = 20, A-PBRJ needed a factor of 1.2 (5.7) more time,
given SP² (DBPSB). Similarly, 1.2 (6.8) times more inputs were
consumed by A-PBRJ for SP² (DBPSB). Such a behavior is ex-
pected (H2), as more inputs/join attempts are required to produce
a larger result. PBRJ leads to a similar performance decrease in
SP². For instance, for k = 1 vs. k = 20 a factor of 1.3 (1.2) more
inputs (time) are needed. Given DBPSB queries, an interesting ob-
servation is that PBRJ achieves a 50 − 60% smaller performance
decrease than A-PBRJ for k = 1 vs. k = 20. We explain this with
many DBPSB queries having a cardinality ≤ 10, e.g., Q1 where
cardinality is 1. For such queries, A-PBRJ can not prune “more”
bindings for a larger k, as the algorithm first needs to compute k
complete results, which fails due to their small cardinality. Thus,
A-PBRJ is more sensitive to k w.r.t. queries with cardinality ≤ k.

Furthermore, we can confirm our hypothesis H3 with regard to
system efficiency: we did not find correlations between system per-
formance and score distributions. In other words, score distri-
butions (ranking functions) had no impact on performance of the

A-PBRJ, given SP² or DBPSB. For SP², we noticed A-PBRJ to out-
perform PBRJ by 22% (42%) for e distribution, 21% (35%) given u
distribution, and 8% (14%) for n distribution w.r.t. #inputs (time).
For DBPSB queries, A-PBRJ resulted in different gains over PBRJ:
27% (65%) for e distribution, 23% (64%) given u distribution, and
21% (64%) for n distribution w.r.t. #inputs (time).

Last, with regard to parameter τ, we noted A-PBRJ efficiency to
increase with τ ∈ [0, 2] for SP² (DBPSB) – partially confirming hy-
pothesis H4. However, as outlined above, too aggressive pruning
let to “inverse” effects. An important observation is, however, that
our approach was already able to achieve performance gains with
a very small τ < 0.1. Here, partial bindings were pruned primarily
due to their low binding probability. In fact, A-PBRJ could even
save time for τ = 0: 26% (60%) with SP² (DBPSB). We inspected
queries leading to such saving, and saw that many of their partial
bindings had a binding probability of 0. Thus, they were pruned
even with τ = 0. We argue that this a strong advantage of A-PBRJ:
even for low error thresholds (leading to minor effectiveness de-
crease), we could achieve significant efficiency gains.

Effectiveness: Overall Results. Fig. 4 (d)+(i), and (e)+(j) de-
pict effectiveness evaluation results for varying score distributions
as average over all queries. More precisely, (d)+(i) give macro-
precision, and (e)+(j) show score error – both as functions in τ. For
space reasons, figures depicting the rank distance were omitted. In-
stead, we describe key observations in the text.

We observed high precision values ∈ [0.8, 0.95] for both bench-
marks and over all queries, cf. Fig. 4 (d)+(i). More precisely, we
saw best results for a small τ < 0.1, and the uniform distribution.
However, given τ < 0.1, all distributions led to very similar pre-
cision results ∈ [0.9, 0.95] and [0.95, 0.98] for SP² and DBPSB,
respectively. This confirms our hypothesis H3: A-PBRJ’s effective-
ness is not affected by a particular score distribution. We explain
these good approximations with accurate score distributions (dis-
cussed in Sect. 4.3), and reliable binding probabilities. In fact, our
simplistic implementation in Eq. 4 led to exact binding probabil-
ities, thereby pruning partial bindings with certainty. This is be-
cause Eq. 4 checks necessary (but not sufficient) conditions, which
a partial bindings has to fulfill, in oder to contribute to a complete
binding. This resulted in accurate pruning of many partial bindings
– for some queries in DBPSB up to 97% of their total inputs. Such
DBPSB queries featured highly selective patterns, and had only a
small result cardinality ≤ 10, thereby allowing for an highly effec-
tive pruning via binding probabilities.

In order to quantify “how bad” false positive/negative results are,
we employed the score error and rank distance metric. Score error
results depicted in Fig. (e)+(j). We observed that rank distance
(score error) was ∈ [0.01, 0.02] ([0.07,0.11]) for a small τ < 0.1,
over all distributions and both benchmarks. We explain this we
our high precision (recall), i.e., A-PBRJ led to only few false posi-
tive/negative top-k results given τ = 0. Further, as expected in H4,
both metrics increased in τ, due to more pruning and false posi-
tives/negatives. For instance, for τ = 0 vs. τ = 0.8 we noted an
increase by a factor of 3.3 (2.6) for rank distance in SP² (DBPSB).
Overall, rank distance and score error results were very promising:
we saw an average score error of 0.03 (0.02) over all τ and queries,
given SP² (DBPSB).

Effectiveness: Sensitivity Analysis. Concerning the sensitivity
effectiveness w.r.t. parameter k, we can confirm the initial hypoth-
esis H2: k does not impact the A-PBRJ’s effectiveness. Given SP²,
we saw A-PBRJ to be fairly stable in different values for parameter
k. For instance, macro-precision was in [0.87, 0.89]. Other metrics
showed similar, minor fluctuations. Also for DBPSB, we noted
only minor effectiveness fluctuations, e.g., macro-precision varied

around 7% w.r.t. different k. We explain this good behavior with
(1) quality of learned score distributions for SP² (discussed later),
and (2) query characteristics of DBPSB. As for the latter, we noted
that DBPSB mostly contained very selective queries having a cardi-
nality ≤ 10. Thus, for such queries the risk of pruning “the wrong”
partial bindings did not increase in k. Note, SP² featured very dif-
ferent queries – many SP² queries had a large cardinality � 100.
Thus, we argue the stable performance of A-PBRJ for SP² to be an
indicator for a reliable top-k test and score/binding probabilities.

As predicted in hypothesis H3, we observed A-PBRJ to not be in-
fluenced by varying score distributions, Fig. 4 (d)+(i), and (e)+(j).
Given SP², we saw a macro-precision (over all queries and values
for τ) of 0.86 for u distribution, 0.88 for e distribution, and 0.89 for
n distribution. Also for the DBPSB benchmark, we observed only
minor changes in macro-precision: 0.96 for u distribution, 0.95 for
e as well as n distribution. We explain this with a good score dis-
tribution quality (see Sect. 4.3), leading to reliable top-k tests –
independent of the actual triple scores. Note, we made similar ob-
servations for score error and rank distance metric. One exception
was, however, the score error for distribution n, Fig. 4 (e)+(j). This
distribution led to an higher score error than, e.g., the u distribution
by a factor of 6.9 (1.13) for SP² (DBPSB). We analyzed these out-
lier queries in SP² and DBPSB: scores from wrongly pruned top-k
results were higher for n than for other distributions. This caused
an increase in the score error.

With regard to the effectiveness of A-PBRJ vs. parameter τ, we
noticed that metrics over both benchmarks decreased with increas-
ing τ. For instance, macro-precision decreased for τ = 0 vs. τ = 0.8
with 11% (5%), given SP² (DBPSB). Such a behavior is expected
(H4), as chances of pruning “the wrong” bindings increase with
higher τ values. Thus, while leading to efficiency gains (discussed
above), a higher value for τ causes effectiveness loses. Overall,
this confirms hypotheses H4 and H1 that A-PBRJ trades off effec-
tiveness for efficiency, as dictated by threshold τ.

4.3 Evaluation: Probabilistic Component
In this section, we analyze the performance of the probabilistic

component in terms of its efficiency and effectiveness. More specif-
ically, as binding probabilities are estimated via a given selectivity
estimation framework based on previous work [31, 32], we focus
on learning and computation of score probabilities.

SP² DBPSB
Time (ms) [1, 300] [1, 24]
Samples [1, 4M] [1, 50]
Avg. #Sample 400K 4

(a) Efficiency: average learning
time and # learning samples.

Dist. SP² DBPSB
e 0.34 0.04
n 0.34 0.01
u 0.31 0.02

(b) Effectiveness: av-
erage p-value from the
goodness-of-fit test.

Table 2: Efficiency and effectiveness of score distribution learning.

Efficiency. First, we analyze the overhead introduced by score
distribution learning. For this, we measured the time needed for hy-
perparameter training, cf. Algo. 2 in Sect. 3.2. We set the training
threshold, i.e., the # new bindings after which a new training pro-
cedure is triggered, to 1 (Algo. 1, line 12). Table 2-a gives average
training times and # samples for distribution training.

We observed average learning times ∈ [1, 300] ms ([1, 24] ms)
over all score distributions, queries and thresholds τ, given the SP²
(DBPSB) benchmark. We noted the driving factor to be the over-
all query selectivity. That is, SP² queries often had a large car-
dinality � 100, which led to a high number (up to 4, 227, 732)
of training samples. In contrast, DBPSB featured highly selective
queries, resulting in few training iterations – only up to 50 score

samples were available on average. Overall, this explains the ad-
ditional training time (factor 12.5) needed for SP² queries, when
compared to DBPSB. Note, one may easily cope with high cardi-
nality queries by: (1) setting a larger training threshold, or (2) stop
distribution learning, if distribution “quality” does not improve any
more. However, such optimizations are left to future work.

Second, we measured the extra time required for performing a
top-k test, see Algo. 3 in Sect. 3.2. On average over both bench-
marks and all parameters, a top-k test needed 4.3K ns. This time
comprises a selectivity estimation lookup for the binding proba-
bility, and the score probability computation. In contrast, a sorted
(random) access took 26.8K ns (1.7M ns) on average. Thus, a top-k
test is fairly cheap in comparison to a sorted/random access.

Effectiveness. For judging learning effectiveness, we captured
how well the trained distributions “fits” the observed complete bind-
ing scores. More precisely, we applied the well-known Kolmogo-
rov-Smirnov test [13], which measures, via a p-value in [0, 1],
whether a sample comes from the population of a specific distribu-
tion. Table 2-b shows p-values as averages over both benchmarks.

We observed drastic differences between p-values for SP² and
DBPSB. SP² results were very promising, and reflect that learned
distributions accurately capture the true scores of complete bind-
ings. This confirms hypothesis H3, as our distribution learning
could achieve high-quality approximations: a p-value of 0.34 for
distribution e as well as n, and 0.31 for u distribution. With regard
to DBPSB, we could not train good distributions, i.e., we measured
poor p-values: 0.04 for distribution e, 0.01 given n, and 0.02 for u
distribution. We explain this with the few training samples avail-
able in DBPSB queries, due to their high selectivity. As discussed
above, SP² queries featured much more score samples, cf. Table 2-
a. However, the interesting observation is that the overall approach,
A-PBRJ, was hardly affected. In fact, A-PBRJ achieved a very high
precision ∈ [0.95, 0.98] for DBPSB. This is because the score prob-
abilities are only relevant for the top-k test, if k complete bindings
have been computed (see discussion in Sect. 3.2). However, for
many DBPSB queries, their cardinality was ≤ k. Thus, the low
quality distributions had little to no effect.

Overall, we can conclude that the probabilistic component trains
score distributions in an efficient and effective manner, if sufficient
score samples are available.

5. RELATED WORK
Early work on rank-aware query processing aimed at the selec-

tion top-k problem [10, 11]. Here, the goal is to find k top-ranked
results, where each result is an entity with n attributes, that is ranked
according to m criteria, defined on those attributes [18].

To foster efficient result computation, approximate selection top-
k techniques have been proposed [2, 3, 28, 35, 38]. [38] used score
statistics to predict the highest possible complete score of a par-
tial binding. Partial results are discarded, if they are not likely to
contribute to a top-k result. Focusing on distributed top-k queries,
[28] employed histograms to predict aggregated score values over
a space of data sources. Anytime measures for selection top-k have
been introduced by [2, 3]. For this, the authors used offline score
information, e.g., histograms, to predict complete binding scores
at runtime. In [35], a framework for approximate top-k processing
under budgetary constraints, as well as algorithms for scheduling
sorted and random access have been presented.

In contrast, we target the join top-k problem. In this setting,
scores are assigned to single triples, and a complete result is ob-
tained by joining these triples. The score of a complete binding is
an aggregation of the scores for its comprised triples [18]. A large
body of work aimed at an exact join top-k processing, e.g., [12, 17,

20, 21, 27, 30, 34]. In particular, a rank-join based on the A∗ algo-
rithm, J∗, was proposed in [30]. [17] introduced the hash rank-join
algorithm (HRJN), which was further addressed in [21]. [20] inves-
tigated the join top-k problem given a non-monotonic aggregation
function. In [34], the authors developed an algorithm template, the
Pull/Bound Rank Join (PBRJ), which covers previous work on rank
join approaches. Using the PBRJ, the authors introduced a novel
bound for the case that a join features more than two inputs, and
a triple has multiple scores. Extending [34], efficiency and costs
aspects were further discussed in [12]. A cost-aware scheduling
strategy for random and sorted accesses in rank-joins was presented
in [27]. Recently, two works adapted top-k join processing to RDF
data and SPARQL queries [25, 39].

As result accuracy is not of high importance for Web search,
we aim at an approximate join top-k processing. However, to the
best of our knowledge, there is no work addressing this problem.
Further, approximate selection top-k techniques are not directly ap-
plicable. This is because the selection top-k problem solely ranks
“single” entities, and does not consider joins. In a join top-k setting,
multiple triples are combined via joins. This leads to many partial
bindings that never contribute to a top-k binding, because they do
not satisfy the join conditions. Thus, an approximate join top-k
should not only capture a score probability, but also a probability
for satisfying the query constraints. However, approximate selec-
tion top-k strategies solely judge the likelihood of a partial binding
leading to a top-k result by means of score probabilities [2, 3, 28,
35, 38].

Moreover, existing approximate top-k approaches heavily rely
on “offline ranking”. That is, scores must be known before runtime
for computing statistics, e.g., histograms [2, 3, 28, 35, 38], or suit-
able/approximated score distributions [38]. However, we target a
Web search context, where systems oftentimes exploit user-/query-
dependent ranking functions. Given such a ranking, scores are only
known at runtime. In fact, our approach not only supports such an
“online ranking”, but allows a flexible integration of any kind of
ranking function and offline available score information.

6. CONCLUSION
In this paper, we introduced an approximate join top-k algorithm,

A-PBRJ, well-suited for the Web of data. For this, we extended
the well-known PBRJ framework with a novel probabilistic com-
ponent. This component allows us to estimate the probability of a
partial query binding (1) to lead to a complete binding, and (2) to
have a score higher than the smallest currently currently known
top-k score. We conducted a theoretical analyses showing that
our approach features an efficient and effective instantiation of the
probabilistic component. Furthermore, we implemented and evalu-
ated the A-PBRJ system by means of two state-of-the-art Web data
benchmarks. Our results are promising, as we could achieve times
savings of up to 65% over the baselines, while maintaining a high
precision/recall.

7. REFERENCES
[1] R. Agrawal, R. Rantzau, and E. Terzi. Context-sensitive

ranking. In SIGMOD, 2006.
[2] B. Arai, G. Das, D. Gunopulos, and N. Koudas. Anytime

measures for top-k algorithms. In VLDB, 2007.
[3] B. Arai, G. Das, D. Gunopulos, and N. Koudas. Anytime

measures for top-k algorithms on exact and fuzzy data sets.
VLDB Journal, 18:407–427, 2009.

[4] A. Baid, I. Rae, J. Li, A. Doan, and J. Naughton. Toward
scalable keyword search over relational data. VLDB, 2010.

[5] J. M. Bernardo and A. F. M. Smith. Bayesian Theory. John
Wiley & Sons, 1994.

[6] P. Billingsley. Probability and Measure. Wiley-Interscience,
3 edition, 1995.

[7] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum.
Probabilistic information retrieval approach for ranking of
database query results. TODS, 31(3):1134–1168, 2006.

[8] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query
processing in geographic web search engines. In SIGMOD,
2006.

[9] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the
top-k most relevant spatial web objects. VLDB, 2009.

[10] R. Fagin. Combining fuzzy information from multiple
systems. JCSS, 58:83–99, 1999.

[11] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In SIGMOD, 2001.

[12] J. Finger and N. Polyzotis. Robust and efficient algorithms
for rank join evaluation. In SIGMOD, 2009.

[13] A. Gut. Probability: A Graduate Course. Springer, 2012.
[14] A. Guttman. R-trees: a dynamic index structure for spatial

searching. SIGMOD Rec., 14(2):47–57, 1984.
[15] P. D. Hoff. A First Course in Bayesian Statistical Methods.

Springer, 2009.
[16] K. Hose, R. Schenkel, M. Theobald, and G. Weikum.

Database foundations for scalable RDF processing. In RR,
2011.

[17] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting
top-k join queries in relational databases. VLDB Journal,
13:207–221, 2004.

[18] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of
top-k query processing techniques in relational database
systems. ACM Comput. Surv., 40(4):11:1–11:58, 2008.

[19] M. Kendall and J. D. Gibbons. Rank Correlation Methods.
Oxford University Press, 1990.

[20] B. Kimelfeld and Y. Sagiv. Incrementally Computing
Ordered Answers of Acyclic Conjunctive Queries. In NGITS,
volume 4032 of Lecture Notes in Computer Science, pages
141–152. 2006.

[21] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song. RankSQL:
query algebra and optimization for relational top-k queries.
In SIGMOD, 2005.

[22] F. Li, K. Yi, and W. Le. Top-k queries on temporal data. The
VLDB Journal, 19(5):715–733, 2010.

[23] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: top-k
keyword query in relational databases. In SIGMOD, 2007.

[24] A. Maduko, K. Anyanwu, A. Sheth, and P. Schliekelman.
Graph summaries for subgraph frequency estimation. In
ESWC, 2008.

[25] S. Magliacane, A. Bozzon, and E. Della Valle. Efficient
execution of top-k SPARQL queries. In ISWC, 2012.

[26] N. Mamoulis, M. L. Yiu, K. H. Cheng, and D. W. Cheung.
Efficient top-k aggregation of ranked inputs. TODS, 32, 2007.

[27] D. Martinenghi and M. Tagliasacchi. Cost-Aware Rank Join
with Random and Sorted Access. TKDE, 24(12):2143–2155,
2012.

[28] S. Michel, P. Triantafillou, and G. Weikum. KLEE: a
framework for distributed top-k query algorithms. In VLDB,
2005.

[29] M. Morsey, J. Lehmann, S. Auer, and A.-C. Ngonga Ngomo.
DBpedia SPARQL Benchmark – Performance Assessment
with Real Queries on Real Data. In ISWC, 2011.

[30] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S. Vitter.
Supporting Incremental Join Queries on Ranked Inputs. In
VLDB, 2001.

[31] T. Neumann and G. Moerkotte. Characteristic sets: Accurate
cardinality estimation for RDF queries with multiple joins. In
ICDE, 2011.

[32] T. Neumann and G. Weikum. Scalable join processing on
very large RDF graphs. In SIGMOD, 2009.

[33] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel.
SP2Bench: A SPARQL Performance Benchmark. In ICDE,
2009.

[34] K. Schnaitter and N. Polyzotis. Evaluating rank joins with
optimal cost. In PODS, 2008.

[35] M. Shmueli-Scheuer, C. Li, Y. Mass, H. Roitman,
R. Schenkel, and G. Weikum. Best-Effort Top-k Query
Processing Under Budgetary Constraints. In ICDE, 2009.

[36] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and
D. Reynolds. SPARQL basic graph pattern optimization
using selectivity estimation. In WWW, 2008.

[37] A. Telang, C. Li, and S. Chakravarthy. One Size Does Not
Fit All: Toward User- and Query-Dependent Ranking for
Web Databases. TKDE, 24(9):1671–1685, 2012.

[38] M. Theobald, G. Weikum, and R. Schenkel. Top-k query
evaluation with probabilistic guarantees. In VLDB, 2004.

[39] A. Wagner, T. T. Duc, G. Ladwig, A. Harth, and R. Studer.
Top-k linked data query processing. In ESWC, 2012.

8. APPENDIX
In this section, we present the query load that was used dur-

ing our experiments. Queries for the SP² benchmark are based
on [33], while the DBPSB benchmark queries are generated from
seed queries in [29]. All queries are given in RDF N33 notation.

Listing 1: Prefixes used for SP² and DBPSB queries.

1 @prefix r d f :
2 < h t t p : / / www. w3 . org /1999 /02 /22 − r d f −syn t ax −ns#> .
3 @prefix r d f s :
4 < h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f −schema#> .
5 @prefix dc :
6 < h t t p : / / p u r l . o rg / dc / e l e m e n t s / 1 . 1 / > .
7 @prefix d c t e r m s :
8 < h t t p : / / p u r l . o rg / dc / t e r m s / > .
9 @prefix xs :

10 < h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#> .
11 @prefix bench :
12 < h t t p : / / l o c a l h o s t / v o c a b u l a r y / bench / > .
13 @prefix f o a f :
14 < h t t p : / / xmlns . com / f o a f / 0 . 1 / > .
15 @prefix swrc :
16 < h t t p : / / swrc . on toware . o rg / o n t o l o g y #> .
17 @prefix d b p e d i a :
18 < h t t p : / / d b p e d i a . o rg / o n t o l o g y / > .
19 @prefix d b p e d i a p r o p :
20 < h t t p : / / d b p e d i a . o rg / p r o p e r t y / > .
21 @prefix d b p e d i a r e s :
22 < h t t p : / / d b p e d i a . o rg / r e s o u r c e / > .
23 @prefix skos :
24 < h t t p : / / www. w3 . org / 2 0 0 4 / 0 2 / skos / core > .
25 @prefix yago :
26 < h t t p : / / d b p e d i a . o rg / c l a s s / yago / > .

Listing 2: Queries for SP² benchmark [33].
3http://www.w3.org/TeamSubmission/n3/

1 ### 1
2 ? j o u r n a l dc : t i t l e " J o u r n a l 1 (1 9 4 0) " ^^ xs : s t r i n g .
3 ? j o u r n a l d c t e r m s : i s s u e d ? y r .
4 ? j o u r n a l r d f : type bench : J o u r n a l .
5

6 ### 2
7 ? i n p r o c d c t e r m s : p a r t O f ? p roc .
8 ? i n p r o c bench : b o o k t i t l e ? b o o k t i t l e .
9 ? i n p r o c swrc : pages ? page .

10 ? i n p r o c dc : t i t l e ? t i t l e .
11 ? i n p r o c r d f s : s e e A l s o ? ee .
12 ? i n p r o c f o a f : homepage ? u r l .
13 ? i n p r o c d c t e r m s : i s s u e d ? y r .
14 ? i n p r o c dc : c r e a t o r ? a u t h o r .
15 ? i n p r o c r d f : type bench : I n p r o c e e d i n g s .
16

17 ### 3
18 ? a r t i c l e r d f : type bench : A r t i c l e .
19 ? a r t i c l e swrc : pages ? v a l u e .
20

21 ### 4
22 ? a r t i c l e r d f : type bench : A r t i c l e .
23 ? a r t i c l e swrc : month ? v a l u e .
24

25 ### 5
26 ? a r t i c l e r d f : type bench : A r t i c l e .
27 ? a r t i c l e swrc : i s b n ? v a l u e .
28

29 ### 6
30 ? a r t i c l e 1 dc : c r e a t o r ? a u t h o r 1 .
31 ? a u t h o r 1 f o a f : name ? name1 .
32 ? a r t i c l e 1 swrc : j o u r n a l ? j o u r n a l .
33 ? a r t i c l e 2 swrc : j o u r n a l ? j o u r n a l .
34 ? a r t i c l e 2 dc : c r e a t o r ? a u t h o r 2 .
35 ? a u t h o r 2 f o a f : name ? name2 .
36 ? a r t i c l e 1 r d f : type bench : A r t i c l e .
37 ? a r t i c l e 2 r d f : type bench : A r t i c l e .
38

39 ### 7
40 ? a r t i c l e dc : c r e a t o r ? p e r s o n .
41 ? p e r s o n f o a f : name ?name .
42 ? p e r s o n 2 f o a f : name ?name .
43 ? i n p r o c dc : c r e a t o r ? p e r s o n 2 .
44 ? a r t i c l e r d f : type bench : A r t i c l e .
45 ? i n p r o c r d f : type bench : I n p r o c e e d i n g s .
46

47 ### 8
48 ? document d c t e r m s : i s s u e d ? y r .
49 ? document dc : c r e a t o r ? a u t h o r .
50 ? a u t h o r f o a f : name ?name .
51 ? document r d f : type ? c l a s s .
52 ? c l a s s r d f s : s u b C l a s s O f f o a f : Document .
53

54 ### 9
55 ? doc dc : t i t l e ? t i t l e .
56 ? bag2 ? member2 ? doc .
57 ? doc2 d c t e r m s : r e f e r e n c e s ? bag2 .
58 ? doc r d f : type ? c l a s s .
59 ? c l a s s r d f s : s u b C l a s s O f f o a f : Document .
60

61 ### 10
62 ? e r d o e s f o a f : name " Pau l Erdoes " ^^ xs : s t r i n g .
63 ? document dc : c r e a t o r ? e r d o e s .
64 ? document dc : c r e a t o r ? a u t h o r .
65 ? document2 dc : c r e a t o r ? a u t h o r .
66 ? document2 dc : c r e a t o r ? a u t h o r 2 .
67 ? a u t h o r 2 f o a f : name ?name .
68 ? e r d o e s r d f : type f o a f : P e r so n .
69

70 ### 11
71 ? p e r s o n r d f : type f o a f : P e r so n .
72 ? s u b j e c t ? p r e d i c a t e ? p e r s o n .
73

74 ### 12
75 ? a r t i c l e dc : c r e a t o r ? p e r s o n 1 .
76 ? p e r s o n 1 f o a f : name ?name .
77 ? p e r s o n 2 f o a f : name ?name .
78 ? i n p r o c dc : c r e a t o r ? p e r s o n 2 .
79 ? i n p r o c r d f : type bench : I n p r o c e e d i n g s .
80 ? a r t i c l e r d f : type bench : A r t i c l e .
81

82 ### 13
83 ? e r d o e s f o a f : name " Pau l Erdoes " ^^ xs : s t r i n g .
84 ? document dc : c r e a t o r ? e r d o e s .
85 ? document dc : c r e a t o r ? a u t h o r .
86 ? document2 dc : c r e a t o r ? a u t h o r .
87 ? document2 dc : c r e a t o r ? a u t h o r 2 .
88 ? a u t h o r 2 f o a f : name ?name .
89 ? e r d o e s r d f : type f o a f : P e r so n .

Listing 3: Queries for DBPSB benchmark [29].

1 ### 1
2 ? va r5 r d f : type d b p e d i a : P e r son .
3 ? va r5 f o a f : page ? va r8 .
4 ? va r5 d b p e d i a : t h u m b n a i l ? va r4 .
5 ? va r5 r d f s : l a b e l " Thaks in S h i n a w a t r a "@nn .
6

7 ### 2
8 ? va r5 d b p e d i a : t h u m b n a i l ? va r4 .
9 ? va r5 r d f : type d b p e d i a : P e r son .

10 ? va r5 r d f s : l a b e l
11 " \ u0420 \ u0438 \ u0448 \ u0435 ,
12 \ u0428 \ u0430 \ u0440 \ u043B \ u044C "@ru .
13 ? va r5 f o a f : page ? va r8 .
14

15 ### 3
16 ? va r5 d b p e d i a : t h u m b n a i l ? va r4 .
17 ? va r5 r d f : type d b p e d i a : P e r son .
18 ? va r5 r d f s : l a b e l
19 "Amadeo , q u i n t o
20 Duque de Aosta "@es .
21 ? va r5 f o a f : page ? va r8 .
22

23 ### 4
24 ? va r5 d b p e d i a : t h u m b n a i l ? va r4 .
25 ? va r5 r d f : type d b p e d i a : P e r son .
26 ? va r5 r d f s : l a b e l " Godebe r t a "@en .
27 ? va r5 f o a f : page ? va r8 .
28

29 ### 5
30 ? va r5 d b p e d i a : t h u m b n a i l ? va r4 .
31 ? va r5 r d f : type d b p e d i a : P e r son .
32 ? va r5 r d f s : l a b e l " Thaks in S h i n a w a t r a "@n l .
33 ? va r5 f o a f : page ? va r8 .
34

35 ### 6
36 ? va r5 d b p e d i a : t h u m b n a i l ? va r4 .
37 ? va r5 r d f : type d b p e d i a : P e r son .
38 ? va r5 r d f s : l a b e l
39 " \ u827E \ u9A30 \ u00B7
40 \ u4F0A \ u683C \ u8A00 "@zh .
41 ? va r5 f o a f : page ? va r8 .
42

43 ### 7
44 ? va r5 d b p e d i a : t h u m b n a i l ? va r4 .
45 ? va r5 r d f : type d b p e d i a : P e r son .
46 ? va r5 r d f s : l a b e l " Vlad \ u00EDmir K a r p e t s "@es .
47 ? va r5 f o a f : page ? va r8 .
48

49 ### 8
50 ? va r5 d b p e d i a : t h u m b n a i l ? va r4 .
51 ? va r5 r d f : type d b p e d i a : P e r son .
52 ? va r5 r d f s : l a b e l " D a n i e l P e a r l "@en .
53 ? va r5 f o a f : page ? va r8 .
54

55 ### 9
56 ? va r5 d b p e d i a : t h u m b n a i l ? va r4 .
57 ? va r5 r d f : type d b p e d i a : P e r son .
58 ? va r5 r d f s : l a b e l
59 " \ u30DE \ u30EA \ u30FC \ u30FB \ u30EB
60 \ u30A4 \ u30FC \ u30BA \ u30FB \ u30C9 \ u30EB
61 \ u30EC \ u30A2 \ u30F3 "@j a .
62 ? va r5 f o a f : page ? va r8 .
63

64 ### 10
65 ? va r5 d b p e d i a : t h u m b n a i l ? va r4 .
66 ? va r5 r d f : type d b p e d i a : P e r son .
67 ? va r5 r d f s : l a b e l " Wa l t e r Hodge "@en .
68 ? va r5 f o a f : page ? va r8 .
69

70 ### 11
71 ? va r5 d b p e d i a : t h u m b n a i l ? va r4 .
72 ? va r5 r d f : type d b p e d i a : P e r son .
73 ? va r5 r d f s : l a b e l " Damian Wayne"@en .
74 ? va r5 f o a f : page ? va r8 .
75

76 ### 12
77 ? va r5 d b p e d i a : t h u m b n a i l ? va r4 .
78 ? va r5 r d f : type d b p e d i a : P e r son .
79 ? va r5 r d f s : l a b e l
80 " \ u0417 \ u0430 \ u043B
81 \ u0435 \ u0432 \ u0441 \ u043A
82 \ u0438 \ u0439 , \ u041A \ u0430 \ u0437
83 \ u0438 \ u043C \ u0435 \ u0436 "@ru .
84 ? va r5 f o a f : page ? va r8 .
85

86 ### 13
87 ? va r5 d b p e d i a : t h u m b n a i l ? va r4 .
88 ? va r5 r d f : type d b p e d i a : P e r son .
89 ? va r5 r d f s : l a b e l
90 " \ u0413 \ u0438
91 \ u043B \ u0430 \ u0443 \ u0440 \ u0438 ,
92 \ u041D \ u0438 \ u043A \ u043E \ u043B
93 \ u043E \ u0437 \ u0417 \ u0443 \ u0440
94 \ u0430 \ u0431 \ u043E \ u0432 \ u0438
95 \ u0447 "@ru .
96 ? va r5 f o a f : page ? va r8 .
97

98 ### 14
99 ? v a r 5 d b p e d i a : t h u m b n a i l ? va r4 .

100 ? va r5 r d f : type d b p e d i a : P e r son .
101 ? va r5 r d f s : l a b e l " F r a n c i s A t t e r b u r y "@en .
102 ? va r5 f o a f : page ? va r8 .
103

104 ### 15
105 ? va r5 d b p e d i a : t h u m b n a i l ? va r4 .
106 ? va r5 r d f : type d b p e d i a : P e r son .
107 ? va r5 r d f s : l a b e l " Damian Wayne"@es .
108 ? va r5 f o a f : page ? va r8 .
109

110 ### 16
111 ? va r4 d b p e d i a p r o p : b i r t h P l a c e
112 " Vigny , Val d ’ Oise "@en .
113 ? va r4 d b p e d i a : b i r t h D a t e ? va r6 .
114 ? va r4 f o a f : name ? va r8 .
115 ? va r4 d b p e d i a : d e a t h D a t e ? va r10 .
116

117 ### 17
118 ? va r4 d b p e d i a p r o p : b i r t h P l a c e
119 " S a l i s b u r y , England "@en .
120 ? va r4 d b p e d i a : b i r t h D a t e ? va r6 .
121 ? va r4 f o a f : name ? va r8 .
122 ? va r4 d b p e d i a : d e a t h D a t e ? va r10 .
123

124 ### 18
125 ? va r4 d b p e d i a p r o p : b i r t h P l a c e
126 " B a i l e y i n t h e c i t y o f Durham "@en .
127 ? va r4 d b p e d i a : b i r t h D a t e ? va r6 .

128 ? va r4 f o a f : name ? va r8 .
129 ? va r4 d b p e d i a : d e a t h D a t e ? va r10 .
130

131 ### 19
132 ? va r4 d b p e d i a p r o p : b i r t h P l a c e
133 " V a s i l i e v s k a y a ,
134 Tambov Governo ra t e , "@en .
135 ? va r4 d b p e d i a : b i r t h D a t e ? va r6 .
136 ? va r4 f o a f : name ? va r8 .
137 ? va r4 d b p e d i a : d e a t h D a t e ? va r10 .
138

139 ### 20
140 ? va r4 d b p e d i a p r o p : b i r t h P l a c e
141 d b p e d i a r e s : Waltham%2C _ M a s s a c h u s e t t s .
142 ? va r4 d b p e d i a : b i r t h D a t e ? va r6 .
143 ? va r4 f o a f : name ? va r8 .
144 ? va r4 d b p e d i a : d e a t h D a t e ? va r10 .
145

146 ### 21
147 ? va r4 d b p e d i a p r o p : b i r t h P l a c e
148 d b p e d i a r e s : V a l e n c i a%2C_Spain .
149 ? va r4 d b p e d i a : b i r t h D a t e ? va r6 .
150 ? va r4 f o a f : name ? va r8 .
151 ? va r4 d b p e d i a : d e a t h D a t e ? va r10 .
152

153 ### 22
154 ? va r4 d b p e d i a p r o p : b i r t h P l a c e
155 d b p e d i a r e s : H a l i f a x%2C_West_Yorkshi re .
156 ? va r4 d b p e d i a : b i r t h D a t e ? va r6 .
157 ? va r4 f o a f : name ? va r8 .
158 ? va r4 d b p e d i a : d e a t h D a t e ? va r10 .
159

160 ### 23
161 ? va r4 d b p e d i a p r o p : b i r t h P l a c e d b p e d i a r e s : Suc re .
162 ? va r4 d b p e d i a : b i r t h D a t e ? va r6 .
163 ? va r4 f o a f : name ? va r8 .
164 ? va r4 d b p e d i a : d e a t h D a t e ? va r10 .
165

166 ### 24
167 ? va r4 d b p e d i a p r o p : b i r t h P l a c e
168 d b p e d i a r e s : L%C3%BAcar .
169 ? va r4 d b p e d i a : b i r t h D a t e ? va r6 .
170 ? va r4 f o a f : name ? va r8 .
171 ? va r4 d b p e d i a : d e a t h D a t e ? va r10 .
172

173 ### 25
174 ? va r4 d b p e d i a p r o p : b i r t h P l a c e
175 d b p e d i a r e s :%C3%89tampes .
176 ? va r4 d b p e d i a : b i r t h D a t e ? va r6 .
177 ? va r4 f o a f : name ? va r8 .
178 ? va r4 d b p e d i a : d e a t h D a t e ? va r10 .
179

180 ### 26
181 ? va r4 d b p e d i a p r o p : b i r t h P l a c e
182 d b p e d i a r e s : Montgomery_County%2C_Maryland

.
183 ? va r4 d b p e d i a : b i r t h D a t e ? va r6 .
184 ? va r4 f o a f : name ? va r8 .
185 ? va r4 d b p e d i a : d e a t h D a t e ? va r10 .
186

187 ### 27
188 ? va r4 d b p e d i a p r o p : b i r t h P l a c e
189 " Berke ley , G l o u c e s t e r s h i r e "@en .
190 ? va r4 d b p e d i a : b i r t h D a t e ? va r6 .
191 ? va r4 f o a f : name ? va r8 .
192 ? va r4 d b p e d i a : d e a t h D a t e ? va r10 .
193

194 ### 28
195 ? va r4 d b p e d i a p r o p : b i r t h P l a c e
196 d b p e d i a r e s : P a p a l _ S t a t e s .
197 ? va r4 d b p e d i a : b i r t h D a t e ? va r6 .
198 ? va r4 f o a f : name ? va r8 .
199 ? va r4 d b p e d i a : d e a t h D a t e ? va r10 .

200

201 ### 29
202 ? va r4 d b p e d i a p r o p : b i r t h P l a c e
203 d b p e d i a r e s : Ci ty_of_London .
204 ? va r4 d b p e d i a : b i r t h D a t e ? va r6 .
205 ? va r4 f o a f : name ? va r8 .
206 ? va r4 d b p e d i a : d e a t h D a t e ? va r10 .
207

208 ### 30
209 ? va r4 d b p e d i a p r o p : b i r t h P l a c e
210 " Houghton , Nor fo lk , England "@en .
211 ? va r4 d b p e d i a : b i r t h D a t e ? va r6 .
212 ? va r4 f o a f : name ? va r8 .
213 ? va r4 d b p e d i a : d e a t h D a t e ? va r10 .
214

215 ### 31
216 ? va r4 r d f s : l a b e l " (3 7 2) Palma "@de .
217 ? va r3 skos : b r o a d e r ? va r4 .
218 ? va r3 r d f s : l a b e l ? va r6 .
219

220 ### 32
221 ? va r4 r d f s : l a b e l " (1 1 5 5 4) As ios "@de .
222 ? va r3 skos : b r o a d e r ? va r4 .
223 ? va r3 r d f s : l a b e l ? va r6 .
224

225 ### 33
226 ? va r4 r d f s : l a b e l " (3 0 8 0) M o i s s e i e v "@de .
227 ? va r3 skos : b r o a d e r ? va r4 .
228 ? va r3 r d f s : l a b e l ? va r6 .
229

230 ### 34
231 ? va r4 r d f s : l a b e l " (1 2 7 3) Helma "@de .
232 ? va r3 skos : b r o a d e r ? va r4 .
233 ? va r3 r d f s : l a b e l ? va r6 .
234

235 ### 35
236 ? va r4 r d f s : l a b e l
237 " (1 1 9 8 7 8) 2002 CY224"@en .
238 ? va r3 skos : b r o a d e r ? va r4 .
239 ? va r3 r d f s : l a b e l ? va r6 .
240

241 ### 36
242 ? va r4 r d f s : l a b e l
243 " 039A \ u578B \ u6F5C
244 \ u6C34 \ u8266 "@j a .
245 ? va r3 skos : b r o a d e r ? va r4 .
246 ? va r3 r d f s : l a b e l ? va r6 .
247

248 ### 37
249 ? va r4 r d f s : l a b e l
250 " (4 4 4 4) \ u042D
251 \ u0448 \ u0435 \ u0440 "@ru .
252 ? va r3 skos : b r o a d e r ? va r4 .
253 ? va r3 r d f s : l a b e l ? va r6 .
254

255 ### 38
256 ? va r4 r d f s : l a b e l
257 " (3 8 3 4) Z a p p a f r a n k "@es .
258 ? va r3 skos : b r o a d e r ? va r4 .
259 ? va r3 r d f s : l a b e l ? va r6 .
260

261 ### 39
262 ? va r4 r d f s : l a b e l " (2 6 1 2) Kathryn "@de .
263 ? va r3 skos : b r o a d e r ? va r4 .
264 ? va r3 r d f s : l a b e l ? va r6 .
265

266 ### 40
267 ? va r4 r d f s : l a b e l " (2 9 0) Bruna "@de .
268 ? va r3 skos : b r o a d e r ? va r4 .
269 ? va r3 r d f s : l a b e l ? va r6 .
270

271 ### 41
272 ? va r4 r d f s : l a b e l " (4 3 8) Zeuxo "@de .

273 ? va r3 skos : b r o a d e r ? va r4 .
274 ? va r3 r d f s : l a b e l ? va r6 .
275

276 ### 42
277 ? va r4 r d f s : l a b e l " !X \ u00F3 \ u00F5 "@de .
278 ? va r3 skos : b r o a d e r ? va r4 .
279 ? va r3 r d f s : l a b e l ? va r6 .
280

281 ### 43
282 ? va r4 r d f s : l a b e l " (1 0 8 3) S a l v i a "@de .
283 ? va r3 skos : b r o a d e r ? va r4 .
284 ? va r3 r d f s : l a b e l ? va r6 .
285

286 ### 44
287 ? va r4 r d f s : l a b e l
288 " (1 2 9 6) Andr \ u00E9e "@de .
289 ? va r3 skos : b r o a d e r ? va r4 .
290 ? va r3 r d f s : l a b e l ? va r6 .
291

292 ### 45
293 ? va r1 r d f : type yago : Chr i s t i anLGBTPeop le .
294 ? va r1 f o a f : givenName ? va r2 .
295

296 ### 46
297 ? va r1 r d f : type yago : D e f J a m R e c o r d i n g s A r t i s t s .
298 ? va r1 f o a f : givenName ? va r2 .
299

300 ### 47
301 ? va r1 r d f : type yago : I n d i a n F i l m A c t o r s .
302 ? va r1 f o a f : givenName ? va r2 .
303

304 ### 48
305 ? va r1 r d f : type yago : E n g l i s h K e y b o a r d i s t s .
306 ? va r1 f o a f : givenName ? va r2 .
307

308 ### 49
309 ? va r1 r d f : type yago : G u i t a r P l a y e r s .
310 ? va r1 f o a f : givenName ? va r2 .
311

312 ### 50
313 ? va r1 r d f : type yago : F i l i p i n o F e m a l e M o d e l s .
314 ? va r1 f o a f : givenName ? va r2 .
315

316 ### 51
317 ? va r1 r d f : type yago : B l u e s B r o t h e r s .
318 ? va r1 f o a f : givenName ? va r2 .
319

320 ### 52
321 ? va r1 r d f : type yago : A m e r i c a n S o n g w r i t e r s .
322 ? va r1 f o a f : givenName ? va r2 .
323

324 ### 53
325 ? va r1 r d f : type yago : F r e n c h J a z z V i o l i n i s t s .
326 ? va r1 f o a f : givenName ? va r2 .
327

328 ### 54
329 ? va r1 r d f : type yago : E n g l i s h J a z z C o m p o s e r s .
330 ? va r1 f o a f : givenName ? va r2 .
331

332 ### 55
333 ? va r1 r d f : type yago : HarveyMuddCollegeAlumni .
334 ? va r1 f o a f : givenName ? va r2 .
335

336 ### 56
337 ? va r1 r d f : type yago : B a s s i s t 1 0 9 8 4 2 6 2 9 .
338 ? va r1 f o a f : givenName ? va r2 .
339

340 ### 57
341 ? va r1 r d f : type yago : Cura te109983572 .
342 ? va r1 f o a f : givenName ? va r2 .
343

344 ### 58
345 ? va r1 r d f : type yago : GreekFemaleModels .

346 ? va r1 f o a f : givenName ? va r2 .
347

348 ### 59
349 ? va r1 r d f : type yago : F i l i p i n o R e l i g i o u s L e a d e r s .
350 ? va r1 f o a f : givenName ? va r2 .
351

352 ### 60
353 ? va r4 skos : s u b j e c t
354 d b p e d i a r e s : C a t e g o r y :1004 _ d e a t h s .
355 ? va r4 f o a f : name ? va r6 .
356

357 ### 61
358 ? va r4 skos : s u b j e c t
359 d b p e d i a r e s : C a t e g o r y :
360 11 t h _ c e n t u r y _ i n _ E n g l a n d .
361 ? va r4 f o a f : name ? va r6 .
362

363 ### 62
364 ? va r4 skos : s u b j e c t
365 d b p e d i a r e s : C a t e g o r y :1067 _ d e a t h s .
366 ? va r4 f o a f : name ? va r6 .
367

368 ### 63
369 ? va r4 skos : s u b j e c t
370 d b p e d i a r e s : C a t e g o r y :1107 _ b i r t h s .
371 ? va r4 f o a f : name ? va r6 .
372

373 ### 64
374 ? va r4 skos : s u b j e c t
375 d b p e d i a r e s : C a t e g o r y :%C5%A0koda_trams .
376 ? va r4 f o a f : name ? va r6 .
377

378 ### 65
379 ? va r4 skos : s u b j e c t
380 d b p e d i a r e s : C a t e g o r y :
381 %C3%81 g u i l a s _ C i b a e%C3%B 1 a s _ p l a y e r s .
382 ? va r4 f o a f : name ? va r6 .
383

384 ### 66
385 ? va r4 skos : s u b j e c t
386 d b p e d i a r e s : C a t e g o r y :1255 _ b i r t h s .
387 ? va r4 f o a f : name ? va r6 .
388

389 ### 67
390 ? va r4 skos : s u b j e c t
391 d b p e d i a r e s : C a t e g o r y : 0 s _ B C _ b i r t h s .
392 ? va r4 f o a f : name ? va r6 .
393

394 ### 68
395 ? va r4 skos : s u b j e c t
396 d b p e d i a r e s : C a t e g o r y :
397 1130 _ d i s e s t a b l i s h m e n t s .
398 ? va r4 f o a f : name ? va r6 .
399

400 ### 69
401 ? va r4 skos : s u b j e c t
402 d b p e d i a r e s : C a t e g o r y :
403 . 3 2 _S%26W_Long_firearms .
404 ? va r4 f o a f : name ? va r6 .
405

406 ### 70
407 ? va r4 skos : s u b j e c t
408 d b p e d i a r e s : C a t e g o r y :1009 _ d e a t h s .
409 ? va r4 f o a f : name ? va r6 .
410

411 ### 71
412 ? va r4 skos : s u b j e c t
413 d b p e d i a r e s : C a t e g o r y :1144 _ d e a t h s .
414 ? va r4 f o a f : name ? va r6 .
415

416 ### 72
417 ? va r4 skos : s u b j e c t
418 d b p e d i a r e s : C a t e g o r y :1239 _ d e a t h s .

419 ? va r4 f o a f : name ? va r6 .
420

421 ### 73
422 ? va r4 skos : s u b j e c t
423 d b p e d i a r e s : C a t e g o r y :1070 s _ d e a t h s .
424 ? va r4 f o a f : name ? va r6 .
425

426 ### 74
427 ? va r4 skos : s u b j e c t
428 d b p e d i a r e s : C a t e g o r y :1105 .
429 ? va r4 f o a f : name ? va r6 .
430

431 ### 75
432 ? va r3 d b p e d i a : i n f l u e n c e d
433 d b p e d i a r e s : Ram%C3%B3n_Emete r io_Be tances .
434 ? va r3 f o a f : page ? va r4 .
435 ? va r3 r d f s : l a b e l ? va r6 .
436

437 ### 76
438 ? va r3 d b p e d i a : i n f l u e n c e d d b p e d i a r e s : Rob_Corddry .
439 ? va r3 f o a f : page ? va r4 .
440 ? va r3 r d f s : l a b e l ? va r6 .
441

442 ### 77
443 ? va r3 d b p e d i a : i n f l u e n c e d
444 d b p e d i a r e s : P a r a k r a m a _ N i r i e l l a .
445 ? va r3 f o a f : page ? va r4 .
446 ? va r3 r d f s : l a b e l ? va r6 .
447

448 ### 78
449 ? va r3 d b p e d i a : i n f l u e n c e d
450 d b p e d i a r e s : Alexander_VI .
451 ? va r3 f o a f : page ? va r4 .
452 ? va r3 r d f s : l a b e l ? va r6 .
453

454 ### 79
455 ? va r3 d b p e d i a : i n f l u e n c e d d b p e d i a r e s : I q b a l .
456 ? va r3 f o a f : page ? va r4 .
457 ? va r3 r d f s : l a b e l ? va r6 .
458

459 ### 80
460 ? va r3 d b p e d i a : i n f l u e n c e d
461 d b p e d i a r e s : Al−M a q r i z i .
462 ? va r3 f o a f : page ? va r4 .
463 ? va r3 r d f s : l a b e l ? va r6 .
464

465 ### 81
466 ? va r3 d b p e d i a : i n f l u e n c e d
467 d b p e d i a r e s : C l a r e n c e _ I r v i n g _ L e w i s .
468 ? va r3 f o a f : page ? va r4 .
469 ? va r3 r d f s : l a b e l ? va r6 .
470

471 ### 82
472 ? va r3 d b p e d i a : i n f l u e n c e d
473 d b p e d i a r e s : I b n _ K h a l e e l .
474 ? va r3 f o a f : page ? va r4 .
475 ? va r3 r d f s : l a b e l ? va r6 .
476

477 ### 83
478 ? va r3 d b p e d i a : i n f l u e n c e d
479 d b p e d i a r e s : D a v i d _ F r i e d l%C3%A4nder .
480 ? va r3 f o a f : page ? va r4 .
481 ? va r3 r d f s : l a b e l ? va r6 .
482

483 ### 84
484 ? va r3 d b p e d i a : i n f l u e n c e d
485 d b p e d i a r e s : John_Warnock .
486 ? va r3 f o a f : page ? va r4 .
487 ? va r3 r d f s : l a b e l ? va r6 .
488

489 ### 85
490 ? va r3 d b p e d i a : i n f l u e n c e d
491 d b p e d i a r e s : V l a d i m i r _ L e n i n .

492 ? va r3 f o a f : page ? va r4 .
493 ? va r3 r d f s : l a b e l ? va r6 .
494

495 ### 86
496 ? va r3 d b p e d i a : i n f l u e n c e d
497 d b p e d i a r e s : Nia l l_McLaren .
498 ? va r3 f o a f : page ? va r4 .
499 ? va r3 r d f s : l a b e l ? va r6 .
500

501 ### 87
502 ? va r3 d b p e d i a : i n f l u e n c e d
503 d b p e d i a r e s : David_J . _ F a r b e r .
504 ? va r3 f o a f : page ? va r4 .
505 ? va r3 r d f s : l a b e l ? va r6 .
506

507 ### 88
508 ? va r3 d b p e d i a : i n f l u e n c e d
509 d b p e d i a r e s : F ran_Lebowi t z .
510 ? va r3 f o a f : page ? va r4 .
511 ? va r3 r d f s : l a b e l ? va r6 .
512

513 ### 89
514 ? va r3 d b p e d i a : i n f l u e n c e d
515 d b p e d i a r e s : K a t h l e e n _ R a i n e .
516 ? va r3 f o a f : page ? va r4 .
517 ? va r3 r d f s : l a b e l ? va r6 .
518

519 ### 90
520 ? va r0 r d f s : l a b e l " The S u b t l e Kn i fe "@en .
521 ? va r0 r d f : type ? va r1 .
522

523 ### 91
524 ? va r0 r d f s : l a b e l " P a t r i o t e r "@sv .
525 ? va r0 r d f : type ? va r1 .
526

527 ### 92
528 ? va r0 r d f s : l a b e l " Sca r T i s s u e (l i b r o) "@es .
529 ? va r0 r d f : type ? va r1 .
530

531 ### 93
532 ? va r0 r d f s : l a b e l
533 " J a s o n Bournes u l t i m a t u m "@nn .
534 ? va r0 r d f : type ? va r1 .
535

536 ### 94
537 ? va r0 r d f s : l a b e l " Jane Eyre "@f r .
538 ? va r0 r d f : type ? va r1 .
539

540 ### 95
541 ? va r0 r d f s : l a b e l
542 " Gone wi th t h e Wind (l i v r o) "@p t .
543 ? va r0 r d f : type ? va r1 .
544

545 ### 96
546 ? va r0 r d f s : l a b e l " Alkumets \ u00E4 "@f i .
547 ? va r0 r d f : type ? va r1 .
548

549 ### 97
550 ? va r0 r d f s : l a b e l
551 " F l i g h t from t h e Dark "@en .
552 ? va r0 r d f : type ? va r1 .
553

554 ### 98
555 ? va r0 r d f s : l a b e l " Mongol Empire "@en .
556 ? va r0 r d f : type ? va r1 .
557

558 ### 99
559 ? va r0 r d f s : l a b e l " K u l t a h a t t u "@f i .
560 ? va r0 r d f : type ? va r1 .
561

562 ### 100
563 ? va r0 r d f s : l a b e l
564 " Ase iden k \ u 0 0 E 4y t t \ u00F6 "@f i .

565 ? va r0 r d f : type ? va r1 .
566

567 ### 101
568 ? va r0 r d f s : l a b e l " Marrow (n o v e l) "@en .
569 ? va r0 r d f : type ? va r1 .
570

571 ### 102
572 ? va r0 r d f s : l a b e l " The Acid House "@en .
573 ? va r0 r d f : type ? va r1 .
574

575 ### 103
576 ? va r0 r d f s : l a b e l " \ u6B63 \ u4E49 \ u8BBA"@zh .
577 ? va r0 r d f : type ? va r1 .
578

579 ### 104
580 ? va r0 r d f s : l a b e l "Dawn of t h e Dragons "@en .
581 ? va r0 r d f : type ? va r1 .
582

583 ### 105
584 ? va r2 r d f : type d b p e d i a : P e r son .
585 ? va r2 r d f s : l a b e l
586 "Ab \ u016B l −Hasan Ban \ u012Bsadr "@de .
587 ? va r2 f o a f : page ? va r4 .
588

589 ### 106
590 ? va r2 r d f : type d b p e d i a : P e r son .
591 ? va r2 r d f s : l a b e l
592 " Abdul Rahman of Ne ge r i Sembi lan "@en .
593 ? va r2 f o a f : page ? va r4 .
594

595 ### 107
596 ? va r2 r d f : type d b p e d i a : P e r son .
597 ? va r2 r d f s : l a b e l "A.W. Farwick "@en .
598 ? va r2 f o a f : page ? va r4 .
599

600 ### 108
601 ? va r2 r d f : type d b p e d i a : P e r son .
602 ? va r2 r d f s : l a b e l " Abdu l l ah G \ u00FCl "@sv .
603 ? va r2 f o a f : page ? va r4 .
604

605 ### 109
606 ? va r2 r d f : type d b p e d i a : P e r son .
607 ? va r2 r d f s : l a b e l " Aaron Pe \ u00F1a "@en .
608 ? va r2 f o a f : page ? va r4 .
609

610 ### 110
611 ? va r2 r d f : type d b p e d i a : P e r son .
612 ? va r2 r d f s : l a b e l " Abby L o c k h a r t "@f r .
613 ? va r2 f o a f : page ? va r4 .
614

615 ### 111
616 ? va r2 r d f : type d b p e d i a : P e r son .
617 ? va r2 r d f s : l a b e l "Abd a l −L a t i f "@en .
618 ? va r2 f o a f : page ? va r4 .
619

620 ### 112
621 ? va r2 r d f : type d b p e d i a : P e r son .
622 ? va r2 r d f s : l a b e l " Abdel Halim Khaddam "@f r .
623 ? va r2 f o a f : page ? va r4 .
624

625 ### 113
626 ? va r2 r d f : type d b p e d i a : P e r son .
627 ? va r2 r d f s : l a b e l " Abdur Rahman Khan "@f r .
628 ? va r2 f o a f : page ? va r4 .
629

630 ### 114
631 ? va r2 r d f : type d b p e d i a : P e r son .
632 ? va r2 r d f s : l a b e l
633 "A \ u0142 \ u0142a Kudriawcewa "@p l .
634 ? va r2 f o a f : page ? va r4 .
635

636 ### 115
637 ? va r2 r d f : type d b p e d i a : P e r son .

638 ? va r2 r d f s : l a b e l " Aaron Raper "@en .
639 ? va r2 f o a f : page ? va r4 .
640

641 ### 116
642 ? va r2 r d f : type d b p e d i a : P e r son .
643 ? va r2 r d f s : l a b e l "A. L . W i l l i a m s "@en .
644 ? va r2 f o a f : page ? va r4 .
645

646 ### 117
647 ? va r2 r d f : type d b p e d i a : P e r son .
648 ? va r2 r d f s : l a b e l " Abdul Kad i r Khan "@sv .
649 ? va r2 f o a f : page ? va r4 .
650

651 ### 118
652 ? va r2 r d f : type d b p e d i a : P e r son .
653 ? va r2 r d f s : l a b e l "A. J . P i e r z y n s k i "@en .
654 ? va r2 f o a f : page ? va r4 .
655

656 ### 119
657 ? va r2 r d f : type d b p e d i a : P e r son .
658 ? va r2 r d f s : l a b e l " Abdu l l ah Ahmad Badawi "@p l .
659 ? va r2 f o a f : page ? va r4 .
660

661 ### 120
662 ? va r2 r d f : type d b p e d i a : P e r son .
663 ? va r2 r d f s : l a b e l
664 " A b d e l b a s e t A l i Mohmed Al Megrahi "@en .
665 ? va r2 f o a f : page ? va r4 .

